首页 > 文章中心 > 混凝土结构设计规定

混凝土结构设计规定

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇混凝土结构设计规定范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

混凝土结构设计规定

混凝土结构设计规定范文第1篇

关键词:混凝土结构;设计规范;混凝土保护层;钢筋锚固

中图分类号:TU37文献标识码: A 文章编号:

引言

混凝土结构一直是我们最常用的结构,《混凝土结构设计规范》(GB50010-2010)修订反映我国近十年来混凝土结构学科的科研成果和工程建设中的新经验,标志着我国混凝土结构的计算理论和设计水平有了新的提高与发展。

1、钢筋的混凝土最小保护层厚度的调整

鉴于《混凝土结构设计规范》(GB50010-2002)中规定混凝土保护层最小厚度是指纵向受力钢筋的外表面至混凝土表面的距离,除长期干燥或永久置于水中的混凝土构件外,其他环境下的构件并不能满足设计使用年限内防止钢筋严重锈蚀的耐久性要求,并且为防止混凝土构件中最外侧箍筋和分布筋首先锈蚀并导致混凝土顺筋开裂和剥落,对其保护层厚度的要求应该与主筋相同,《混凝土结构设计规范》(GB50010-2010)从混凝土碳化、脱钝和钢筋锈蚀的耐久性角度综合考虑,不再以纵向受力筋的外缘,而以最外层钢筋(包括箍筋、构造筋、分布筋等)的外缘计算混凝土保护层厚度,规定混凝土保护层最小厚度是指钢筋的外表面至混凝土表面的距离,很显然,《混凝土结构设计规范》(GB50010-2010)规定的混凝土保护层最小厚度既保护了纵向受力钢筋,又保护了箍筋、分布筋,比《混凝土结构设计规范》(GB50010-2002)规定混凝土保护层最小厚度有所加大。对由纵向钢筋和箍筋组成的梁、柱构件,混凝土保护层最小厚度的调整使正截面设计中截面有效高度 h0=h-as( 若仅布置一排钢筋时,《混凝土结构设计规范》(GB50010-2002)为 as=c+d纵/2,《混凝土结构设计规范》(GB50010-2010)为 as=c+d箍+d纵/2,见图 1)有所减少;对由纵向受力钢筋和分布钢筋组成板构件而言,新旧混凝土结构设计规范规定的保护层厚度不变,不影响正截面设计中截面有效高度 h0=h-as。《混凝土结构设计规范》(GB50010-2010)除了修改对钢筋的混凝土最小保护层厚度定义外,还对结构构件所处耐久性环境类别进行了划分,对应环境等级修改,《混凝土结构设计规范》(GB50010-2010)调整了混凝土最小保护层的最小厚度 c(mm),对一般情况下混凝土结构的保护层厚度稍有增加,而对恶劣环境下的保护层厚度则增幅较大。

2、钢筋锚固和连接方式的改进

我国钢筋强度不断提高,结构形式的多样性也使锚固条件有很大的变化,根据近几年系统试验研究及可靠度分析的结构并参考国外标准,《混凝土结构设计规范》(GB50010-2010)提出 ιab即基本锚固长度,取代了原先的 ιa,从基本锚固长度的计算公式看,公式并没有改变,但改变 ft取值,《混凝土结构设计规范》(GB50010-2010)提出当混凝土强度等级高于C60时,ft按C60取值,而《混凝土结构设计规范》(GB50010-2002)则是当混凝土强度等级高于 C40 时,ft按 C40 取值。这主要是根据实验研究表明,高强混凝土的锚固性能被低估,原先的最高强度等级取 C40 偏于保守,其实这也是为推广高强度钢筋,如果采用原先的公式计算,高强度钢筋的基本锚固长度有些长。另外,《混凝土结构设计规范》(GB50010-2010)删除《混凝土结构设计规范》(GB50010-2002)中锚固性能差的刻痕钢丝,同时提出当混凝土保护层厚度不大于 5d 时,在钢筋锚固长度范围内配置构造钢筋的要求。当不考虑锚固长度修正时,取相同直径 d,采用《混凝土结构设计规范》(GB50010-2002)和《混凝土结构设计规范》(GB50010-2010)计算受拉钢筋锚固长度。

