首页 > 文章中心 > 航空航天测控技术

航空航天测控技术

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇航空航天测控技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

航空航天测控技术

航空航天测控技术范文第1篇

关键词:XML;数据体制;统一标准化;航天测控网统一系统;综合服务应用平台

中图分类号:TN915.4—34文献标识码:A文章编号:1004—373X(2012)18—0099—03

数据是航天测控系统处理和应用的核心[1]。随着我国航天测控事业的不断发展,整个航天测控系统将发展成为以中继卫星为中心的天基测控网,以陆地测站为中心的陆基测控网和以测量船站为中心的海基测控网三个相对独立的测控系统[2—3],而且各方用户对整个系统提供综合应用服务的需求也不断提高。现有传统的航天测控数据体制,采用约定字段数据包结构的数据处理和应用模式,使得的数据处理及应用都较受限制。为此,构建一个统一化、标准化的数据体制,实现整个测控系统数据的统一标准化处理和应用,将对我国航天测控事业的进一步发展具有重要意义。随着XML(eXtensibleMarkupLanguage)相关协议标准和应用技术的不断成熟,使XML逐渐成为一种处理应用系统间数据交换的标准[4—5]。

1现有传统航天测控数据体制分析

现有传统的航天测控系统采用约定字段数据包结构的数据体制,这种体制在数据处理和应用方面,都有其自身的局限性。

1.1数据处理方面

在以约定字段数据包为核心的数据处理中,数据的生产者需要按照约定的格式填写各个字段,建立完整的数据包并发送给数据的消费者。数据的消费者首先要按照约定的格式,从数据包中分解出各个数据字段,最终得到各个应用数据,然后才能对这些数据进行处理[6]。这种数据处理方式有几个明显的不足:一是数据处理的代码耦合度高,为针对不同任务而进行的软件维护设计将要求对软件代码的重新修改与测试,从而影响了软件的可重用性和模块化;二是不同数据处理单元之间的接口复杂,标准不统一。假设有n个模块要进行信息交互,则会存在Cn2个接口,这使得数据的交互和集成变得十分困难。

此外,传统数据体制对数据的处理不能有效区分实时与非实时数据,实际可用数据处理资源无法实现合理分配,传输带宽的弹性较小。

1.2数据应用方面

数据应用以数据处理为基础。一方面基于约定字段数据包结构的传统数据体制限制了系统对底层数据的处理方式和处理能力,从而影响了数据应用的可实现行和丰富性;另一方面,在传统的航天测控数据体制下,不同测控网之间的数据交互仅仅只解决了基本的数据链路和数据传输的问题,对数据网络层与应用层的设计与处理较少。同时,数据的传输与网络特性单一,使得系统对通信资源的分配和利用力不从心,系统可统一应用的数据范围和综合性较受限制,不利于系统的适应性和拓展性发展。

2基于XML的航天测控数据体制

2.1XML的特点

XML是由W3C(WorldWideWebConsortium)的一种标准,是标准通用标记语言(StandardGeneralizedMarkupLanguage,SGML)的一个简化子集。它具有以下几个传统约定数据包结构数据不具有的显著特点[7—8]:

(1)数据的自描述性,适用于特定领域的数据处理和应用。

(2)结构化的数据模型,为数据显示和处理提供标准的处理方式。

(3)丰富的网络传输特性,可作为性能良好的通信协议。

(4)成熟的XML应用标准与处理技术,如XSL,DOM,SAX,WML,XLink和XPointer等为XML的应用拓展提供了技术支持。

此外,航天测控网的IP化改造,也为XML的技术实现提供了硬件平台。

2.2基于XML的航天测控数据体制

航天测控数据处理按时间的要求不同可分为实时数据处理和非实时数据处理。实时数据处理要求处理速度快,时间短,方法简单,所使用的数据为流数据,大多不会重复使用。非实时数据处理流程多,方法精细、复杂,所使用的数据为积累数据,大多需要重复使用。

传统约定字段数据包结构的数据处理方式具有实时性强,效率高的特点,而基于XML的数据处理模型,标准统一,具有良好的传输与网络特性。基于此,对于测控网中要求实时处理的数据(大部分为单个测控网内部的设备数据),采用传统数据的处理机制;而对于非实时处理数据(一般包括单个测控网内部与测控网之间的交互数据),使用XML数据格式进行统一标准化的封装、处理和交互。为此,基于XML的航天测控数据体制的测控网信息交互框架如图1所示。

航空航天测控技术范文第2篇

关键词:LED点阵;串行接口;单片机

中图分类号:TM938 文献标识码:B

The Circuit Design of LED Lattice Screen Driven by CH451

GE Chao1, WANG Lei2

(1. College of Information Hebei Polytechnic University, Tangshan Hebei 063009,China;

2. Department of Information Engineering Tangshan College, Tangshan Hebei 063009,China)

Abstract: 64-bit LED lattice or 8-bit digital tube can be driven dynamically by CH451. The chip can easily be adopted by 1 line or cascade of 4-wire serial interface to exchange data with the SCM. It has the characteristic of fast speed, small power consumption and simple operation. The characteristic and the using method of CH451 were introduced, and the examples of hardware and software design were given.

