首页 > 文章中心 > 欧姆定律的实验探究

欧姆定律的实验探究

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇欧姆定律的实验探究范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

欧姆定律的实验探究

欧姆定律的实验探究范文第1篇

摘 要:本文对人教版物理选修3-1教材中引入焦耳定律的方式提出了质疑,指出了其不利影响,同时提出了自己的方案并分析了这样引入的好处。

关键词:物理选修3-1;焦耳定律;欧姆定律;纯电阻电路

人民教育出版社普通高中课程标准实验教科书物理选修3-1课本对焦耳定律的引入过程如下:

电流通过白炽灯、电炉等电热元件做功时,电能全部转化为导体的内能,电流在这段电路中做的功W等于这段电路发出的热量Q,即

Q=W=UIt

由欧姆定律

U=IR

代入上式后可得热量Q的表达式

Q=I2Rt

即电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻及通电时间成正比,这个关系最初是焦耳用实验直接得到的,我们把它叫做焦耳定律。

这里用公式推导的方式得出了焦耳定律的公式和内容,笔者认为不太恰当,理由如下:

第一,焦耳定律是焦耳通过大量实验总结出来的规律,科学实验是自然规律最直接的反映,科学理论正确与否必须接受实验的检验,正如课本上所说焦耳定律是焦耳用实验直接得到的,焦耳定律本身就是一个实验规律,这是焦耳通过大量实验总结得到并经过无数次实验验证了的实验结论,我们不应该淡化科学实验在焦耳定律建立过程中所起的巨大作用,公式推导的方式掩盖了焦耳定律的真实面目。

第二,这里Q=W应用了能量转化与守恒定律来推导焦耳定律,而实际情况是焦耳本人是在得出焦耳定律后,又进行了长期的、大量的、精确的科学实验,在大量实验事实面前焦耳提出了能量转化和守恒定律.并且电流通过导体时所做的电功和导体发出的电热相等是焦耳得出能量转化与守恒定律的重要实验基础.由此看来,用能量转化和守恒定律来推导焦耳定律是不符合科学发展的实际历程的。

第三,上述推导过程用到了欧姆定律,欧姆定律的表达式应该为[I=UR],不应该用U=IR,另外,欧姆定律是只能在纯电阻电路中才适用的规律,用欧姆定律来推导焦耳定律会使学生认为焦耳定律也只适用于纯电阻电路,对电动机等非纯电阻元件求电热不适用的错误认识.学生一旦建立这样的错误认识再来纠正是比较困难的.

基于以上考虑,笔者认为引入焦耳定律的过程可以做一些调整.建议设计“电流通过电学元件时产生的电热与谁有关?”的探究实验(或者介绍焦耳所做的实验).通过探究实验得出Q=I2Rt,即焦耳定律.然后结合能量转化与守恒定律在纯电阻电路中电流做功全部转化为电热W=Q,即UIt=I2Rt,可以得到[I=UR]。由此可见欧姆定律是能量转化与守恒定律在纯电阻电路中的具体反映和内在要求.

这样设计的好处是还原了人们认识自然规律的实际历程,体现出了科学实验在科学理论建立过程中的巨大作用,使人们认识到焦耳定律是一条实验规律,物理学科是一门实验科学,能真实反映自然规律.通过探究实验的设计我们可以引导学生像科W家那样设计实验方案,探究、总结得出规律,使学生在实验中体会科学实验对自然科学的重要意义,也能使学生获得科学研究的方法.

我们又利用焦耳定律和能量守恒定律反过来得出了欧姆定律,说明欧姆定律、焦耳定律虽说是在实验中得出的,同时它们也是物理理论大厦的有机组成部分,可以反映出焦耳定律在物理理论体系中的地位和物理理论的完备性,在理论层面上证明焦耳定律可以纳入已有的物理理论当中,使实验结论和理论框架得到完美融合.更重要的是我们能够得到欧姆定律的适用条件――纯电阻电路,如果不是纯电阻电路,电流做功没有全部转化为电热则不能得出W=Q即UIt=I2Rt,欧姆定律也就不适用.另外我们还能体会到能量转化与守恒定律在自然界中的普适性,欧姆定律是能量转化与守恒定律在纯电阻电路中的必然要求.