3、钢筋用量的分析

工程概况①:按《混凝土结构设计规范》(GB50010-2002)计算,梁、柱、墙受力钢筋采用 HRB400 级,梁、柱箍筋和墙中构造筋以及板中钢筋均采用 HRB335 级。

工程概况②:按《混凝土结构设计规范》(GB50010-2010)计算,梁、柱、墙受力钢筋采用 HRB400 级,梁箍筋和构造筋、墙构造筋以及板中钢筋均采用 HRB335 级。

工程概况③:按《混凝土结构设计规范》(GB50010-2010)计算,梁、柱、墙受力钢筋采用 HRB500 级,梁箍筋采用 HRB400 级,墙构造筋及板中钢筋仍采用 HRB335 级。

通过中国建筑科学研究院研发的 PKPM 程序模拟计算,其计算结果如下:

3.1剪力墙结构

工况②与工况①比较:在钢筋强度等级相同的条件下,按《混凝土结构设计规范》(GB50010-2010)计算的钢筋总用量(748.84t)比按《混凝土结构设计规范》(GB50010-2002)计算的钢筋总用量(747.83t)略有增加,比值为 1.001;其中梁箍筋(HRB335 级)的用量因规范修订稿中受剪公式的改变有较明显增加,梁中受力主筋(HRB400 级)的用量因《混凝土结构设计规范》(GB50010-2010)中裂缝宽度计算公式的改变有所减少;板和墙的钢筋用量受最小配筋率控制,基本无变化。工况③与工况①比较:工况③仍按新修订的《混凝土结构设计规范》(GB50010-2010)计算,但梁中箍筋改为 HRB400 级,梁、板和墙中的受力主筋改为 HRB500 级。可以看出,钢筋总用量(742.23t)比按《混凝土结构设计规范》(GB50010-2002)计算的钢筋总用量(747.83t)略有减少,比值为 0.993;其中梁箍筋用量仅略有增加,而梁中受力主筋的用量则减少明显,梁中钢用量合计减少约 5.6%;板和墙的钢筋用量仍受最小配筋率控制,变化不大。工况③与工况②比较:工况③和工况②均按《混凝土结构设计规范》(GB50010-2010)计算,只是工况③提高钢筋强度等级,可看出两种工况下钢筋总用量基本相同,主要是因为板和墙的钢筋用量受最小配筋率控制变化不大,而梁中箍筋和受力主筋用量则有明显减少。

3.2框架结构

工况②与工况①比较:在钢筋强度等级相同的条件下,按《混凝土结构设计规范》(GB50010-2010)计算的钢筋总用量(229.73t)比按《混凝土结构设计规范》(GB50010-2002)计算的钢筋总用量(231.13t)略有减少,比值为 0.994;其中梁箍筋(HRB335 级)的用量因规范修订稿中受剪公式的改变有较明显增加,而梁中受力主筋(HRB400 级)的用量因规范修订稿中裂缝宽度计算公式的改变有所减少;板的钢筋用量受最小配筋率控制,基本无变化;柱的钢筋用量略有增加。工况③与工况①比较:工况③仍按《混凝土结构设计规范》(GB50010-2010)计算,但梁和柱的受力主筋改为 HRB500 级。可以看出,钢筋总用量(217.35t)比按《混凝土结构设计规范》(GB50010-2002)计算的钢筋总用量(231.13t)减少约 6%(比值为 0.940);其中梁箍筋用量增加较明显,而梁中受力主筋的用量则减少明显,梁中钢用量合计减少约10.9%(比值为 0.891);板和柱的钢筋用量仍受最小配筋率控制,变化不大。工况③与工况②比较:工况③和工况②均按《混凝土结构设计规范》(GB50010-2010)计算,只是工况③梁和柱的受力主筋改为 HRB500 级。可看出提高受力主筋强度等级后钢筋总用量减少约 5.4%(工况③钢筋总用量为 217.35t,工况②钢筋总用量为 229.73t,比值为 0.946)。

结束语

在我国当前迅速发展的工程建设领域中,混凝土结构是我国工程建设中应用最广泛的一种结构形式之一,全面修订的混凝土结构设计规范在新材料应用、设计理论发展等方面有重大进步,对确保工程质量,促进我国钢筋混凝土结构设计水平,进一步提高及混凝土结构学科的发展起到有力的推动作用。

参考文献

[1] 混凝土结构设计规范.GB50010-2010[S].北京 : 中国建筑工业出版社,2011.