Keywords:LED lattice; serial interface; single chip microcomputer

引 言

LED点阵显示是集微电子技术、计算机技术、信息处理技术于一体的新型显示方式,由于其具有寿命长、动态范围广、工作稳定可靠、低功耗和响应快速等优点,成为众多显示媒体中的佼佼者,是户外显示的理想选择。用CH451芯片驱动LED点阵有以下特点:速度快、功耗小、动态显示扫描控制、直接驱动64位LED点阵,并可以软件控制LED的亮度,以减小功耗。CH451可以通过1线或者可以级联的4线串行接口与单片机等控制器交换数据。CH451的串行接口是由硬件实现的,控制器可以频繁地通过串行接口进行高速操作,而绝对不会降低CH451的工作效率。用它设计的电路,不仅软硬件设计简单,而且功耗低、响应速度快、驱动能力强、占用的I/O口线较少,是一种性价比高、应用灵活的设计方案。

1 CH451的使用说明

CH451内部具有8个8位的数据寄存器,用于保存8个字数据,分别对应于CH451所驱动的8组、每组8个发光二极管,并且支持数据寄存器中的字数据左移、右移、左循环、右循环,支持各数码管的独立闪烁控制,在字数据左右移动或者左右循环移动的过程中,闪烁控制的属性不受影响。CH451具有硬件实现的高速4 线串行接口,包括4 根信号线:串行数据输入线DIN、串行数据时钟线DCLK、串行数据加载线LOAD、串行数据输出线DOUT。DIN 用于提供串行数据,高电平表示位数据1,低电平表示位数据0,串行数据输入的顺序是低位在前,高位在后;DCLK 用于提供串行时钟,CH451 在其上升沿从DIN 输入数据,在其下降沿从DOUT输出数据。CH451 内部具有12 位移位寄存器,在DCLK 的上升沿,DIN 上的位数据被移入移位寄存器的最高位寄存器,以此类推,原次低位数据移入最低位寄存器,在该上升沿后的第一个下降沿,原次低位数据从DOUT 输出。CH451 允许DCLK 引脚的串行时钟频率大于10MHz,从而可以实现高速串行输入输出;LOAD 用于加载串行数据,CH451 在其上升沿加载移位寄存器中的12 位数据,作为操作命令分析并处理。CH451可以动态驱动8×8的LED点阵,点阵的所有列通过串接的限流电阻R1 连接CH451的列驱动引脚SEG0~7,点阵的所有行分别由CH451的DIG0~7引脚进行驱动。串接限流电阻R1 的阻值越大则段驱动电流越小,数码管的显示亮度越低。R1 的阻值一般在60~400Ω之间,在其它条件相同的情况下,应该优先选择较大的阻值。

2 软硬件设计实例

2.1 硬件电路

P1口的P1.5、P1.6、P1.7用来控制LED点阵的显示,分别接到LOAD、DIN和DCLK脚。4个8×8 LED阵列组成16×16的点阵屏模块,如果要显示一个汉字,只要将32字节的点阵数据通过8次48位的加载字数据命令送给CH451就可以了。由于是4个CH451 级联,所以每个操作命令都必须是48 位数据,最后由LOAD 信号线输出上升沿通知所有的CH451加载各自的命令数据。

2.2 显示驱动程序

定义数组存放显示数据,CPU复位后,调用CH451_Write函数对CH451进行写命令数据操作。

写12bit控制字函数:

void CH451_Write(unsigned short cmd)

{unsigned char i;

CH452_LOAD_CLR;//命令开始,LOAD=0

for(i=0;i!=12;i++) //送入12位数据,低位在前,

{CH452_DCLK_CLR;

CH452_DIN=cmd&1;//“&”按位左移

CH452_DCLK_SET; //上升沿有效

cmd=cmd>>1;//“>>”按位右移

}

CH452_LOAD_SET; //加载数据,LOAD上升沿

}

3 结 论

从以上例子可以看出,用CH451设计LED点阵驱动电路,硬件和软件的设计都不存在复杂的技术问题,特别是软件设计。因此,在I/O口线较为紧张的情况下,这不失为一种解决方案,且具有很好的性价比。

参考文献

[1] 王福瑞. 单片微机测控系统设计大全[M]. 北京:北京航空航天大学出版社,2001.

[2] 李 华. MCS-51 系列单片机实用接口技术[M]. 北京:北京航空航天大学出版社,1999.

[3] 何立民. 单片机应用技术选编[M]. 北京:北京航空航天大学出版社,1999.