欧姆定律的实验探究范文第2篇

《闭合电路欧姆定律》是高中物理电学部分中各种电路的基础内容,同时也是高中物理电路部分的重点内容,深刻理解并掌握本节内容对今后电路学习具有极大的帮助。在高中物理课堂教学活动开展中,为了有效提高《闭合电路欧姆定律》教学设计的有效性,下面本文首先简单分析了《闭合电路欧姆定律》教学目标,并在此基础上提出创设“问题情境”的教学设计为方法的课堂教学实践,以供参考。

高中物理《闭合电路欧姆定律》教学主要是围绕定律的推导和定律的应用这两个问题展开的。教材在设计中意在从能量守恒的观点推导出闭合电路欧姆定律,从理论上推出路端电压随外电阻变化规律及断路短路现象,将实验放在学生思考与讨论之中。为了有效提高课堂教学质量和教学效果,我们特提出在《闭合电路欧姆定律》教学中创设“问题情境”的教学设计。

1.《闭合电路欧姆定律》教学目标分析

《闭合电路欧姆定律》教学目标主要有以下几个方面:一是,经进闭合电路欧姆定律的理论推导过程,体验能量转化和守恒定律在电路中的具体应用,培养学生推理能力;二是,了解路端电压与电流的U-I图像,培养学生利用图像方法分析电学问题的能力;三是,通过路端电压与负载的关系实验,培养学生利用实验探究物理规律的科学思路和方法;四是,利用闭合电路欧姆定律解决一些简单的实际问题,培养学生运用物理知识解决实际问题的能力。高中物理《闭合电路欧姆定律》教学主要是围绕定律的推导和定律的应用这两个问题展开的,其中涉及到了“电动势和内阻”、“用电势推导电压关系”、“焦耳定律”以及“欧姆定律”等诸多内容,这些内容之间具有一定的联系, 只要能够为其构建一个完善的体系,将这些知识有机的结合起来,就能够得出闭合电路的欧姆定律。以建构主义教学思想为基础,采用创设“问题情境”的教学设计,对于提高课堂教学有效性具有积极意义。

2.创设“问题情境”的教学设计具体实践

首先,通过问题的提出激发学生的求知欲。例如:将一个小灯泡接在已充电的电容器两极,另一个小灯泡在干电池两端,会观察到什么现象?并展示生活中的一些电源,演示手摇发电机使小灯泡发光和利用纽扣电池发声的音乐卡片实验,使学生进行思考这些现象出现的原因。通过观察学生会发现手摇发电机是将机械能转化成电能的过程,停止摇动就没有电能,灯泡就不会亮,而干电池、蓄电池是将化学能转化成电能,其化学能能够为干电池提供持续供电的功能,因此小灯泡能够持续发光。然后教师再在这个基础上提出问题:什么是电源的电动势?之后指出电源电动势的概念,帮助学生认识电源的正负极,并画出等效的电路图,利用学生已知的知识,如电势相当于高度,电势差则相当于高度差,这样学生就能够很好的对电势差以及电源电动势的内电压和外电压等概念进行理解了。

其次,在教学中可采用类比、启发、多媒体等多种方法进行教学。教师在课堂教学汇总可借助于多媒体播放flash课件, 借助于升降机举起的高度差或者儿童滑梯两端的高度差,帮助学生更好的理解电源电动势。另外还可以从能量的角度引导学生对其进行理解,例如小花去买衣服,共有100元,其中10元用于打车,90元用于买衣服,在这里,100元就相当于电源的电动势,车费相当于内电压(必要的无用功),买衣服的费用就相当于外电压(有用功),从而使学生掌握内外电压的本质属性。

最后,要通过实验来引导学生进行探究。物理学是一门以实验为基础的科学,观察和实验是提出问题的基础,在实验教学中应鼓励学生观察要细致人微,要善于从实验中发现问题,直观、形象的实验现象能激发学生思考。可以让学生通过实验来探究路端电压与外电阻(电流)的关系,得出路端电压与外电阻(电流)的关系,再从理论上进行分析。然后演示电动势分别为3V和9V(旧)的电源向一个灯泡供电实验,引发学生学习的兴趣,让学习进行讨论,解释现象原因。通过这种方式能够让学生很容易就明白流过灯泡的实际电流不仅与电源的电动势有关,还与电路中的总电阻有关,从而顺理成章的得出闭合电路欧姆定律,完成课堂教学任务。