混凝土结构设计规定范文第2篇

[关键词]钢筋混凝土;结构设计;规范;概念设计;问题

中图分类号:TU973.12 文献标识码:A 文章编号:1009-914X(2016)18-0220-01

1、钢筋混凝土柱的结构设计

1.1 钢筋混凝土柱的截面设计

一般在对钢筋混凝土结构进行设计时,首先需要按照至下而上的顺序对截面尺寸进行调整,通常框架结构的柱按照这一顺序变化比较合理,此外,还应创建合理的柱模板,柱断面变化次数不宜太多,柱断面变小也不宜设在同一层,以节约投资,使设计更合理。除了柱截面变小与混凝土强度降低宜设在不同层外,而且柱截面变小剧烈。否则抗侧刚度减少较多,对抗震不利。柱截面尺寸减小的间隔层数为四层,如果间隔太疏又起不到节约投资、降低造价的目的;太密会造成模板浪费、施工不便。每次每侧减小以150mm为宜,减得过多会导致结构竖向刚度变化异常。例如柱截面从550@550变为450@450,柱的线刚度会减少了60%左右,对于纯框架结构其抗侧刚度就减小过多。如果柱截面变化过大时应将柱分批在不同楼层进行截面变小。同时钢筋混凝土柱截面的最小尺寸应符合相关规定。

1.2 钢筋混凝土柱箍筋的肢距设计

根据混凝土结构设计的有关规定可以看出,在对钢筋混凝土柱加密区的箍筋内箍筋肢距进行设计时,要保证一级抗震等级不能超出二十厘米,二三级抗震等级则不能超出二十五厘米,同时保证箍筋直径在二十倍中的较大值;四级抗震等级不宜大于三十厘米。按一般的理解,箍筋肢距应为每肢箍筋的水平距离。本文作者对箍筋肢距的解释为钢筋混凝土柱纵向钢筋的箍筋拉接点的距离,这样不仅可以顺利对柱钢筋的拉接还便于施工的要求。而不少设计人员在设计时将箍筋肢距一律按均匀分布且小于二十厘米,导致混凝土浇捣困难,必须使用导管,将混凝土引导到根部,是不能让其从高处直接坠落的,然后逐渐向上浇灌。如果箍筋肢距过小,将无法使用导管。

2、关于梁的结构设计

梁的截面高度是由挠度与配筋控制其下限值,由裂缝允许值控制上限值。设计中很多人取较大的梁截面以保证挠度满足要求。但大截面低配筋率梁对抗裂并不利,经过适当配筋调整,裂缝宽度能勉强地满足要求,其计算裂缝宽度很小,然而这种梁出现裂缝的可能性较大。

2.1 钢筋混凝土梁侧的纵向钢筋设计应该注意的问题

根据相关要求我们可以发现,梁腹板的高度大于45cm时,梁的两个侧面设计应该满足纵向构造要求,纵向构造钢筋之间的距离需要保持在20cm以内,每一侧的截面面积应该大于或等于腹板界面的0.1%,钢筋混凝土梁侧纵向钢筋的直径一般为十五厘米左右。在钢筋混凝土结构的实际设计中,常会遇到钢筋混凝土梁侧抗扭纵筋很大,对上述情况应在计算上做合理的调整,由于电算设计时候的抗扭纵筋面积较大。对跨度较大的钢筋混凝土次梁支承于主梁上时,钢筋混凝土次梁的支承端会对主梁产生较大的扭矩,在电算程序中钢筋混凝土次梁的端支座为绞接造成的。目前电算程序在结构构件计算时尚未考虑现浇楼板对钢筋混凝土梁扭转影响,必须需要人为地给程序一个梁扭矩折减系数,合理选择钢筋混凝土梁扭矩折减系数是必要的。调整后计算出来的钢筋混凝土梁的抗扭纵筋面积会很大,必须保证箍筋的配筋率满足规范的规定。