[4] AT89系列单片机技术手册.北京威立姆电子技术有限公司, 1996.

航空航天测控技术范文第3篇

关键词 课程教学改革;航空航天类专业;自动控制原理

中图分类号 G642.0

文献标识码 A

文章编号 1005-4634(2012)05-0048-05

0 引言

《自动控制原理》是航空航天类本科专业一门重要的专业基础课。以笔者所在的北京理工大学为例,航空宇航科学与技术一级学科下属的飞行器设计与工程、航天运输与控制、飞行器动力工程、武器系统与发射工程、探测制导与控制技术等专业的本科生,均在大三第一学期必修《自动控制原理》经典控制理论部分,包括54个理论课时和10个实验课时,其任务是通过对自动控制理论知识的学习,培养学生对控制系统的分析设计能力、工程实践能力和创新能力。同时,《自动控制原理》还是学习测试技术、飞行器制导与控制技术、飞行器总体设计、航天器测控原理等诸多专业课程的先修课,在航空航天类专业的本科生培养计划中占据着非常重要的地位。

《自动控制原理》的授课模式一般有两种:一是将经典控制理论部分和现代控制理论部分分开讲述,先讲授经典控制后讲授现代控制,目前国内大部分高等院校均是采用的这种授课模式;二是将经典控制和现代控制融合讲授,这种授课模式有助于培养学生从系统角度、全局高度来思考问题的能力,更利于掌握控制理论的实质。由于授课模式的沿袭性及单学期课时数的限制,北京理工大学航空航天类专业的《自动控制原理》采用了前一种授课模式。授课教师采用A、B角的方式,教师队伍中有授课近20年的教师,还有刚刚博士毕业踏上工作岗位的年轻教师,更难能可贵的是,所有授课教师均有出国留学或访问的经历,兼通中西教学模式之长,融蓬勃朝气与丰富经验于一体。

本文主要是以《教育部关于全面提高高等教育质量的若干意见》(教高[2012]4号)中“坚持内涵式发展”、“促进高校办出特色”、“创新人才培养模式”、“提升国际交流与合作水平”等内容为指导,结合北京理工大学的学校定位和办学特色,以笔者在《自动控制原理》经典控制理论部分本科教学过程中的思考和认识为基础,对北京理工大学航空航天类专业在《自动控制原理》本科教学改革中的若干有效措施进行总结和探讨。

1 授课内容及学习过程中存在的问题

1.1《自动控制原理》的授课内容

笔者主要讲授《自动控制原理》中的经典控制理论部分,授课内容分为八章,分别是:自动控制系统导论、自动控制系统的数学模型、自动控制系统的时域分析、根轨迹法、频率法分析、控制系统校正、非线性系统和线性离散系统。其中,前六章和第八章是重点讲授内容,第七章是一般讲授内容。就总的讲授内容来说,有理论性强、新概念多、系统性强、与工程尤其是航空航天工程联系紧密的特点,如已列装或在研的大部分导弹飞行器,其自动驾驶仪的设计仍主要是在经典控制理论的框架下完成的。学习过程是先了解控制系统的组成尤其是强调“反馈”的概念,再根据实际的控制系统建立数学模型,然后通过时域法、根轨迹法、频率法等分析系统性能的优劣对比,最后对系统整体性能进行校正和设计,可以说,整个过程是一个完整的体系,更是一个循序渐进的过程。

1.2《自动控制原理》学习过程中的几点问题

无论哪门课程,讲授目的均是希望学习者能够掌握相关知识的基本原理、分析方法并最终做到灵活运用。考试成绩是评价学习者是否达到上述标准的一个参考,但考试成绩并不能表明一个学生是否真正达到了上述标准。为了准确评估《自动控制原理》的讲授效果,真正了解该门课程学习中可能存在的问题,不但要时刻注意本专业学生在修习过程中的反馈意见,而且要广泛调研和阅读其它学校和专业的教师在该门课程上的经验总结。在此基础上,结合笔者的亲身体验和思考,认为航空航天类专业的学生在学习《自动控制原理》过程中可能面对的主要问题包括:(1)部分学生由于数学基础不够扎实,对课程中涉及到的数学知识产生畏难情绪,进而无法很好地掌握控制系统的分析方法;(2)不能将所学的控制理论知识与自己专业的实际案例充分地联系起来,这主要是在学习过程中接触专业案例少造成的;(3)阅读英文文献的能力不足,而且这种不足突出表现在缺乏对专业词汇的正确理解上,这说明《自动控制原理》需要适度地推进双语教学改革;(4)无法将基本理论和计算机辅助设计软件MATLAB结合起来进行更有效地控制系统设计,即割裂了基本理论和计算机辅助软件相辅相成、互相印证、互相促进的关系;(5)从系统角度理解控制系统核心思想的能力不足,即无法做到融会贯通,更谈不上灵活运用,这需要授课过程中注意前后串联,帮助学生建立起系统概念。针对上述问题,结合北京理工大学办学定位和航空航天类专业《自动控制原理》的授课特色,授课教师均提出了有针对性的改革措施。多年来的教学实践证明,这些措施很好地解决了北京理工大学航空航天类专业本科生在《自动控制原理》课程中的学习问题,增强了学生对该门课程的学习兴趣和“自主学习”能力。

