前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇灌浆技术论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
1.1混凝土灌浆
水利电力工程中,混凝土的体积往往较大,因此在施工中难免会出现裂缝,此时就需要进行灌浆技术对其进行修复,嵌缝技术就是一种常见的技术形式,其可以对混凝土裂缝进行修复。沿着裂缝开槽,在槽内嵌入塑性材料或者刚性防水材料等,达到封闭裂缝的效果。常用的塑性材料包括聚氯乙烯胶、塑性油膏等等,刚性的封闭材料则包括聚合水泥砂浆等。混凝土裂缝的灌浆技术则常用环氧灌浆技术,就是将环氧树脂灌浆材料进行灌注,环氧注浆的材料往往选择邻苯二甲酸二丁酯、乙二胺等等。
1.2孔口封闭灌浆技术
该技术是一种自上而下的灌浆技术,也可称之为循环灌浆技术。孔口封闭灌浆技术适应最大压力>3MP的帷幕灌浆工程项目,小于其参考值的帷幕工程则需要选择性应用。利用孔口封闭灌浆技术应注意一下几个要点,如钻孔的直径控制,应<60mm;孔口管道必须进行牢固的嵌入,买入到岩层的深度按照灌浆的压力所定,最大的灌浆压力则控制在5MPa以内,最大压力时嵌入岩层的深度应>2m;灌浆应选择循环式施工,自上而下的灌注,分阶段进行;孔口管道分为多个灌浆段,应尽量选择较短的分段发方式,压力增加应尽量快速,段长和相应的灌浆压力应进行事前试验;灌浆过程中应经常性的活动灌浆管,回浆管应保证15L/min的回流量,防止灌浆管道出现凝结。
1.3大吸浆灌浆技术
应用中主要是控制灌浆的压力和流量,通常利用低压或者自流的方式对裂缝进行灌浆,泥浆流动性降低后在逐步升高压力,以此增加灌浆量。同时限制灌浆的流量,采用低流量配合压力,减少灌浆在裂缝中的流动速度,使得泥浆沉淀,灌注量降低后再增加压力,提高灌浆量,直至完成灌浆。
2水利电力工程大坝施工中灌浆技术的应用
水利电力工程对质量要求较高,在水利电力工程的大坝工程中有多种灌浆技术被应用,但是应根据实际的情况选择不同的技术措施,不同的灌浆技术也有着不同的作用效果。具体情况如下:
2.1吸浆量较大的灌注措施
在水利电力施工中,大坝的施工需要灌浆作业在很短的时间内完成施工,但是因为地质和限制的因素,使得泥浆不能很快的凝结,此时泥浆冲基础底部渗出,导致灌浆效果不佳。此时应进行低压灌浆观察泥浆的流动情况,选择逐步增加的方式进行灌浆。也可选择方法限制吸浆的情况,加速泥浆的流动情况。然后提高泥浆的黏度从而控制流动性,降低泥浆流速而保证凝结。进行灌浆的过程中应考虑对泥浆的组份进行调整,同调节灰水比和外加剂填入的方式来控制泥浆的凝固速度,人为控制泥浆流动性。在水利电力大坝工程的施工中,也可采用灌注间歇砂浆和砂浆的方式来提高灌浆的施工质量,灌浆过程中,灌浆间隔控制在2~6h,最后泥浆凝固后达到一定的强度后,扫孔和复灌等。
2.2漏水通道灌浆
水利电力大坝工程因为受到地质环境的影响,往往存在不可控的问题,施工过程中环境复杂且地质改变的情况时有发生,在施工中容易出现漏水的情况,影响灌浆的质量。针对这个问题应采用一些外部干扰的措施,如爆理,利用爆破方式破坏漏水结构,再在漏水的位置采用灌浆的方式进行控制。但是这样的处措施往往不能达到工程质量要求。增加了工程成本以及难度。所以在实际的工程中可以采用以下措施进行控制,利用模袋灌浆,一般选择尼龙和聚丙烯为材料的袋子,进行堵漏并灌浆;利用填充级别的配料,在漏水的地方进行处理,利用大粒径的砂石进行灌浆;利用双浆灌浆技术,将水泥浆和速凝剂分别从两个管道进行灌注,使其进入到混合器,混合后再进入灌注的区域,这样可以增加防渗漏的效果,对漏水点进行控制。
2.3接缝灌浆技术
水利电力大坝的工程中,坝体填筑的工作是一项重要的施工项目,在施工中其将直接影响到整体质量。坝体建设中首先应合理的规划工作量,选择工艺和施工方案使之适应项目需求。对坝体施工的工作量进行分配与组织。灌浆施工也应按照坝体施工的需求进行选择与实施。根据坝体情况准备建筑材料和场地等,根据作业时间来控制材料质量,避免土料热量的流失等,提高施工的效率和质量。在水利水电坝体施工中灌浆技术主要是针对接缝处理,是一种主要的技术措施。通常选择盒式灌浆、骑缝灌浆、重复灌浆等。在施工中3种灌注方式可以进行重复使用,根据不同的灌浆特征以及工程情况配合使用。盒式灌浆因为灌浆的质量较高,回浆管的管路不易阻塞等优势,在坝体接缝灌浆选择中被普遍认可。但是系统消耗的管材相对多,其成本使其受到限制。重复式灌浆系统布置方式主要因为不堵塞管道而能进行重复施工。骑缝灌浆管理系统因为其扩散模式的灌浆形式较为流畅,并且压力分布平均,管路不易阻塞。水利电力大坝的接缝施工通常压力在0.2MPa左右,在坝体灌浆前应进行分析与计算,保证灌浆的顺利开展,必须保接缝灌浆的开张度与泥浆粒径的比例,理想的开度为1~3mm,在灌浆中应控制开度的扩张。
3结语