2.2 针对强柱弱梁的结构设计

强柱弱梁的概念最早是在抗震设计中提出的,钢筋混凝土柱的结构设计直接关系着整个建筑物的安全性能,因此我们需要减少钢筋混凝土梁的破坏。强柱弱梁设计理念一定要将这一概念设计贯彻下去。严格控制钢筋混凝土柱轴压比,笔者认为轴压比不宜过大,且我们对柱断面及配筋设置时应分部位处理,建议适当加强角柱、边柱的配筋,所有钢筋混凝土柱建议纵筋均不宜小于20mm,同时应该全柱通长加密箍筋,且配箍率满足规范要求,矩形截面柱对称配筋。而对梁配筋则建议应配足梁中部筋,以使地震作用下梁铰机制的形成,避免柱比梁先屈服,使钢筋混凝土梁端能先形成塑性铰,使柱端受弯承载力比梁端的实际受弯承载力大。

3、关于基础的结构设计

在整个建筑工程开展过程中影响工程造价及施工质量的主要因素就是地基基础,这是在工程设计过程中相关人员十分重视的结构设计内容,由于地基设计的好与坏直接关系到后期设计工作的有序开展,还可能会造成无法弥补的损失。所以,在进行地基基础设计时,在地基基础设计中要注意地方性规范的学习。避免对整个结构设计或后期设计工作造成较大的影响。因此在基础设计时,应充分重视工程当地的规定要求,最好能参考邻近已建建筑物设计经验,可使基础设计更加经济、合理。如某综合楼工程,抗震设防烈度为8度,建筑总高度100m,采用框架核心筒结构,基础设计采用筏板基础。在利用程序计算时,主楼下的筏板板厚达到3m,配筋量大。规范基础冲切计算也未考虑基础底板下土的影响,在参考类似工程经验后,设计基础筏板厚度定为2.1m,使筏板厚度减少近30%。

3.1 基础的最低混凝土强度等级

有关规定中提到建筑地基的扩展基础混凝土强度等级不应低于C20,规范还规定基础的最低混凝土强度等级二a类为C25,二b 类为C30。规定高层建筑基础的混凝土强度等级不宜低于C30。

3.2 基础的最小配筋率

墙下钢筋混凝土条形基础和柱下钢筋混凝土独立基础的最小配筋率如何确定存在分歧。混凝土结构设计相关规定了受弯构件的最小配筋百分率的值;而建筑地基基础设计中规定:基础底板的配筋,应按抗弯计算确定。

4、结语

设计是一个工程开展的最初环节,同时也是最关键的环节,直接关系到之后各个环节的落实,钢筋混凝土结构设计也是如此。如果在设计过程中有任何的参数选择失误都会给整个设计带来影响,严重的甚至无法弥补。该文重点针对钢筋混凝土结构设计中常见的问题进行了分析,并在此基础上提出了一些建议。在今后的钢筋混凝土结构设计过程中,经常钢筋混凝土结构总结设计的经验,使设计更经济、合理。

参考文献:

[1] 混凝土结构设计规范GB50010-2010.中国建筑工业出版社.2010.

混凝土结构设计规定范文第3篇

关键词 :混凝土结构 设计 方法

引言

我国的混凝土结构设计规范已经基本形成体系,但限于条件和具体工作环境状况,存在一些设计方面的空缺和问题是难免的,为了使设计人员在混凝土结构设计中更好地贯彻执行向关设计规范等,做到安全适用、经济合理、技术先进和确保质量,本文从实用的角度出发,结合混凝土结构具体设计问题谈一些个人体会,作为技术交流供同行参考。

1、结构计算

1.1 结构基本自振周期

程序给出的隐含值是按《高层建筑混凝土结构技术规程》的附录 B 的公式:B.0.2 计算的。最好是将程序计算的精确值反填回来,再计算。

1.2 地震作用及结构振动特性

(1)新规范规定规则结构不进行扭转藕连计算时,平行于地震作用方向的两个边榀,其地震作用应乘以放大系数。一般情况下,短边可按 1.15 采用,长边可按 1.05 采用;当扭转刚度较小时,宜按不小于 1.3 采用。软件未执行这一条规定,建议对规则结构的地震作用计算也要考虑扭转藕连的影响。