2 教学改革的若干举措

2.1从数学基础抓起

“工欲善其事,必先利其器。”《自动控制原理》课程涉及大量的数学知识,如拉氏变换及其逆变换、微分方程、差分方程、复变函数理论、Z变换等。毫不夸张地说,扎实的数学功底是学好该课程的基础。如果学生缺乏必要的数学知识,教师又不能适时补上这个不足的话,很容易造成学生在学习过程中的畏难情绪,不可避免地会影响教学效果。

北京理工大学授课教师的做法是在《自动控制原理》开课伊始,就给学生列出所有需要用到的基础数学知识。一方面引导学生重新复习这些已经学过的数学知识;另一方面,授课教师还会抽出专门的课时来对这些数学知识进行复习和重点讲授。为了不断加深学生对这些数学知识的理解,在用到相应的数学工具时,授课教师都会结合具体的实例进行更详细地讲述。为了尽可能减少学生在学习中的畏难情绪,北京理工大学授课教师在考试中坚持“注重概念,弱化计算”的理念,只要学生思路正确,仅仅是计算错误的情况下,尽量少扣或不扣分。

2.2双语教学,与国际接轨

开展双语教学有助于我国高等教育与国际接轨,是当前教育改革的热点和重点,同时也得到了教育部等相关部门的大力支持。在双语教学的改革中,有一点需要明确的是,专业课双语教学的目的并不是为了增加学生的词汇量,也不是为了提高学生外语的写作水平,更不是为了教学生外语语法,而是为了增强学生阅读专业外文文献的能力和对专业知识的理解能力。近年来,英语已经逐渐发展成为全世界通用的语言,最新的科研成果更主要是以英文形式发表。所以,我国高等教育中大部分的双语教学均是采用中文和英文的双语授课模式。

由于《自动控制原理》涉及到的诸多基本理论和分析方法大都是从国外引进和翻译过来的,加上国外学术界习惯用人名来命名定理的做法,给国内学生记忆和理解这些理论和方法增加了额外的困难。如用于判定线性系统稳定与否的劳斯判据就是以英国数学家Edward John Routh的名字命名的,类似这样的例子还有很多,这对于习惯望文生义的国内学生来说,想仅仅从字面意思来理解劳斯判据本身几乎是不可能的。有鉴于此,基于航空航天类专业《自动控制原理》双语教学改革的目的主要是为了增加学生对专业词汇认知这一基本的出发点,决定了航空航天类专业《自动控制原理》双语教学的授课方针应以中文为主、英语为辅。具体做法是,每当第一次出现新的名词、原理和方法时,授课教师先用中文进行详细讲解,然后告诉大家这些名词、原理和方法在英文中的表示方法和来源,并在以后遇到这些名词、原理和方法时,更多地采用英文表述。如传递函数(Transfer Function)、劳斯判据(Routh Criterion)、阶跃响应(Step Response)、脉冲响应(Impulse Response)、根轨迹(RootLocus)等,都可以采用这种处理方式。此外,还需要注意引导学生适量阅读英文参考书和专业文献,由于Katsuhiko Ogata所著《Modern Control Engineer-ing》一书在世界范围内的广泛被接受性,北京理工大学同样推荐学生将这本书作为英文参考书。

2.3融科研于教学

随着我国高等教育改革的不断实施和深入,昔日的“填鸭式”教学已逐步被更能激发学生“自主学习”能力的“启发式”、“案例式”教学所取代。在《自动控制原理》的教学中,如果只是讲授一般的数学公式和物理定理,而与实际工程割裂开来的话,很可能出现的后果就是学生学习后不知道用在什么地方,更不知道如何用,更糟糕的情况是学生在考试后就把所学的东西全忘掉了。为了避免这一状况的发生,有必要将专业案例、授课教师的科研项目融入日常的教学工作中去,让科研带动教学、教学促进科研。