将灌浆施工技术应用到水利水电施工中,是因为大坝的建造并不仅像房屋建造那么简单,其受到地质构造影响的同时还受到了水文地质的影响。而且作为大坝地基的构造不可能完美无缺,通常这些地基都存在一定的缺陷,因此要通过人工处理才能将该地基建造为适合大坝施工的坚固地基,在对地基的处理过程中需要灌浆技术的应用。灌浆技术的应用可以大大提高地基的抗震性、抗渗性及稳定性,其主要应用就是通过将配比好的浆液注入裂缝之中,待浆液凝固硬化,就可以达到预期的效果。帷幕灌浆、接缝灌浆、高压喷射灌浆、固结灌浆等为灌浆的主要方法,通过这些方法可以达到水利坝体或其他防渗工程的有效加固、防渗、堵漏等。而在这些方法中最为普遍的是帷幕灌浆,帷幕灌浆最显著的特点是防渗,因此帷幕灌浆也是水利工程地基防渗的主要方法之一。以三峡大坝为例,通过帷幕灌浆技术,就可以保证其地基防渗透,帷幕灌浆可以在大坝的地基内部形成多个连续防渗透的幕墙,从而保证大坝地基不受水的侵蚀与渗透。
2大坝的主要灌浆技术
2.1钻孔施工技术
在大坝的灌浆施工过程中,要将泥浆灌入就必须有灌浆孔,因此对于灌浆孔的要求十分严苛。由于灌浆孔是灌浆施工的基础组成部分,各个灌浆孔的横截面大小应当保持一致,且要保证各个灌浆孔都是与水平面垂直的正直状态。
2.2裂缝施工灌浆技术
我国在水利水电施工过程中不断突破已有技术,学习西方先进技术,引进裂缝施工灌浆技术,并在近几年运用中结合自身的特点不断改进,因此该项技术不仅在大坝中得到大量应用,还在大梁的建设、工业厂房的建设、吊车的施工辅助等方面起到作用。
2.3无塞灌浆施工技术
无塞灌浆技术之所以能有效提高施工质量节省施工时间有两个原因:其一是该项技术能省略等待泥浆凝固的过程;其二是无塞灌浆技术可以防止灌浆过程中出现堵塞现象而引发的施工漏水,避免了施工过程中因为施工不当而造成返工浪费时间,无塞灌浆技术的应用可以提高施工效率,节省施工时间。
3大坝灌浆施工的质量管理措施
3.1内部质量管理
(1)完善内部监督体制。首先就应当对整个施工流程进行监督和控制,各项施工流程应当按照顺序进行,各部分要符合施工要求后才能开始施工,对于未达到施工标准的应当进行改制达到标准后再进行施工。其次就是设置监督责任制小组,各小组成员对整个施工环境及人员进行监督与考核,对施工规范程度依次考核。(2)质量的控制和管理。在进行内部质量管理时,除了要对内部质量监督外,还应对质量进行控制和管理,其有效性对工程的质量起着决定性的作用。
3.2外部质量管理
(1)外部监督体制。质量监督单位应加强其监督力度,除了不断完善监督设备外还应完善各监督人员的配备。质量监督单位应当对已有的监督设备定期检查,保证设备检测的准确性,另外对于已经报废或破损的设备应进行维修或者丢弃,购置新的精确性高的设备。(2)监测人员专业知识。质量监督部门的监测人员应当具备相应的专业知识,这样才能从多方位监测,因此质量监督部门应当对监测人员进行专业知识和技能的培训,提高工作人员的监督方法和管理理念,并对培训的结果定期考核。质量监测人员专业水平的提高,才能更好的对大坝灌浆施工质量进行监测。
3.3质量检查分析
经过了内部与外部共同质量管理后,大坝的工作人员应当对质量管理监测所得的数据进行采集和考查,对各项数据进行分析,得出的资料与图表要展开研究和总结,进一步完善和更正施工图纸。最后的质量检查分析步骤是必不可少的,在进行质量管理之后必然会有相应的数据产生,这些数据又为整个施工过程带来新的改变。
4结束语
关键词:顶管施工泥浆
若使刃脚比它相应于管子外径应有的尺寸稍大一点,就有可能降低管外壁摩阻力。这样能使上层不直接压在管体上。只要土层足够坚硬,这种方法就会取到预期的效果。而如果向管子和土层之间形成的空隙内压人支承介质,这种方法的效力更可以大大提高,并能维持一定的时间,从而足以顶进一段相当长的管路,再则,支承介质在起支承作用的同时,也可以作为剂起到减少摩阻力的作用。
对支承一介质的要求
对支承一介质的要求,可以根据摩擦定律推算出来。
摩擦定律概要
除了不在这里讨论的滚动摩擦之外,可将摩擦区分为:
a)粘附摩擦(与静摩擦相同);
b)滑动摩擦。
在粘附摩擦和滑动摩擦的情况下都存在如下的关系:
T=N·μ
式中
N——法向力;
T——切向力;
μ——摩擦系数;
摩擦系数μ是一个材料常数,与滑动面和滑动物体的表面性质有关,而却不以接触面积F的大小为转移。
无量钢系数μ在粘附摩擦的情况下,一般大于滑动摩擦时的数值,因为在粘附摩擦的情况下,表面会由于经常存在的不平度而被“楔紧”。
滑动摩擦又可分为:
b1)干摩擦;
b2)液体摩擦。
在干摩擦时,滑动体和滑动面直接接触,在液体摩擦的情况下,滑动体和滑动面则被介质隔开
在滑动摩擦的情况下。滑动体和滑动面之间存在相对速度。
在干滑动摩擦的情况下,摩擦系数μ与相对速度υ无关。
在液体滑动摩擦的情况下,视在摩擦系数μ则相随滑动体和滑动面之间液体的流动阻力而变化。流动阻力则取决于液体的运动粘滞度和流动速度。根据流体动力学可知,流动阻力与流动速度的平方成正比。
在两个互相接触的物体之间,起作用的是一个比压:
P=N/F
在液体摩擦的情况下,作用在液体上的是一个流动压力:
p’=f(υ2)
若p=p’,物体和介质便处于平衡状态。这时运动的物体就“漂浮”在滑动面上。
如p>p’,介质便会从运动物体和滑动面之间的缝隙中逐渐被挤压出去,直到液体摩擦转变为干滑动摩擦为止。液体摩擦的前提在于,无论物体和滑动面都必须是不透水的。如果介质能够渗人物体或滑动面,而又不以同样的数量给予补充,那么液体摩擦就会变成干摩擦。
从摩擦定律得出的结论.