(2)质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响。1.3 有效质量系数与计算振型数取 3 的倍数,对于一般工程,不少于 9个。但如果是 2 层的结构,最多也就是 6 个,因为每层只有 3 个自由度,两层就是 6 个。计算时要检查 Cmass-x 及 Cmass-Y 两向质量振型参与系数,均要保证不小于 90%,超过 0.9 意味着计算振型数够了,否则计算振型数不够。如果不够,说明后续振型产生的地震作用效应不能忽略。如果不能保证这一点,将导致地震作用偏小。按此地震作用设计的结构将存在不安全性,所以应该增加振型数重算。(注:要密切关注有效质量系数是否达到了要求。若不够,则地震作用计算也就失去了意义)。

1.3 楼层最小地震剪力系数(剪重比)规范:抗震规范 5.2.5 条规定,抗震验算时,结构任一楼层的水平地震的剪重比不应小于表 5.2.5 给出的楼层最小地震剪力系数值。(强制性条文)

(1)当楼层剪重比不满足要求时,首先要检查有效质量系数是否达到 50%。若没有达到,则应增加计算振型数。(2)当有效质量系数满足且楼层剪重比不满足要求时,反映了结构刚度和质量可能不合理分布,应对结构方案的合理性进行判断,并调整方案,直到达到规范的值为止,而不能简单的调大地震力。

1.4 结构的周期与位移

(1)周期比:控制结构在大震下,扭转振型不应靠前,以减小震害。(2)最大层间位移:按规范要求取楼层竖向构件最大杆件位移称为楼层控制层间位移。(3)位移比:取楼层最大杆件位移与平均杆件位移比值。位移比是控制结构的扭转效应的参数。

1.5 框架结构分析

(1)注意柱计算长度系数的选取;(2)柱一般按单偏压配筋、双偏压验算为好,因双偏压存在多解,配筋量与形式不唯一;(3)梁一柱保护层厚度按规范取,程序自动加12.5;(4)对于大截面的柱,可考虑梁、柱重叠部分为刚域;(5)一般可考虑梁刚度放大,扭矩折减,以考虑楼板的影响;(6)负弯矩向下调幅后,跨中弯矩自动增大。“梁跨中弯矩增大系数”是不考虑活载不利布置时乘的系数,不要与此混淆。

2、建筑混凝土结构设计存在的其他问题分析

2.1 混凝土结构设计中的抗震问题分析

地震力在两类构件之间分配,应考虑不同时段两类构件抗推刚度相对比值的变化。钢一混凝土混合结构中现在采用的主要结构体系为钢框架一混凝土剪力墙(内筒)体系,其中钢筋混凝土内筒为主要抗侧力结构,钢框架主要承担重力荷载,承担较小的水平剪力。在水平地震作用下,有工程经验表明,由于钢框架的抗推刚度远小于混凝上内筒,钢框架承担的水平剪力除顶部几层可为楼层剪力的15%~20%,中部及下部约为相应楼层剪力的10%~15%,有的工程甚至仅有5%左右。在往复地震动的持续作用下,结构进入弹塑性阶段时,墙体产生裂缝后,内筒的抗推刚度大幅度降低,刚度退化将加大钢框架的剪力。钢框架由于弹性极限变形角为1/400以上,远大于约为1/3000的钢筋混凝土墙体弹性极限变形角。虽然此时的水平地震作用要小于塑性阶段,但钢框架仍有可能要承担比弹性阶段大得多的水平地震剪力和倾覆力矩。因此,为符合结构裂而不倒的要求,需要调整钢框架部分的承担的水平剪力,规程抗震要求钢框架一混凝土结构各层框架柱所承担的地震剪力不应小于结构底部总剪力的25%和框架部分地震剪力最大值的1.8倍二者的较小值,以提高钢框架的承载力,并采取措施提高混凝土内筒的延性。

2.2 结构设计过程要确定适宜的层间位移限 值我国有关混合结构的规程正在修编,高层建筑钢结构规程没有列出对钢一混凝土结构的设计规定,但对以钢筋混凝土结构为主要抗侧力构件的结构,高层建筑混凝土规程,则提出其侧移限值的要求,规定为等同于相当高度的钢筋混凝土高层建筑结构体系的要求。确定适宜的层间侧移和顶点侧移限值是该结构体系规程的重要内容之一。“高钢规程”没有列出对钢一混凝土结构的设计规定,但对有混凝土剪力墙的钢结构,规定应符合《钢筋混凝土高层建筑设计与施工规程》JGJ3-91的要求。现行的“混凝土高规”规定的层间位移限值,对于钢一混凝土结构常不易符合要求。修编中的“混凝土高规”(第二稿),将包含对钢一混凝土结构设计规定的内容;关于钢一混凝土结构的层间位移限值,将规定为等同于相当的钢筋混凝土高层建筑结构体系的要求。此外,修编中的“混凝土高规”,关于层间位移限值将对现行“混凝土高规”JGJ3-91有所放松,并以此确定适宜的限值。