3.总结语

欧姆定律的实验探究范文第3篇

关键词:数学推理;科学探究;问题情境;科学方法;理论联系实际

中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2017)1-0019-3

人教版高中物理选修3-1第二章第七节《闭合电路的欧姆定律》是电学知识的核心内容,其中包含了许多科学思想方法,是学生学习和体会科学思想方法的好素材。作为一节典型的规律探究课,本节内容较抽象,学生在学习时,对电源内电路认识模糊,难以理解电源有内阻;对内外电路的电压与电源电动势的关系及路端电压与负载关系感到疑惑,对其中蕴含的科学方法未能深刻领会。“如何有效突破这些教学难点?”“如何设计好闭合电路欧姆定律的探究过程,有效实施三维目标教学?”一直是广大物理教师研究的重要课题,本文试图通过对本节课的教材、教法的分析,探究形成学生认知困难的主要原因以及在本节课中如何有效实施探究教学,培养学生的核心素养。

1 教材、教法分析

人教版教材是把《闭合电路的欧姆定簟钒才旁诘缭础⒌缍势、欧姆定律、串并联电路、焦耳定律和导体的电阻之后来学习的。很显然,这种安排的意图是在承接“从做功角度认识电动势”的基础上,引导学生从功能关系角度来建立闭合电路的欧姆定律,体现了循序渐进的教学原则。顺应这种构想,教材对本节内容以如下方式呈现:先直接给出闭合电路的概念,然后从功能关系出发, 根据能量守恒,理论推导出闭合电路的欧姆定律和U+U=E,再根据闭合电路的欧姆定律,理论分析路端电压与负载的关系。这种呈现方式的好处是:既充分体现了功和能的概念在物理学中的重要性,又有利于学生从理论角度理解闭合电路的欧姆定律。从教材体系来看这种呈现方式具有一定的合理性和科学性。

笔者曾多次参与“闭合电路的欧姆定律”的观摩教学,领略了执教老师们的各种处理方法,比较有代表性的是以下两种教法:

第一种教法是沿用原教材的思路,采用比较传统的方式,注重理论探究,先从理论上推导得出闭合电路欧姆定律的数学表达式,再应用定律讨论了路端电压随外电路电阻的变化规律,最后引导学生运用规律解题,把立足点放在训练学生的解题能力上。

第二种教法注重突出实验的地位,发挥实验在探究教学中的作用。利用实验创设悬念,引入课题,设计探究实验,让学生在实验中总结归纳出内外电压之间的关系,再利用教材中的图2.7-3实验探究路端电压与负载的关系。

根据课后反馈发现,沿用原教材思路设计的教学,效果并没有达到设计者想象的结果,究其原因,主要有以下几个方面:

1.教材中的闭合电路的欧姆定律是从理论角度得出的,注重于数学推理,比较抽象,缺乏令人信服的探究实验,学生无直接经验感知和相应的认知过程,难以形成深刻的理解。

2.教材对闭合电路,特别是内电路的建构过于直接,无感知过程,学生对教材中为了突出闭合电路而提供的闭合电路中电势高低变化的模型图难以理解,加之学生对部分电路的欧姆定律印象深刻,对电源内部的电路无直观印象,对电源也有内阻心存疑虑,难以突破初中形成的“路端电压不随外电路变化”的思维定势。

3.教材是利用纯电阻电路中的能量守恒关系推导得到IR+Ir=E和U+U=E,这种处理方式,会让学生对U+U=E的普适性产生怀疑:非纯电阻电路还适用吗?