如在第一章讲授自动控制系统定义和基本组成的时候,通用的教材是举一些工业上常见的例子,像室温调节系统和水位调节系统来引入自动控制的专业术语和反馈的概念。这种讲授方法是很好的,有利于学生建立对控制系统组成的直观概念,并认识到自动控制的核心思想所在。对于航空航天类专业的学生来说,在讲述通用案例的同时,还可以结合航空航天领域的应用案例,如引入图1所示的导弹攻击飞机的案例。在这个案例中,导弹根据自己探测到的目标机动特性,依据一定的制导律生成最佳攻击曲线,当弹上的测试设备探测到实际飞行路线和预定飞行路线出现偏差的时候,弹载计算机会依据一定的法则生成控制指令,气动舵机来执行这一控制指令,从而达到控制导弹回到预定飞行路线的目的。按照这一描述可以画出它的系统方块图,如图2所示,和基本的负反馈闭环控制系统(如图3所示)对应起来,预定飞行路线对应给定输入、弹载计算机对应控制器、气动舵机对应执行机构、导弹就是被控对象、实际飞行路线即是实际输出、弹载测试设备即对应测量输出的传感器。这样讲授下来,由于比较贴近专业方向,同学们就很容易理解控制系统的结构,并对输入、输出、被控对象、执行机构、控制器的作用及反馈的概念有了更为直观和深刻的认识。

在讲述控制系统稳态性能和动态性能的时候,大量引入航空航天的专业案例,尤其是一些因为控制系统设计失误或控制系统未能正常工作产生重大损失的失败案例,对引发学生的学习兴趣颇有帮助。从教学的效果看,这些案例的引入,不仅加深了学生对《自动控制原理》重要性的认识,激发了他们学习的热情,同时,还培养了他们对所学专业的兴趣。在此基础上,可以注意吸收一些对自动控制理论或应用感兴趣的学生提前进入实验室,并挑选与任课教师负责项目相关或者处于航空航天控制前沿的研究方向,如临近空间飞行器的制导与控制技术,让他们自由发挥,思考和创新,切实培养他们的动手能力。

此外,授课教师要非常注重“基于书本、超越书本”。比如香农(Shannon)采样定理认为:对于一个连续信号来说,当采样角频率是该连续信号所含最高次谐波频率两倍以上的话,即能做到一个周期内采样两次以上的话,那么经采样后所得到的脉冲序列,就包含了原连续信号的全部信息,可通过理想滤波器把原信号毫无失真地恢复出来。这一表述在数学理论上是没有任何问题的,但在实际工程项目中往往是行不通的,比如一个正弦曲线的测试,一个周期里只采样两三个点的情况下,几乎没有可能复现原信号。类似于这样的问题,授课教师需要在授课过程中向学生特别强调。

2.4计算机辅助教学

由于《自动控制原理》在授课过程中涉及到的数学公式、图形(结构图、框图、根轨迹图、伯德图等)比较多,非常不方便在课堂上进行直接板书,一旦板书不清楚会直接影响学生的学习效果。而这些公式和图形是非常适合以幻灯片(PPT)的形式来进行表述的,学生也更乐意看到这种方式。北京理工大学授课教师同样采用了以PPT为主的授课模式,配以适当的动画,给学生一个更为直观的展示。如在讲授动态性能指标的时候,延迟时间、上升时间、峰值时间、超调量、调节时间等名词的定义并不是那么容易理解,但通过动画的形式就可以很清楚、明了地向同学们展示这些概念的不同,学生反映良好。再比如在讲授不同阻尼比情况下二阶系统单位阶跃响应特性的时候,只靠文字表述“随着阻尼比的增大,系统的响应越快,但超调量越大”的话,大部分学生是比较茫然的。如果换成通过PPT展示给同学们如图4所示的响应曲线时,就会一目了然,同时,还有助于同学们掌握零阻尼、欠阻尼、临界阻尼、过阻尼等情况下单位阶跃响应特性的不同。

MATLAB是学习《自动控制原理》的学生必须掌握的一个计算机辅助分析工具。实际上,一个令人引以为傲的事实是,北京理工大学航空航天类专业本科生的MATLAB基础知识都是在《自动控制原理》的课堂上学到的。由于年轻学生对新鲜事物天生的好奇感,当他们看到教材上一幅幅精美的图片是通过MATLAB展示在自己面前的时候,不但会加深他们对所学知识的理解,更会激发他们学习这门课的热情。比如讲二阶欠阻尼系统阶跃响应的时候,可以首先引导学生思考一个问题:“既然阻尼比越小,系统响应越快,超调量越大,那怎么来选择合适的阻尼比呢?”然后再用教学计算机上装载的MATLAB画出图5,这是阻尼比位于[0.10.9]之间,以上升时间为横坐标、超调量为纵坐标的Pareto图,同时在图中标示阻尼比分别为0.4、0.707和0.8所对应的点。以这个直观的示意图做基础,同学们就很容易理解为什么工程上一般要求阻尼比在[0.4 0.8]范围内了,再告诉同学们阻尼比为0.707时控制系统效果最佳,他们也就明白了因果来源。如果更进一步画出阻尼比分别为0.6、0.707和0.8时候的单位阶跃响应曲线来,如图6所示,同学们就会有一个更加明确和直观的印象。此外,授课教师还可以通过课下作业的形式,引导学生利用课堂所学知识编程实现更复杂的响应曲线,使学生可以亲身感受到响应曲线随不同参数变化的规律,不但可以加深学生所学的理论知识,还有助于学生掌握辅助软件的用法。