3、结语

混凝土结构设计是一项综合性很强的设计工作,做好结构设计,是保障建筑工程质量的前提,随着工程项目的不断发展,完善结构设计,才能促进工程质量的提升。

参考文献:

混凝土结构设计规定范文第4篇

关键词:可靠度;裂缝宽度;JC法

中图分类号:G640 文献标识码:A 文章编号:1003-2851(2012)-12-0198-01

结构的可靠度是指结构在规定的时间内,在规定的条件下,完成预定功能的概率[1]。国家标准《工程结构可靠性设计统一标准》GB50153-2008规定,建筑结构设计采用“以概率理论为基础的极限状态设计方法分析确定”。承载能力极限状态和正常使用极限状态是结构设计的两类极限状态,承载能力极限状态对应结构的安全性要求;正常使用极限状态对应于结构的适用性和耐久性要求[2]。GB50153-2008给出了承载力极限状态可靠度指标,可是正常使用极限状态可靠度指标尚未给出。本文提出正常使用极限状态下混凝土裂缝宽度的可靠度计算方法,并且针对国标GB50010-2010对裂缝宽度荷载的修改对新老规范裂缝可靠度进行了比较。

一、失效概率函数的构造

设功能函数为:

Z=g(X1,X2,…,Xn) (1)

其中,X1,X2,…,Xn为n个相互独立的随机变量。当Z>0时,结构处于安全状态,Z?燮0时,结构处于失效状态。将功能函数在均值点X=(X1,X2,…,Xn)处进行一阶Taylor展开,可得Z的均值和标准差为:

?滋z=g(X1,X2,…,Xn) (2)

?滓z=■(■)■?滓X■■■(3)

?茁=■ (4)

结构的失效概率也可用可靠度指标表示为:

pf=?椎(-?茁) (5)

式中:?椎(·)表示服从标准正态分布的分布函数。

二、荷载组合方式确定

国标GB50010-2010对钢筋混凝土受弯构件的裂缝宽度计算按荷载的准永久组合,旧版本规范GB50010-2002对钢筋混凝土受弯构件的裂缝宽度计算按荷载的标准组合。荷载组合公式由(6)变化为(7),相当于计算结构裂缝宽度时载荷减小了。

S=SGK+SQ1K+■?渍ciSQ1K (6)

S=SGK+■?渍qiSQiK (7)

三、算例

本文计算某混凝土受弯构件,规范规定裂缝宽度允许值为0.3mm。由裂缝宽度控制的正常使用极限状态的荷载效应是混凝土受弯构件的最大裂缝宽度,根据混凝土结构设计规范(50010-2002)可得下列公式:

wmax=?琢cr■(1.1-■)(1.9c+0.08■) (8)

?滓sk=■ (9)

Mk=MGk+MQK (10)

最新混凝土结构设计规范(50010-2002)荷载组合改为准永久组合,公式(9)相应改为:

MK=MGK+?渍qiSQK (11)

其中?渍qi取值为0.5[4]。在规范(50010-2002)中随着载荷组合方式的变化,相当于荷载取值减小了。本算例采用混凝土强度取值C20,保护层厚度c=25mm,受拉钢筋直径为16mm,梁截面高度取值400mm,构件计算跨度取值4m。

根据《混凝土结构设计规范》建立极限状态方程:

0.3-?琢cr■(1.1-■)(1.9c+0.08■) (12)

最后经过公式(12)公式通过可靠度计算方法JC法计算出规范(50010-2002)对应的可靠度指标为?茁=1.05,可靠度为0.86,失效概率Pf=0.14。规范(50010-2010)对应的可靠度指标为?茁=1.4,可靠度为0.92,失效概率Pf=0.08。