4.作为一节规律探究课,本节课包含了许多科学思想方法,教材过于注重理论推导,忽视了实验探究,淡化了猜想、类比、比较、分析等多种科学思想方法教育,这对培养学生的探究能力和体验研究物理问题的方法是不利的,也不利于提高课堂教学的有效性。

第二种“通过设计多个实验来进行实验探究”的处理方法,调动学生学习的主动性和积极性,学生能获得更直观的认识,有效地突破一些教学难点,但由于本节知识点多,思维量大,设计过多的实验(特别是设计繁杂的分组实验)势必会分散学生的注意力,干扰学生的正常思考,挤压学生思考和实践应用的时间,影响了学生主体作用的发挥,效果同样不尽如人意。

2 教学建议

2.1 尊重学生的认知规律,科学设计探究过程

从物理学史来看,欧姆定律是基于实验而发现的,并非演绎推理的结果,教材通过功能关系分析来建立闭合电路的欧姆定律。这种处理方法带来的负面影响是学生缺乏感性认识,没有参与知识发现过程中的情感体验,难以形成深刻的理解,课堂上学生学习的积极性也不高。规避这种负面影响的方法就是在教学设计时,应当尊重学生的心理特点和认知规律,科学地设计探究过程,让学生在亲身探究中理解定律,体验方法。基于这种指导思想,笔者在教学设计时,先用两节新电池和内阻较大的9 V电池组分别给灯泡供电,产生了与学生日常生活经验相矛盾的现象来设置“悬念”――引入新课。然后,引导学生针对“引入实验”中的现象展开探究,让学生在实验探究中分析、思考、归纳,得出电源内电压和外电压之间的关系。接着再引导学生利用功能关系,从理论角度来推导、探究,让实验得出结论在理论上获得支撑。最后,引а生利用所学规律解决引入实验和实际生活中的问题。这种在引入实验为基础的“实验和理论推导相互结合的探究过程”的设计,既避免了设计过多的实验,又让学生亲身体验了探究的过程,加深了对知识的理解,深刻领会到物理学科的严谨性和流畅性,感受到物理的探究之美和应用之美。同时,又能激发学生的学习热情,使物理课堂教学产生无穷的乐趣,进而实现高效的物理课堂教学。

2.2 合理创设问题情境,引导学生质疑探究

作为一节规律探究课,本节课的重点是如何落实探究教学,让学生在探究中理解闭合电路的欧姆定律,感知科学探究的过程和方法。在探究教学中,问题是探究的起点,没有问题就不可能有探究,正是在问题的驱动下,学生才能积极思考,从而产生探究欲望。这就需要教师在深入挖掘规律形成过程的基础上,精心创设问题情境,以问诱思,引导学生融入到探究学习的情境中去。例如:在构建“闭合电路”概念时,用两节新电池和内阻较大的9 V电池组分别给灯泡供电后,可设置如下问题情境:“为什么灯泡接到电动势为9 V的电池时,亮度反而暗了?难道电池坏了?”“为什么电池与灯泡接通时两端的电压变小?减小的电压哪儿去了?”“电池有内阻?可能吗?”“我们来看看电池(触摸电池),电池变热了,什么原因导致工作的电池会变热?”学生在问题的引领下观察、实验、体验,由此认识到“电源内部也有电阻和电流”“电源内部电流的通路,称为内电路”。这种以问题启发学生思考,以实验引导学生体验来构建闭合电路的方法,既弥补了教材对内电路建构的非直观性,也让学生经历了在质疑中分析、探究的过程,学生对闭合电路的认识潜移默化、水到渠成,远比直接灌输效果好。

在引导学生从能量角度验证实验探究结果时,设置如下问题情境:“刚才我们通过实验探究了闭合电路中的电流规律,这个结论可靠吗?”“如果我们能从理论上找到依据,是不是更可靠?如何从理论上来分析呢?”“从能量角度行吗?”“内、外电路在时间 t 内消耗多少电能? ”“这些能量从何而来?”学生在上述问题的引导下,发现也可以从能量角度来推导得出与实验相同的结果。

在引导学生探究路端电压与负载的关系时,设置以下问题情境:“实验表明,灯泡变暗是由于路端电压变小的缘故,你们能说说路端电压与什么有关吗?”“它们之间具体的关系是什么?”“如何设计实验来研究呢?”“从实验数据中能得出什么结论?”“能从理论上分析为什么会发生这样的变化吗?”“如果外电阻断开,路端电压为多少?外电阻短路,路端电压又为多少?”“谁能说说路端电压随外电阻变化的根本原因是什么?”在这一个个问题的引领下,学生从实验探究到理论分析两个方面找到了路端电压与外电阻的关系,不仅体验了科学探究过程,提高了理论分析和实验探究的能力,也养成了乐于探索、勤于动手的好习惯。