按照摩擦定律来考虑,对于顶管施工可以得出完全明确的结论如下:
a)为了保持较小的推顶力,干摩擦须以尽可能小的摩擦系数μ为前提。管子表面的光滑,能使摩擦系数降低。管子表面的机械加工和涂抹减摩剂,同样都能起到减小μ值的作用。
b)在干摩擦的情况下,管子表面在推顶过程中会被周围上层磨毛,因而使摩擦系数增大。所以在项管距离较大时,一般多采取液体摩擦的方式。
C)液体摩擦须以管子和土层之间存在介质为前提,也就是说,须将介质压人其间。
d)介质必须保持一定的厚度方能有效。
e)管子和土层间必须存在一定的空隙,也就是说,要留出一定的空隙,以便在压人介质后能够形成所需厚度的一个液体层。
f)管子和土层之间充满介质的空隙,在整个推顶过程中必须保持不变。要作到这一点,介质必须能够阻止土层落到管壁上,亦即介质必须承受着各种具体条件下起作用的上压力来托住土层。因此,在介质中必须经常保持相当于土应力的液压。这样,介质同时也起着支承介质的作用。交承压力的反作用力则由顶进管来承受。
g)为了形成管子和土层之间所需的空隙,刃脚直径的取值最好稍大于顶进管直径。
h)对粘性很小的土壤来说,推顶时在刃脚周围产生的松散地带便能形成管子和土层之间所需的空隙,因而不需要刃脚直径大于管径。
i)上层和管子之间既已形成空隙,就必须在土层落到管体一上以及土压力上升达到全值之前将支承-介质充入其中。事后再来克服土压力将土层从管壁上推开是不可能的。一旦周围土壤的某些颗粒接触管壁并被土层压附在管壁上,立即便会发生于摩擦,即使随后压人介质,情况仍然如此。
k)可以把顶进管看作是不透水的。管子接头在整个推顶过程中应保持密闭。
l)土层总是多少有些透水的。因此,支承一介质必须起到的另一作用,即在于封闭管子周围土层的空隙,以便在土层中造成一个不透水的环形地带,从而阻止支承-介质渗入土层。
m)为了能够封闭土层的空隙而又不致流失到土层中去,支承-介质必须具有足够高的运动粘滞度。
n)为了取得尽可能小的视在摩擦系数μ,又需要支承-介质的运动粘滞度较低一些。
o)支承-介质不得对顶进管材料(钢、钢筋混凝土、石棉水泥或塑料混凝土)和接头材料(钢和橡胶)造成侵蚀。
P)支承-介质不得污染地下水。
膨润土矿物悬浮液能够最充分地满足对支承-介质提出的一切要求。
作为支撑-介质的膨润土
1890年,美国的福特·本顿首先发现了膨润上。它的主要成分和对于它作为支承一介质的性能起着决定作用的,乃是其中叫作蒙脱土的一种粘土矿物,这种矿物以其位于法国南方的蒙脱英里翁矿床而得名。在德意志联邦共和国的巴伐利亚,则有着大约一千万年前作为风化产物形成的一些酸性火山质玻璃凝灰岩矿可供这方面的应用。
蒙脱土是一种层状结构的结晶氢化硅酸铝。硅酸盐多层体是一种三层结构,其中包括一层SiO4四面体、一层氢氧化铝八面体和一层SiO4四面体。蒙脱土晶体即由许多这样的硅酸盐叠层组成。蒙脱土晶体遇水膨胀,与此同时水分子便渗入各个叠层之间。于是两个蒙脱土叠层之间的距离就加大了一倍。晶体内部膨胀现象的原因,则在于叠层内部电荷分布的不均匀。
我们可以设想,在静止下来的膨润上悬浮液中,薄片状的蒙脱上微粒形成一种纸牌房子式的结构,其中这些微粒以它们的角隅和棱缘彼此接触或互相支撑。一旦静止状态被扰乱,例如由于搅拌、振动或泵送等等,于是大多数的“纸牌房子”坍塌下来,因而在静止状态下凝结起来的悬浮液就会变成溶胶。当这种溶胶再次静止下来,薄片状的蒙脱上微粒又会彼此搭在一起形成纸牌房子式的结构,于是溶胶重新凝固。悬浮液每当静止便结成凝胶,一旦运动起来又变成溶胶,这种从静止状态到运动状态以及从运动状态又回到静止状态的结构交替,可以永无止境地重复下去,这样的特性便叫作触变性。
作为顶管施工中的支撑-介质,膨润土的重要特点即在于它的膨胀性能。这一点须取决于薄片状蒙脱俄土微粒的大小和数量。
膨润土主要有两类,即钙膨润土和钠膨润土上。
它们的区别在于起决定作用的蒙脱土是钙蒙脱上还是钠蒙脱土。
在膨润土含量相同情况下,钠膨润土悬浮液中所含极薄的硅酸盐叠层片的数量,约为钙膨润上悬浮液中所含数量的15到20倍。由于这种极薄的硅酸盐叠层片的数量大得多,便有利于蒙脱土微粒形成纸牌房子式的结构,因而亦有利于提高悬浮液的膨胀性能,这样既可改善悬浮液在溶胶状态下的流动性,也能改善悬浮液在凝胶状态下的固结性。所以钠膨润土比钙膨润土更适用于顶管施工。
而巴伐利亚矿层却只含有膨胀性能较差的钙膨润土。
但钙蒙脱土有一个特性,亦即其中化合的钙离子可以用钠离子来置换。通过这样的离子交换,钙膨润土的性能会有很大的变化,从而被赋予钠膨润上的优良特性。
由于销膨润土和通过钠离子置换而活化的钙膨润土——也叫作活性膨润土——能够最大程度地满足顶管施工中提出的要求,因而下面的讨论便以这两种膨润土为基础。
化学分析表明,膨润土中大约有56%的二氧化硅和20%的氧化铝,二者共同构成了蒙脱土上晶体的基本物质。与此相对应,矿物组成中也有75%的蒙脱土。筛分析也很值得注意,根据筛分析,膨润土中粒径小于0.025毫米的占55%。