用MATLAB辅助教学可能会带来的一个副作用就是,同学们可能觉得只要掌握MATLAB就可以了,而忽略了自动控制本身的基本原理和定性的分析方法。这是授课教师在教学过程中需要重点留意并刻意避免的问题之一,北京理工大学授课教师在每次用MATLAB辅助教学时,都会强调基本原理的重要性,同时会刻意用所学的定性分析方法来评估MATLAB结果的正确与否,并一再强调,MATLAB只是一个辅助大家进行控制系统分析的工具,不能取代大家所学的基本原理和分析方法本身,考试中也不会考这方面的内容。

2.5注重前后串联,建立系统概念

《自动控制原理》本身的讲授内容多、跨度时间长,而且学生同时还在修习其它课程,所以用在《自动控制原理》这一门课上的时间是极其有限的。而且一般教材也更倾向于将每个章节的内容独立出来,如仅仅在第二章讲述控制系统模型的建立方法,在以后的学习中就直接拿现成的传递函数来用;再如第三章讲述时域分析法之后,在后续章节的讲述中几乎不会再涉及。很可能造成的一个后果就是学习过程中常常不清楚各个知识点之间的相互联系,也无法真正的做到融会贯通,在遇到实际的工程问题时就会显得束手无策、不知如何下手。这需要授课教师帮助同学们理清线索,弄清楚各个章节之间的因果关系。

北京理工大学授课教师在每个章节开始和结束的时候都会向学生展示图7,告诉大家正在学习的内容在图中什么位置,在整个自动控制原理的框架中起到什么作用,它以哪几个章节为基础、又可以为哪几个章节提供帮助。在课程结束的时候,还会精心选取几个航空航天专业的典型案例,让同学们以小组为单位形成一个大作业,这个大作业涉及到《自动控制原理》所讲授的全部核心内容,从系统建模到系统性能分析,并发挥他们自己的独立思维进行系统的二次设计,从学生的反响及实际的教学效果看,这种做法十分可取。

航空航天测控技术范文第4篇

关键词:软件测试控制系统嵌入式

中图分类号:TP311.52 文献标识码:A 文章编号:1007-9416(2012)05-0151-01

1、嵌入式系统的特点以及实现方法

嵌入式系统的主要特点如下:嵌入式系统的硬件和软件的紧密结合,具有很强的依赖性之间的软件和硬件,嵌入式系统的功能和性能通过软件和硬件来实现。因此,在硬件平台上的嵌入式软件系统的测试。在硬件,嵌入式软件系统测试。这是一个不同的主机平台上的软件,只能在电脑平台的主机平台软件系统测试,不需要专门的硬件平台测试。嵌入式系统的要求非常苛刻的时间。嵌入式系统,实时控制系统,为要求苛刻的实时场合。嵌入式系统的硬件资源有限,存储容量和速度的嵌入式CPU和应用环境的制约。

软件测试的方法可以分为黑盒测试和白盒测试两大类:黑盒测试是一种基于需求的测试,以验证测试软件是否满足软件的需求。白盒是基于结构的测试,软件控制流测试包括语句覆盖,分支覆盖,等等和数据流测试。覆盖测试原理是:测试软件,测试工具的使用静态分析,以确定代码中的分支点,并统一编号,分配给每个分支点。计划执行的历史信息和路径,你可以从这份文件中,为了计算的代码覆盖率。嵌入式软件与主机平台上的软件有不同的特点,所以从主机平台软件测试,测试也明显不同。

2、嵌入式系统的应用

嵌入式系统为中心,基于计算机技术,利用可定制的功能性,可靠性,成本,体积,功耗严格要求,设备专用计算机系统111硬件和软件。它一般由嵌入式微处理器,硬件设备,嵌入式操作系统和用户应用程序,控制其他设备,监事或管理由四部分。最典型的嵌入式系统的特点是与人民生活密切相关的,任何一个普通的人可能有各种使用嵌入式微处理器技术的电子产品,MP3,PDA等数字设备,数字家电,智能家电,地理信息系统的车辆。事实上,新的嵌入式设备的数量远远超过通用计算机。其硬件系统表现如右:

嵌入式操作系统和通用操作系统有许多功能,如可靠性,可削减,可扩展性,实时等。前三嵌入式应用环境的要求。“实时”,以满足系统内容的实时性要求。通常在一些嵌入式操作系统,通常被称为“实时操作系统,但它是操作系统的性能有一个更好的实时能力。在一个特定的嵌入式应用系统中,没有实时的结论。不同的嵌入式操作系统,可以有不同的实时能力。嵌入式操作系统应符合设计实时任务调度,运行速度快,实时性能的内容嵌入式操作系统的能力,可以更容易地实现实时的应用程序。