2.3 注重渗透科学方法教育,加深对规律本质的认识

作为一根主线,科学探究法贯穿在整个课堂教学过程中,教学中要注意尊重学生的心理特点和认知规律,强化科学探究法的显性教育:以引入实验为线索,引导学生经历“观察实验、提出问题、猜想假设、设计实验、分析论证”等过程,领会科学探究的方法。

“闭合回路中的电势变化”抽象而难以理解,突破这一难点的最重要的方法就是“比法”。教材试图以图1的模型来形象地说明这个问题,但这种模型对学生来说还是比较抽象,难以理解。笔者用如图2所示的“电梯加滑梯”模型和闭合电路加以类比,来说明闭合电路中的电势高低变化情况。这样的方法,既简单又源于学生的生活经验,学生容易接受,教学中应注意引导学生体会类比法的作用。

“演绎推理法”在“闭合电路欧姆定律的推导”和“路端电压与负载的关系推导”中两次用到,教学中要注意借助问题情境,把规律的探究以一个个问题的形式呈现出来,让学生在问题的引领下经历演绎、推理过程,构建对“闭合电路的欧姆定律”和“路端电压与负载关系”的正确理解,体验演绎推理过程中获得成功的愉悦。

另外,本节课中,要特别注意引导学生在了解路端电压与负载电阻的关系的基础上,通过极限法分析和理解电路断路时的路端电压和短路电流的现实意义,体会极限法在物理学习中的作用和意义,有效地训练学生突破思维定势,培养创造性的思维能力。

2.4 注重理论联系实际,物理与生活的联系

研究和学习物理最重要的方法就是理论联系实际,将理论和实际、物理与生活联系起来,可以帮助学生更透彻地理解所学的物理知识,培养学生的创造性思维和逻辑思维能力。欧姆定律与生产、生活联系密切,教学设计时,应注意还原知识的产生背景,注重将知识应用于实际生活。例如:新课引入可以从生活现象来提出问题,引发学生思考探究;在得出路端电压与外电阻R的关系后,引导学生通过将R推向两个极端情况的分析,来理解实际中“为什么电源开路时路端电压就等于电源的电动势”及“为什么电源不能用导线直接相连”;在学完了本节知识后,可引导学生用本节课所学知识分析解决新课引入及生产、生活中的实际问题。让学生充分地感知从生活走进物理、从物理回到生活的过程,培养学生利用物理知识分析解决实际问题的能力,建构对知识(尤其是难点知识)的正确理解,从而真切地感受所学物理知识的实用性,充分理解物理学科对时展的深远意义。

参考文献:

欧姆定律的实验探究范文第4篇

当前,许多初中物理教师在进行电学复习时,常以教材上知识呈现先后次序为依据,按节顺次复习.在每节内容的复习中,常以物理概念梳理为基础,再穿行一些例题的讲解与学生的练习,以此完成复习任务.在整节课的复习中,对于物理概念大多是对旧知的重复,重点不突出,知识体系不清晰;对于练习的设计,常是许多题目的简单堆叠,题型纷繁复杂,主次不分,学生茫无头绪,学习兴趣不浓,收获不大,整节复习课的效果不明显.

在电学复习课中,笔者认为应以电学中基本的电路为基础,打破章节的束缚,采用问题教学法,引领学生系统梳理本章所涉及的物理概念,重温重要的物理实验,强化重要物理规律的探究方法与过程,同时,以基本电路为原型,设计重要题型,注重变式教学,举一反三,提高学生分析问题解决问题的能力.

苏科版九年级物理第十四章《欧姆定律》中的基本电路如图1所示.以此电学基本电路为主线,进行整个章节的系统复习教学,可以让学生感觉到重点突出,思路清晰,耳目一新,还可以调动学生学习的积极性,活跃课堂气氛,提高复习效果.