膨润土加水搅拌即成悬浮液,这里对水质的要求和拌制混凝土时一样。判断膨润土悬浮液是否适于用作支承一介质的标准在于它的物理特性。而对后者起决定作用的,主要是悬浮液中的膨润土含量。表2中按照每立方米制成悬浮液中含有30、40、60和80公斤膨润上的四种情况,分别列出了各种悬浮液的主要参数。
首先从容重的数据中可以看出,膨润土含量对容重的影响不大。在我们所考察的试样上,容重大致变化于1020到1050公斤/米3之间,因此只是稍高于纯水的容重。所以膨润土悬浮液也可以在水下顶管施工中用作支承介质,无需顾虑悬浮液因容重不同而流失,故而对膨润土悬浮液来说,容重并不是一个重要的判断标准。
反之,流变极限测量结果都表明,无论在运动状态或是静置状态下,悬浮液中的膨润土含量都对流变极限有很大的影响。正如事先的考虑所预见到的,流限在运动状态下达到了下限值。观察表2可以看出,膨润上含量从每立方米30公斤增加到60公斤时,亦即在膨润上含量增大一倍的情况下,运动流限从22.4克(力)/厘米2上升到204克(力)/厘米2,因此也就是提高到大约9倍,当膨润土含量从40公斤/米3增加到80公斤/米3时,同样也是在增大一倍的情况下,可以看到大致相同的比率。这时运动流限从44.6克(力)/厘米2上升到439克(力)/厘米2,亦即增大到10倍左右。
静置一分钟后的比率也类似于流动状态下的情况。在这种条件下,当膨润土含量从30公斤/米3增加到60公斤/米3时,流限从42.8克(力)/厘米2提高到320克(力)/厘米2,即增大到7.5倍。当膨润土含量从40公斤/米3增加到80公斤/米3时,流限则以100:696—1:7的比例提高。
最后,在静置24小时的情况下,当膨润上含量从30公斤/米3增加到60公斤/米3时,流限比率为198:1265一1:6,80公斤/米3含量的相应数值则限于现有的测量技术条件而无法测出。
因此得出的结论是,膨润土含量增加一倍,可使膨润上悬浮液的支承作用提高到7至10倍。但是这也意味着,若膨润土含量减少1/2,支承作用就可能降低到1/10。所以,确定悬浮液中的膨润上含量,便有着如此重大的意义。
得到的另一个结论是,在从运动状态过渡到静止状态时,流限的增大须取决于悬浮液中的膨润土含量。
在每立方米悬浮液中含30公斤膨润土的情况下。静置1分钟后的流限以42.8:22.4=1.9:1的比率增大。在膨润土含量为40公斤/米3的情况下,静置1分钟后的增大比率已达100:44.6=2.2:1。然而在膨润土含量为60公斤/米3情况下,这一比值却降低到320:204=1.6:1,以及在膨润土含量为80公斤/米3的情况下,比率仍为696:439=1.6:1。
静置24小时后的流限与运动状态下的比率,在悬浮液中的膨润上含量为30公斤/米3时是22.4:198=1:8.8,在40公斤/米3的情况下是44.6:584=1:13.3,在60公斤/米3的情况下是204:1265=1:6.2,而对于80公斤/米3的含量,则已无法取得测量值。
在将膨润上悬浮液用作支承-介质的情况下,静止状态的流限值与运动状态的流限同样具有重要意义:
静止状态下的流限值决定着悬浮液是否适于用作支承介质,运动状态下的流限值则决定着悬浮液是否适于用作介质。
当运动流限与静止流限之比为1:6到1:10(最大1:15)时。膨润上悬浮液便完全能满足这两个方面的要求。
流限值适用于膨胀过程业已最后完结的悬浮液。这种膨胀过程的性质,在于水已渗入了构成蒙脱土晶体的硅酸盐叠片的晶层中。致使层间距离增大起来。水对微小蒙脱土晶体的渗透过程以及水渗入更小得多的晶层之中都需要时间。这就是膨胀时间,搅拌越充分.膨胀时间就越短,否则在水和膨润土的混合料未获充分搅拌的情况下,膨胀时间就会延长许多倍。搅拌取得良好效果的前提,是要有足够长的搅拌时间,至少要有半个小时,有时甚至可能需要若干小时。另一个前提是要求膨润土不留余渣地充分溶解在水中,尽可能使每一个膨润土颗粒都被水包围着。最后,在搅拌时不要让空气进入水和膨润土的混合料中,因为空气会妨碍水渗入蒙脱土晶体。再则,膨胀时间也会受到混合料温度的影响。高温(夏季温度)可使膨胀时间缩短,低温(冬季温度)则使膨胀时间延长。当温度低于零度时,膨胀过程即告中止,但混合料并不会遭到破坏。解冻后膨胀过程又会重新继续下去,在这种情况下,须将冻结的时间计入膨胀时间之内。
在搅拌效果良好的情况下,搅拌过程结束后即已能够达到80%左右的最终流限,而在搅拌效果不良的情况下,这一比值则降低到大约35%。由此可见,在搅拌效果良好和高温条件下,经过5个小时的膨胀时间后即已达到最终流限。反之,在搅拌效果不良和低温条件下,则需要24小时方能达到最终流限。
对于膨胀过程是否已经结束,需要仔细地进行观察,因为膨胀不充分的悬浮液一方面起不到支承作用,另方面也会由于随后的膨胀而引起膨润土管路的堵塞,并且引起顶进管与周围土层之间表观摩擦系数的上升,从而可能导致提高顶进阻力。
对充分膨胀的膨润上悬浮液来说,流限在静止状态下可达到上限值。如悬浮液变为运动状态,例如由于摇动、振动或泵送等等,立刻又出现流限的下限值,这便是流动状态下的流限,或者也可以说是运动流限。一且再次静止下来,流限又会升高,经过一定时间之后再次达到其上限值。