通过可靠度计算基本方法JC法可以计算出钢筋混凝土结构受弯构件裂缝可靠度指标。依照规范(50010-2002)进行设计的构件裂缝宽度可靠度指标为1.08,失效概率为14%,和国际标准不可逆正常使用极限状态的可靠度指标1.5还是有一定差距的,依照最新国标(50010-2010)设计的混凝土构件可靠度指标提高到1.4,已经接近于1.5,失效概率为8%,可靠性有所提高。

参考文献

[1]GB50153—2008工程结构可靠性设计统一标准[S].北京:中国建筑工业出版社,2008

[2]GB50010—2010混凝土结构设计规范[S].北京:中国建筑工业出版社,2010

混凝土结构设计规定范文第5篇

关键词:钢筋混凝土;结构设计;保护层

引言:

房地产行业的不断发展,建筑物的类型和功能也越来越复杂,这使得设计师在设计建筑结构的时候也变得更加多样化。但是,如果一旦设计出现偏差就会给国家和人民的生命财产带来严重的威胁,因此,应把握好钢筋混凝土保护层结构设计,以此来有效的提高建筑物设计的质量。

1钢筋混凝土性能

钢筋混凝土的性质决定于材料的品质及施工的控制,影响它的因素主要有:水灰比例、水泥质量、骨料性质、混凝土的捣实、混凝土材龄。而钢筋的性能主要和钢筋中所含的化学成分有关,钢筋混凝土的工作原理是利用了混凝土承受压力钢筋承受拉力的性质。钢筋是在建筑结构中起到柔性材料作用,具有抗拉强度高,抗压强度较低;混凝土属于刚性材料,在建筑结构中抗压强度高,但是抗拉强度低。在结构设计过程中,应该考虑到混凝土的凝结作用以及混凝土与表面粗糙的钢筋之间的机械咬合,充分发挥混凝土与钢筋粘结力,粘结牢固的钢筋混凝土构件才具有一定的承载力。如果钢筋混凝土保护层不足,会减小钢筋与混凝土的凝固力,使钢筋与混凝土不能更好地协同工作,所以充分认识到合理的钢筋保护层薄厚对工程结构起到至关的重要作用。对于受力钢筋混凝土构件截面设计,混凝土表面所能承受的外部压力大小,取决于钢筋离的远近,如果钢筋混凝土构件的钢筋位置放置错误或者钢筋的保护层过大,会降低钢筋混凝土构件的承载能力,容易发生重大事故。在外力情况下,构件粘结在一起可以让钢筋和混凝土协调变形、共同工作直到接近破坏。在受拉状态下,粘结的构件虽然在拉力较高时但会有局部失效,总体依然可以保证这两种材料的协调变形,并且能使混凝土承受有限的一部分拉力。在结构设计时还要考虑温度变化,因为南北方温度差异较大,根据不同地域,结合钢筋混凝土受温度影响的膨胀系数,钢筋和混凝土具有几乎相同的温度线膨胀系数(钢材为1.2×10-5/℃;混凝土为1.0×10-5/℃,适用于温度在0~100℃内),所以,应该充分考虑两种材料产生的强制应力,是否会产生可能削弱两种材料之间的粘结强度。

2钢筋混凝土结构钢筋保护层设计

2.1 钢筋保护层的重要性

钢筋混凝土保护层是指从结构构件中钢筋外边缘至构件表面范围用于保护钢筋的混凝土,对钢筋起保护作用,使钢筋不被锈蚀。合理的结构设计方案能同时满足耐久性和钢筋粘结牢固,因为它直接涉及到混凝土构件的结构承载力、耐久性和防火性。在现行《混凝土结构设计规范》对钢筋保护层厚度分别按环境类别、构件类型、混凝土强度等级做出了规定。一般情况下受力钢筋的混凝土保护层最小厚度应符合钢筋混凝土结构设计要求的规定。同时现行《混凝土结构工程施工质量验收规范》对结构实体钢筋保护层厚度检验也做出相应的系列规定,这一切都充分体现了保护层在混凝土结构中极其重要的地位。

2.2 钢筋保护层在施工过程中存在的几点问题

从受力钢筋混凝土构件的截面设计过程中,受拉的钢筋离受压区越远,钢筋所能承受的外部弯矩也越大,钢筋在整个构件发挥的作用力越高,反之,受拉钢筋离受压区越近,整体构件发挥效能越低,为了避免在施工过程中,发生保护层厚度不合理的问题,不仅有合理的设计方案,还要结合实际温度差异,地域差异不同状况,适当调整保护层的厚度很重要。