3、应用航天业的条件和发展

今天的软件和硬件技术的发展,嵌入式系统被广泛用于航空航天,国防,军工,电子通讯等行业,其中软件变得越来越复杂。应用嵌入式系统的特点,这些地区往往是高安全性,关键任务系统,软件,小缺陷可能会严重威胁生命和国家安全的,巨大的天文财产损失。这使得它保证嵌入式软件的质量和可靠性变得至关重要。

4、航天业的应用条件

嵌入式系统的任务有一定量的时间限制。据截止时间,实时系统,实时被分为“硬实时时间”和“软实时”。可以完全满足硬实时应用的需求,否则,导致发生重大安全事故,甚至造成了生命和生态破坏。

可预见性是一个系统,能够实时执行任务的时间来判断,以确定它是否能满足任务的期限。在航空航天工业实时系统需要严格的时间限制,称为实时系统的可预测性是一个重要的性能要求也至关重要。除了硬件延迟的可预见性,也需要软件系统的可预测性,包括应用程序的可预测性的响应时间可预测的,也就是说,在有限的时间内完成必要的工作;和操作系统,即实际运行时的开销时间原语,调度功能应范围内,以确保应用程序的执行时间为界。

5、与外部环境的相互作用

航天业需要的外部环境是独一无二的,这样的外部环境是一个实时系统不可或缺的组成部分。空间计算机子系统控制系统,它必须在规定时间内作出回应外部请求。外部物理环境经常指责子系统,两个互动,以形成一个完整的实时系统。为此,该系统需要一个静态的分析,并保留资源和冗余配置,系统可以工作在最坏的情况下,或避免损失。可靠性已成为航空航天工业的实时系统性能不可缺少的一个重要指标来衡量。

6、结语

随着嵌入式系统的广泛使用,其实时性已经吸引了越来越多的关注。实时嵌入式系统是一个综合性的问题,应考虑在嵌入式系统设计,硬件不仅是软件的选择也应注意。在这些领域的嵌入式系统应用的特点,往往是高安全性,关键任务系统,软件,小缺陷可能会严重威胁生命和国家安全的一个巨大的天文数字的财产损失。这使得它变得至关重要,以确保嵌入式软件的质量和可靠性。

参考文献

[1]谢东,李昌禧.基于LabVIEW的嵌入式软件黑盒测试系统的研究[J].工业控制计算机,2005年12期.

[2]杨顺昆,刘斌,陆民燕.WindowsNT下几种定时器的实现原理及性能比较[J].测控技术,2002年12期.

[3]崔小乐,刘斌,钟德明,阮镰,高小鹏.实时嵌入式软件仿真测试平台的体系结构设计[J].测控技术,2003年07期.

[4]崔小乐,刘斌,杨顺昆,阮镰.嵌入式软件仿真测试平台的建模环境设计[J].测控技术,2004年02期.

航空航天测控技术范文第5篇

关键词:航空发动机;Pxi测试系统;应用;分析

在我国社会经济迅速发展的环境形势下,航空行业的整体发展势头也非常迅猛。在航空事业的发展过程中,其自身的质量以及安全稳定性能非常重要,不仅对行业事业整体发展有非常重要的影响,而且对人们的出行安全也提供了良好的保障。航空发动机作为飞行器的心脏,亦是其最主要的部分,其性能能够直接对飞行器的品质起到决定性作用。地面试车台进行的航空发动机性能、功能试验的准确性、可靠性,是保障发动机安全稳定性的有力基础。

1 Pxi测试系统

1987年,VXI诞生,其IEEE1014-1987在当时可以说是非常先进的PC总线,在某种程度上,加速了全球PC工业的整体发展。在当前社会经济不断快速发展的形势下,各个领域都取得了良好的成效,PC工业的发展也同样取得了进步。在实际操作过程中,可以看出,在PC插卡的基础上,这种数据采集板形势在经过不断的发展和改革创新形势下,已经发展为PCI总线的模块化自动测试设备系统,成为一种全新的测试平台标准。这种仪器系统在实际操作过程中,可以说是PCI扩展的一种通用性测试系统总线,不仅能够保证自动化系统在日常操作过程中的稳定性和坚固性,而且能够减少成本。

经过一段时期的发展,Pxi技术逐渐成为自动化测试以及控制的主流平台之一,Pxi测试技术不仅拥有高通道数据采集,而且能够将测试信号进行切实有效的混合,这样不仅能够从根本上保证试验效果的准确性和有效性,而且能够将其自身的应用效果充分发挥出来[1]。Pxi技术可以说是国防以及航空航天测控应用当中非常重要的主导技术之一。对各类测控设备的数字化、智能化以及综合化等科技水平的高要求,无形当中加速了高性能Pxi测控产品以及系统级的整体方案的创新。将计算机PCI总线扩展到仪器作为Pxi技术的整体发展思路,将PC以及与其相关的各个硬件自身的优势特点充分发挥出来。这样不仅能够满足航空航天在实际操作过程中的任何测试或者是系统的测量,而且能够实现未来自动化工业测试的发展趋势[2]。