悬浮液经每次静止之后都可以达到流限的上限值。然而在达到最终流限之前,如果悬浮液又变为运动状态,那么流限的升高过程便也可能中断。
蒙脱土微粒在纸牌房子式结构上的变化,用我们的肉眼是看不见的,但却可以通过流限的变化测量出来,因此一种悬浮液的触变性也是可以为我们的感官所觉察的,而这种触变性作为悬浮波物相任意多次的转变,我们可以将它表示为
凝胶溶胶
膨润土悬浮液在疏松土层中的应用
在无粘性的疏松土层中以及在粘性很小的土壤中,例如在砂砾土中,若不采取其它辅助措施,土层由于本身极不稳定,以致在刃脚推进之后立刻就会坍落在管壁上。所以对这类土壤来说,膨润土悬浮液的支承作用尤其具有重要意义。为了起到这种支承作用,先决条件是要尽可能准确地掌握膨润土悬浮液在砂砾上中的特性。膨润上悬浮液将渗入土层的孔隙内,充满孔隙,并继续在其中流动。流速取决于孔隙的横断面与悬浮液的流变特性,同时也取决于压浆压力。因此为了在同样的压浆压力下达到相同的渗入深度,在孔隙横断面很小的细粒土层中便需要低流限的悬浮液,面孔隙横断面较大的粒粒土层则需要高流限的悬浮液。在克服流动阻力的过程中,压浆压力随着渗人深度的增加而成比例地衰减,所以相应每一种压浆压力,都有一个完全确定的渗人深度。
为了便于了解渗入过程,可以把上层看作是一条条许多毛细管的总和。图7显示了一条圆形横断面的毛细管中的流动过程。
这样的一条毛细管必然会对其中穿流的流动介质、在这里即是对膨润上悬浮液产生一个阻力W。
W=τ·U·l=τ·2·r·π·l
为了克服这一阻力便需要一个压力:
P=p·F
=p·r2·π
只要P>W,毛细管中的介质便向前流动。一当流动阻力大到与作用于介质的压力P相等,即。
W=P
流动过程即停止。由此可知平衡条件为
τ·2·r·π·l=P·r2·π
或
(τ·2·l)/r=p
根据这一关系式可以算出流动长度,换言之亦即渗入深度
l=(r·p)/(2·τ)
由此可见,渗入深度与毛细管的直径和压浆压力成正比,与悬浮液的流限成反比。只要悬浮液在毛细管中流动,它便处于流动状态,因而对悬浮液起作用的便是运动流限。这时悬浮液便具有溶胶的稠度。
但一当悬浮液达到可能的渗入深度之后静止下来,只须经过一个很短的时间,它的流限便达到静止数值。于是悬浮液就变成了凝胶。
由于静止状态下的流限高达流动状态下的10倍,因而在这种情况下膨润土悬浮液便象泥浆那样地充满着土层的孔隙。
这样在管体四周的土层中就形成了一层密实而有承载能力的环套,其厚度即相当于悬浮液的渗入深度
现在,如果在这一环套和顶进管之间保持一个相当于土压力的悬浮液压力,于是悬浮液使承受着全部的土压力,致使土压力不再直接地,而是经由悬浮液间接地加荷于管壁。
作为使摩阻力降低到最小限度的先决条件,最佳支承作用的取得须具备下列前提:
1.在设计时以及在推顶过程中准确地查明土层情况,并根据筛分曲线详尽地掌握土层的颗粒分布;
2.计算出土压力,从而确定膨润上悬浮液的压人压力;
3.按基本粒径确定膨润土悬浮液的混合比,并经常进行检验,
4.正确地制备膨润土悬浮液;
5.保证在全部顶进管路上和全部顶进时间内都有膨润上悬浮液压入。
其中最重要的一点,是必须求得正确的混合比。
此外必须注意,悬浮液稳定极限大约是每立方米悬浮液至少含40公斤膨润上。这一理论计算结果在实际施工中须仔细加以核验。必须特别指出的是,膨润土含量过低、因而也就是流限过低的悬浮液起不到支承和作用,因为这样的悬浮液会毫无阻力地或只受到很小阻力地流散到土层中去,因而不可能在管体周围形成一个支承环带。
在基本粒径为10毫米的情况下,要求悬浮液的膨润土含量为60公斤/米3左右,在基本粒径为20毫米的情况下,要求悬浮液的膨润上含量为80公斤/米3左右,反之,在基本粒径为2毫米时。悬浮液的膨润上含量为40公斤/米3即已足够.但滑动阻力与运动流限成正比。
运动流限在每立方米悬浮液中含:
40公斤膨润上时为44.6克(力)/厘米2
60公斤膨润土时为204克(力)/厘米2
80公斤膨润土时为439克(力)/厘米2
这就是说,在每立方米悬浮液中含膨润土60公斤时,运动流限几乎为40公斤/米3情况下的5倍,而在每立方米悬浮液中含膨润土80公斤时,则已经高达含量为40公斤/米3时的10倍。
这就意味着,如果悬浮液中的膨润上含量在全部推顶距离上保持不变,那么对粗粒土壤来说,由于需要悬浮液的膨润土含量较高以保证支素作用,故而推顶阻力以及因之所需的推顶力就会比细粒土壤的情况下更大一些。
但孔隙~旦被膨润上悬浮液充满,并因而形成支撑环带时,于是粗粗土壤的状况也就无异于细粒土壤了。因而在这种情况下,为了在推顶过程中支承土层,悬浮液中的膨润土只需要达到稳定极限所要求的最小含量40公斤/米3即可。
因此,在粗粒土壤的情况下,只是直接在刃脚之后压入相应于基本粒径的高含量膨润上悬浮液,而在全部后续管路上则可使用稠度低得多的悬浮液。这样便可以大大降低推顶阻力,或者也可以说是在相同的推顶力下加长推顶距离。同时还可以借此节省膨润土,并减少中继顶压站的数目。
为此采用两套膨润土配拌设备附带两台压浆泵和两套管路所需的额外费用,在管径较大和推顶距离较长的情况下一般是值得的!