2.2.1保护层过厚与安全隐患

由于钢筋与混凝土构件之间存在足够的粘结力,作为一个整体来承受外力的;如果只考虑混凝土承受巨大压力,把拉力全部转移给钢筋来承担是不够合理的。在受力构件强度设计中,钢筋保护层越厚,则钢筋混凝土构件受压区的有效强度就越小,钢筋保护层过厚,结构下部离受力刚筋远的混凝土由于粘结锚固作用的降低,其抗拉强度下降,反而易开裂引起钢筋锈蚀,由此一来整体结构强度均随之降低,结构存在安全隐患。

2.2.2保护层过薄及结构影响

钢筋保护层过薄,是施工中更为常见的一种质量通病。它对结构的影响主要表现在以下几个方面:

①影响混凝土与受力纵筋协同作用产生粘结力可能会降低承载力。虽然保护层过薄增加了一定的高度值,从外观感觉是有利于结构承载力,但实际上是削弱了整个结构承载能力。因为承载能力是靠混凝土与钢筋协同作用,与钢筋和混凝土之间的粘结力有直接关连。粘结力来自于钢筋和混凝土的接触面经化学作用产生的胶着力、混凝土收缩时产生的摩擦力和握裹力以及咬合力等多方面组成,保护层过薄会使钢筋混凝土因产生径向劈裂而使粘结力降低。由于粘结破坏机理复杂,影响因素较多,受力情况多种不同,没有完整的计算数据可以表明这一情况,所以在整体设计过程中,应考虑多方面因素,结合不同区域不同状况,制定合理的设计方案,避免保护层厚度影响到结构的内在质量,对结构承载力造成不良影响。

②工程的耐久性不能只考虑内在的质量,而对环境耐久性如干湿、冻融等大气侵蚀产生忽视也不可以,有一些工程由于忽视了环境问题,没有做好干湿度以及特殊气候情况下如何预防因混凝土结构导致钢筋锈蚀,致使整个结构发生变化,从而发生重大隐患,这是应该被重视的的问题。其实有关部门也制定规范规定于安全性相关的要求,例如保护钢筋免遭锈蚀的混凝土保护层最小厚度和混凝土的最低强度。

③在结构设计中以防火最为重要,因为高温影响下可使构件迅速破坏。虽然混凝土是良好的防火材料,但钢筋遇高温会急剧膨胀加大,屈服点和极限强度急剧下降,导致混凝土构件破坏。所以整体混凝土钢筋构件保护层需要保证一定值的厚度,并且满足现行《建筑设计防火规范》的规定,所以保护层厚度影响到构件中的耐火极限。

3 楼板及墙柱保护层控制策略

钢筋混凝土楼板在结构设计过程中,应该考虑到钢筋的起抗拉受力作用可以抵抗荷载所产生的弯矩,以及地域不同温差变化后混凝土板面收缩和裂缝的问题。钢筋混凝土构件在设置合理的保护层前提下才能发挥有效作用。楼板底筋的保护层也是需要正确控制的,当楼板底筋的保护层间距放大到1.0米以上时,局部楼板底筋的保护层厚度就无法得到保障,所以纵横向的保护层间距控制在1米左右为宜。在现场施工时尽可能合理和科学地安排好各工种交叉作业时间,在楼梯、通道等频繁和必须的通行处应搭设(或铺设)临时的简易通道,以供必要的施工人员通行,以免造成人工交叉踩踏后,钢筋混凝土保护层变形,造成未交工就完工的恶劣影响。对施工人员加强教育和管理,使全体操作人员充分重视保护板面上层负筋的正确位置,必须行走时,应自觉沿钢筋小马撑支撑点通行,不得随意踩踏中间架空部位钢筋。

4结语

总之,在钢筋混凝土结构中,从设计到施工质量,钢筋保护层厚度的控制是非常重要的,坚决杜绝在施工中忽视保护层厚度而产生较大质量问题和安全隐患。为此在实际工程中,必须时刻注意对保护层厚度的监制,以保证钢筋混凝土的材料可靠性和结构安全性。

参考文献:

[1]李彦明,王红宇.混凝土结构设计的一些常见问题分析[J].科技创新导报,2009,(22).