2 Pxi技术在实际应用过程中的优势特点

2.1 机械性能良好

Pxi技术在实际应用过程中,为了将其自身的作用尽可能发挥出来,在实际操作过程中,将PC技术、仪器技术以及欧卡机械规范进行有效的结合,这样不仅能够具备软件的整体运行标准,而且能够保证数据在传输过程中的速度和效率,尽可能保证系统开发的时间被有效缩短。Pxi测试系统在实际应用过程中,能够从根本上有利于系统升级的模块化设计和处理,在无形当中增加了特殊冷却以及相对应的环境要求,提供了两种与标准PCI系统相互操作的方法。这样不仅能够保证其自身在实际操作过程中的稳定性和有效性,而且能够尽可能集中冷却和电磁兼容性能[3]。另外,Pxi测试系统在自身的操作过程中,其自身所需要投入的成本比较低,有利于集成,其自身的灵活性也比较良好,所以优势特点比较多,有利于维护系统工作寿命期限内的成本。

2.2 电气性能良好

Pxi测试系统实际应用过程中,可以说是保持了基本上PCI总线的所有优点,同时增加了一个100MHz差分系统时钟、差分信号和差分星形触发,来满足高级定时和同步的需要。在实际操作过程中,其自身具有一定的公共触发线、星形触发总线、以及本地总线等等,这些总线不仅能够在实际操作过程中,对其起到良好的辅作用,而且能够促使其自身的电气性能达到良好的标准。另外,高性能的I/O曹位很多,具有即插即用仪器的驱动程序在实际应用过程中,能够尽可能满足定时的准确性和有效性,并且能够实现同步旁带通讯的整体需求。不仅能够从根本上符合工业环境应用的整体坚固设计要求,而且能够将其自身的影响和作用充分发挥出来[4]。

3 Pxi测试系统在航空发动机试验中的应用

3.1 航空发动机试验测试参数

在航空发动机试验的过程中,将Pxi测试系统应用其中,不仅能够从根本上提高测试结果的有效性,而且能够保证对其进行科学合理的测试。航空发动机试验测试参数主要包括稳态数据采集系统和动态数据采集系统两个方面。首先,对直流电压与交流电压之间的有效值信号进行测试,比如直流为正负极10V,变流为36V,交流就是115V。其次,对电阻值参数进行测试,比如利用电缆来对电阻进行识别,对电阻的绝缘性、导通性等等,就要详细分析和研究。另外,对于频率信号也要进行相对应的试验测试,比如交流电源自身的频率、基准信号等等,这些都是在试验测试过程中非常重要的参数,能够直接对航空发动机试验起到一定的影响和作用。时序信号也是试验测试参数当中必不可少的一项重要部分,比如一些起动信号、停车时间等等,这些都能够提供非常重要的参数作为依据。

3.2 Pxi模块

温度采集:温度参数采集一般选用采用SCXI1503(16通道采集输出,用于普通热电阻温度采集)以及SCXI1112(8通道采集输出,用于热电偶温度采集)采集。

转速采集:一般采用SCXI1126(8通道采集输出)进行采集。

压力采集:压力参数一般采用SCXI-1102B(32通道模拟量采集变换)配合压力变送器使用。

电压、电流采集: SCXI-1102B(32通道模拟量拟量采集输出)配合电量、电压变送器使用。

配置windows操作系统的嵌入式Pxi控制器专为满足测试、测量和控制系统的苛刻要求而设计。它们配备的最新处理器选件被安放在专门设计的坚固结构中,适合在宽广温度范围以及高冲击和振动环境中运作。最佳CPU性能、坚固结构、高可靠性和长期可用性的结合让Pxi嵌入式控制器成为适合Pxi系统的理想控制选件。通过SCXI信号调理对结合Pxi采集器对频率信号进行测量。

4 结束语

综上所述,在对航空发动机进行试验分析和研究的时候,将Pxi测试系统科学合理的应用其中,不仅能够从根本上对其进行科学合理的测试分析,而且能够保证测试结果的有效性和准确性,并能够保证测试系统的高可靠性及长期可用性。

参考文献

[1]安冬冬,刘文怡.基于PCI9054从模式的数据采集卡设计与应用[J].计算机测量与控制,2010(10).

[2]谢曦鹏,张明勇,高慧中.基于Pxi总线自动测试系统的设计[J].西安航空技术高等专科学校学报,2012(01).

[3]张路路.基于PCI总线集成电路测试仪接口设计[J].现代电子技术,2012(12).