压浆时须注意,压出的膨润上悬浮液要尽可能均匀地分布在整个管体,以便能够围绕整个管体形成所需的环带。因此,压浆赖以进行的注射喷口要均匀地配置在整个管壁圆周上。注射喷口的间距或数量须取决于土壤允许膨润上向四外扩散的程度。在渗透性很小的土壤中,例如密实的矿土和砂砾上,间距就必须缩小一些,在疏松的砾石土中,间距则可以相应地加大。注射喷管即可以在整个管壁圆周上与一条环管连接,也可以分组连接,在分组连接时,一般是上半固联成一组,下半圈另成一组。
为使膨润土尽快地起作用,应尽量靠近刃脚尾部进行压浆。所以压浆最好是直接从刃脚后的第一节管子中开始。但实践证明,在压浆压力较高的情况下,膨润土将均匀地沿着管子周围扩散,也就是说,即向后扩散,也向前扩散。因此便存在着膨润上悬浮液沿刃脚向前流动、并且又在切削刃上流出来的危险。
在纠偏量颇大的情况下,有可能造成刃脚和第一节管子之间的密封损坏,或者在刃脚分成两个部分情况下,则是造成切削段和顶压段之间的密封损坏,于是膨润上悬浮液就会从这些地方渗人工作空间。
根据这一理由,膨润上在刃脚后第二节管子中开始压入比较适宜。
膨润土悬浮液经由注射喷口压人的压力应相随所遇土层的压力而变化。在膨润土泵上,除了这一压力之外,还会受到一直通向注射喷口的膨润上管道的阻力。
膨润上管道中的压力损失,由于假设条件并不可靠而且经常变化,故而计算很难准确,因此,对于必须准确地与上压力高度保持一致的压浆压力,便有必要直接在注射喷口上进行连续的测量。
压浆压力调得过高可能是有害的。这时膨润上悬浮液会从注射喷口中涌出,在管口周围形成一个高度压缩区。这样就有可能形成栓塞,阻碍膨润上悬浮液的继续流出和扩散。
如果一次注入的膨润上能在管子周围的土层中保持不变,那么只要直接在刃脚之后注入一次就足够了。然而十分明显,在推顶过程中,膨润土由于流散到土层中去而有所消耗。鉴于此,对后续管路也必须补充压人膨润上,以使管子和上层之间空隙中的膨润上悬浮液压力能够在顶进管路的全部长度上保持与土压力一致。注浆孔的间距主要取决于土层的性质、膨润土悬浮液的流变特性、刃脚的控上量和推顶速度。在许多已完成的工程中,注射喷口的间距是2节管子到5节管子以上。注浆孔的实际需要数量,只有在施工中才能知道。为了确保即使在最不利的场合下亦能提供所需数量的注浆孔,似乎最好是尽可能每隔2节管子即留出一些压浆孔。另方面当然也要考虑到,所有注浆孔在顶管结束后必须拆除和封闭。这需相当大的一笔费用,所以一开始即应力求间距适当。这一点在很大程度上也取决于施工公司的经验。
膨润上的压人技术在很大程度上仍然要依靠经验,然而实际经验多半也是可以找到理论根据的。
尽管就某种场合来说,随着管子的推进同时在管子整个圆周上和管路全部长度上均匀地压浆证明是相宜的,而在另一些场合下,正确的方法则又可能是分段压浆。例如现已得知,在管子下半部,膨润土在顶进过程中比静止状态下更容易流出,而上半部的压浆则是在管路静止的情况下更容易进行。因此最好是将管子下半部的注浆孔和上半部的注浆孔分别组合起来。这种半侧压出的原因在于,静止状态的管道以其全部很大的重量沉落于底部。这样便在管道的顶部形成了小空隙,或者至少是形成了一个压力较低的区域。因而在这种状态下,膨润土在管顶处比在管底部更容易流出。反之,在顶压力和浮力同时作用下,管道有向上拱起的倾向。这时管道离地升起,于是管底下方便形成了一个低压区,致使膨润土更加容易渗入其中并均匀地散开。
如果顶进管路被中继顶压站分成若干段,那么每次总是只有一个管路段受到推顶,其余各段则保持不动。这时宜于仅向被推顶的管路段内压人膨润上悬浮液,而对于静止不动的管路段,则停止压送。此外,膨润土的压人要与中继顶压站的动作协调一致,这一点可以通过手动或远距离自动控制的方式来实现。
特别要注意的是,膨润土悬浮液沿着管壁运动的方向不得与管路推顶方向相反,否则,由于管子和悬浮液的逆向运动,悬浮液非但起不到介质的作用,却反而起了制动介质的作用。结果便会大大增加推顶阻力。如果只在顶进管路的前区压人膨润土,就会发生逆向运动,因为在这种情况下悬浮液便不得不向后流动。所以正确做法是,悬浮液的补压始终要保持从后向前的方向。
在无粘性的疏松土层中,例如对于有流动倾向的矿土以及滚动的砾石上来说,可能十分重要的是,在第一节管子推入土层后立即开始压人膨润土悬浮液,以便在管子周围形成支承环带,从而不引起干摩擦。同样重要的是,对所有后续的管子来说,一但管子离开顶压坑,都要补压膨润土。然而为使悬浮液不能立即又在进口处向外流出,便需要设置如图12所示的弹性滑动密封,否则悬浮液的流出不仅要弄脏工作坑,而且也会破坏支承压力的形成。
顶进管在膨润土悬浮液中受到的浮力
关键词:化学灌浆无公害环氧树脂聚氨酯丙烯酸盐酸性水玻璃化学灌浆泵
1我国化学灌浆技术发展成绩
化学灌浆(ChemicalGrouting)是将一定的化学材料(无机或有机材料)配制成真溶液,用化学灌浆泵等压送设备将其灌入地层或缝隙内,使其扩散、胶凝或固化,以增加地层强度、降低地层渗透性、防止地层变形和进行混凝土建筑物裂缝修补的一项地基处理和混凝土修补技术.即化学灌浆是化学与工程相结合,应用化学科学和化学浆材解决地基和混凝土缺陷处理(加固补强、防渗堵漏),保证工程的顺利进行或借以提高工程质量的一项工程技术.随着化学灌浆技术的发展和进步,现己成为现代工程中颇具特色且不可或缺的一项先进技术
国外化学灌浆最初是适应于地基处理和采矿业发展的需求而发展起来的,其可*性得到公认并被广泛采用至今己有80年以上的历史.我国的化学灌浆技术应用与研究起步较晚,但发展较快并有自已的独创.如果以1953年在佳木斯等地采用碱性水玻璃进行化学灌浆算起,也才只有50年的历史五十年来,我国在化学灌浆技术这个小领域取得了成绩[3],主要表现在以下方面:
(1)化学灌浆从无到有,从小到大发展起来,已成为我国现代工程技术不可或缺的一个组成部分
(2)国外有的常用化学灌浆浆材品种,我国基本上都已开发出来(如环氧[1]、甲凝、丙凝、丙烯酸盐、酸性和碱性水玻璃、水溶性、非水溶性和弹性聚氨酯、脲醛树脂、铬木素等)
(3)化学灌浆浆材品种开发中还有一些独创.如甲凝、弹性聚氨酯,甲氰凝和环氧—聚氨酯,丙烯酸酯—聚氨酯等互穿网络灌浆材料
(4)化学灌浆设备的研制开发已基本能适应和满足国内化灌工程的要求[8].如化学灌浆泵、灌浆阻塞器、密闭配输浆装置和各种封缝材料等.
(5)化学灌浆技术已在国内水电(大坝、堤防、水库、电站)、建筑(地上、地下、人防)、交通(公路、铁路、隧道、桥梁、港口、机场)和采矿等四大部门得到推广应用
(6)化学灌浆技术应用已解决了许多工程难题,取得良好的效益.以水利为例,如三峡[4]、葛洲坝、龙羊峡、丹江口、陈村、凤滩、万安等水利枢纽都是采用化学灌浆技术解决一些工程技术难题的典型例子
(7)化学灌浆已从工程完建后的应用,发展到工程兴建前设计中就采用.如三峡化灌帷幕预计15000米,化灌加固地基预计3000米
(8)化学灌浆技术在一些方面已具国际先进水平,如青海龙羊峡大坝采用中化798环氧浆材处理G4伟晶岩劈裂带和三峡大坝采用CW环氧浆材处理F1096软弱夹层及断层破碎带的水泥—化学复合灌浆技术均堪称国际上处理低渗透性软弱岩土地层的先进技术
(9)化学灌浆理论上也有一些突破和创新[6][7].如浆液扩散半径的计算理论、浆液湿面粘接理论、减低浆液毒性的拮抗理论、浆液吸渗理论等
(10)化学灌浆技术出版物取得丰收.自上世纪八十年代以来己出版专着十余部.包括水利学报、水利水电技术、岩土工程学报、岩石力学与工程学报、
长江科学院院报在内的全国132家科技期刊都选登化学灌浆的研究论文.近5年选登的论文就有200余篇
以上十个方面成绩,足以说明我国化学灌浆技术的进步和发展水平.此外,全国研究化学灌浆技术的工程科技人员已成立了中国水利学会化学灌浆分会,现挂*在长江科学院.追溯到1968年,学会己举行过16次学术交流活动,出版了7部论文集,这些学术活动对推动我国化学灌浆材料的研发和化学灌浆技术的发展起了很好的作用
【关键词】房屋建筑建筑施工加固技术技术分析
中图分类号:TU74 文献标识码:A 文章编号:
一.引言。
常用的加固技术主要有加大截面的加固技术,柱外包(粘)型钢加固技术,外粘碳纤维布加固技术,植筋加固技术,托换加固技术,无损开孔成洞加固技术,基础加固技术等,粘贴钢板加固法,是指用胶黏剂将钢板粘贴在构件外部的一种加固方法。这种方法在建筑领域及其桥梁等工程项目中的加固、补强、修复中应用较为广泛。如何加固受损建筑?多位业内人士表示,不同性质的建筑采用的加固修复技术不同。相比于传统加固修复技术,新的加固技术逐步得到应用,碳纤维技术引领建筑物结构补强加固趋势。此外,加固是提高现有房屋抗震能力的最有效途径。
二.我国工程建设面临的现状和存在的问题。
当前国内发展生产,提高生产力的重心,已从新建工业企业转移到对已有企业的技术改造,以取得更大的投资效益,按一些资料统计,改建比新建可节约投资约40%,缩短工期约50%,收回投资的速度比新建厂房快3倍至4倍,同样,对民用建筑进行改造的要求,在我国也日益迫切。随着我国城市人口的不断增长,尽管兴建了大量的住宅和相应的配套措施,但无房、缺房和租户仍达20%以上。而且随着城市房价的上涨,越来越多的人买不起新房。为缓解这一矛盾,抓好旧房的改造,向现有房屋要面积,可有效降低工程造价,显然是一条重要出路。我国城市现有的房屋中,有20%―30%具备改造的条件。旧房改造不仅可节省投资,同时,可不再征用土地,对缓解日趋紧张的城市用地矛盾,也有重要的现实意义。
三.常用的加固技术主要分类。
1.外粘碳纤维布加固技术。
外站碳纤维布加固技术的主要原理是通过配套粘结材料将碳纤维片材粘贴与构件表面,使碳纤维片材承受拉力,并与混凝土变形来协调,共同受力,因为纤维布具有强度高、重量轻、耐腐蚀以及抗疲劳等优异的物理学性能,以及良好的粘合性和广泛的适用性,用碳纤维布取代钢板加固混凝土结构是近几年来国际上兴起的一门新技术。主要的适用于建筑梁、板、柱、墙等的加固以及对一些其他土木工程的加固补强。主要的施工工艺为表面处理涂刷底胶修补找平胶料配制粘贴碳纤维表面防护检验。
2.加大截面加固技术。
增大截面加固技术,也称为外包混凝土加固技术,它是增大构件的截面和配筋,用以提高构件的强度、刚度、稳定性和抗裂性,也可用来修补裂缝等,这种加固技术适用范围较广,可加固板、梁、柱、基础和屋架等。根据构件的受力特点和加固目的的要求、构件几何尺寸、施工方便等可设计为单侧、双侧或三侧的加固,四侧包套的加固。
根据不同的加固目的和要求,此技术又可分为加大断面为主的加固,和加配筋为主的加固,或者两者兼备的加固。加大截面为主的加固,为了保证补加混凝土正常工作,亦需适当配置构造钢筋。加配筋为主的加固,为了保证配筋的正常工作,需按钢筋的间距和保护层等构造要求适当增大截面尺寸。加固中应将钢筋加以焊接,作好新旧混凝土的结合。 增大截面加固技术缺点是现场湿作业工作量大,养护期较长,对生产和生活有一定的影响,此技术增大截面尺寸,有时影响房屋的外观和净空。
3.植筋加固技术。
"植筋"技术又称钢筋生根技术,在原有混凝土结构上钻孔,注结构胶,把新的钢筋旋转插入孔洞中。此技术广泛用于设计变更,增加梁、柱、悬挑梁、板等加固和变更工程。 主要的性能和特点为植筋加固技术具有较高的承载力,对固定的基材不产生膨胀力,较适宜边距以及边距小的部位,再加上植筋加固技术施工简便、耗时较短。
4.无损开孔成洞加固技术。
无损开孔成洞技术主要是针对在钢筋混凝土结构上开洞时为了避免锤击等在施工时的具有破坏性的施工方法造成结构损伤而提出的,同时对洞口周边的加固方法,此技术已经在高层建筑楼板、剪力墙、核心筒上面开始了大量的应用。
5.微细、深层裂缝灌浆加固技术。
微细裂缝灌浆加固技术在施工过程中对结构中出现裂缝大于0.05mm的裂缝,可以进行灌浆密实,然而灌浆后的混凝土结构完全可以恢复其整体性,当其再次受到破坏时,新产生的裂缝将不在原裂缝的断面上。
而对于深层裂缝灌浆加固技术而言,它可以对其产生的深层裂缝进行灌浆补强处理与渗透水止漏,从而恢复其结构的整体性,而对于灌浆之后混凝土的密实度以及强度都满足施工要求。
6.托换加固技术。
结构托换技术是指对原有影响建筑使用功能的承重结构采用改变受力体系的方法进行的功能改造,目的是获得更大的理想使用空间。结构托换采用的方法一般为型钢托换、钢筋混凝土托换、桁架托换等。 地基基础托换技术是指因城市修建的地铁或地下隧道不可避免地从楼房底下穿过,为了避免拆除重建必须对地面上的楼房进行桩基托换。该技术主要是对地下隧道穿过需切断的楼房桩基,先在其承台附近采用梁式转换层将此部份桩基承受的上部荷载传递到隧道外侧的新建桩基础上,由托换梁—新加桩组成的托换结构体系代替。同时为了确保被托换楼房在断桩和隧道通过后不产生开裂、倾斜等破坏,采取了托换梁预应力张拉、千斤顶预顶、桩底注浆等技术,桩基托换可应用微型嵌岩钢管灌注桩、砼界面连接技术等多项专利技术。
三.对现有房屋建筑加固必须要满足的要求。
加固的方法必须要进行综合评定分析之后再来确定,分别采用房屋的整体加固或者分段进行构件的加固,加强房屋建筑的整体性、改善构件的受力程度,提高房屋建筑的综合能力。新增的构件和原有的构件之间应该具有可靠的连接性。在对房屋建筑进行加固时,如果加固所用的材料和原有的建筑材料是相同的,那么加固所用的材料强度不得低于原结构材料的实际强度。新增的加固墙必须要具有可靠的基础。对可能导致倾斜、开裂或者局部倒塌的现象,应该要预先采取相应的安全措施。并对加固技术进行筛选寻求最佳加固技术,最大限度的延长其房屋建筑使用价值。
四.结束语
随着社会的不断发展与进步,国内外对房屋建筑加固的不断研究和讨论,使房屋建筑的施工方法和施工原理不断的在改进和完善,在具体施工中,加固的方法较多,但在具体的加固施工过程中,必须要考虑建筑物本身的性能和其本身的强度结构,在加固工程施工中要进行综合的评定和筛选,对房屋建筑加固的方法、方案进行比较、优化,寻求最佳方案,更大限度的延长房屋建筑的使用寿命,进而发挥出房屋建筑的使用价值,从而促进社会经济发展,改善人民生活。
参考文献:
[1] 谢建军 浅谈房屋建筑结构加固技术[期刊论文] 《广东建材》 -2012年8期
[2]文进军 碳纤维加固技术在房屋建筑中的应用[期刊论文] 《现代企业文化》 -2010年8期
[3]汤炬唤 浅谈房屋建筑工程的加固技术[期刊论文] 《城市建设理论研究(电子版)》 -2011年23期
[4]朱超前 岳从军 房屋建筑结构加固技术探析[期刊论文] 《中华民居》 -2012年5期
[5]师云科 论房屋建筑的几种加固工程技术方法[期刊论文] 《城市建设理论研究(电子版)》 -2012年20期