1利用基本电路,进行物理概念和规律的复习

物理概念和规律是物理学的基础,在物理的复习课中加强对物理概念和规律的再次重温与梳理,应是复习课的重要内容之一.在对《欧姆定律》复习时,笔者以此基本电路为基础,采用问题教学法,突出学生主体地位,引导学生梳理相关电学概念.

问题1此基本电路由电阻元件组成,请问电阻的定义、单位和影响因素各是什么?在研究影响电阻大小因素时采用了什么物理方法?

学生:电阻是导体对电流的阻碍作用,电阻的单位是欧姆(Ω),影响电阻的大小的因素有导体的长度、横截面积、材料和外界的温度,电阻是导体本身的一种性质;在研究影响电阻大小因素时采用了控制变量法.

问题2你能为滑动变阻器写一份说明书吗?

学生:滑动变阻器的工作原理是靠改变连入电路的电阻的长度来改变电阻的大小,它在电路中的主要作用是控制电路中的电流大小,起到保护电路的作用,它的正确接法是采用“一上一下”的接法,它的铭牌告诉我们它连入电路的最大阻值和允许通过的最大电流值.

问题3此基本电路中,电路的总电阻应如何计算?电压的分配与电阻值大小存在怎样的关系?

学生:串联电路的总电阻等于各串联电阻阻值之和,公式R总=R1+R2;串联电路电压的分配与电阻成正比,公式U1/U2=R1/R2.

2利用基本电路,加强电学实验的复习

在第十四章《欧姆定律》中,探究电流与电压、电阻的关系和伏安法测电阻是本章的两个重要实验.运用控制变量法,让学生再次重温实验探究过程,探究电流与电压、电阻的关系,从而得出欧姆定律,这对提高学生实验探究能力具有十分重要的意义;会依据欧姆定律测出定值电阻的阻值,在此基础上通过变式教学,让学生设计出测电阻的多种方法,在提高学生的实验操作技能的同时,可以培养学生的的创新能力和创新思维.对上述两个实验的复习与重温应是本章复习的重点.但两个实验的实验电路图是相同的,这为两个实验的复习提供了良好的基础.笔者在复习这两个实验时,通过一系列的问题设计,由表及里,层层推进,引导学生思考,从而进一步促进学生加深对这两个实验的理解与掌握.

2.1问题:利用这个基本电路,可以完成本章的哪些实验

学生:探究电流与电压、电阻的关系;伏安法测电阻.

2.2利用这个基本电路,复习探究电流与电压、电阻关系实验的问题设计

问题1:本实验所采用的实验方法是什么?

学生:控制变量法.

问题2:本实验的操作要点是什么?

学生:手移动滑动变阻器的滑片,眼睛观察电压表的示数.

问题3:本实验滑动变阻器有什么作用?

学生:在探究电流与电压关系的实验中,滑动变阻器的作用是改变定值电阻电压;在探究电流与电阻关系的实验中,滑动变阻器的作用是控制电压不变;保护电路.

问题4:本实验数据记录表格怎样设计?(略)

问题5:本实验得到的实验结论是什么?怎样用图像表示?

学生:导体中的电流与导体两端的电压成正比,与导体的电阻成反比,这就是欧姆定律的内容.(图像略)

问题6:欧姆定律的公式是什么?运用欧姆定律计算时,应注意什么问题?

学生:欧姆定律公式是I=U/R,运用欧姆定律计算时,应注意电流、电压、电阻是同一时刻同一用电器三个物理量,且该用电器是纯电阻用电器.

问题7:欧姆定律实验探究过程中具体问题的设计:在利用这个基本电路探究电流和电阻关系时:

(1)小明先将5 Ω的电阻接入电路读出电流I,再换10 Ω的定值电阻读出电流,发现并不等于I 的一半,请你分析产生这一现象的原因.(没有调节滑动变阻器保持电阻两端的电压不变)

(2)了解原因后,小明重新进行实验,实验过程中他控制定值电阻两端的电压恒为1.5 V.他先用5 Ω的定值电阻进行实验,再换用10 Ω的定值电阻,合上开关后,你认为电压表的示数将(大于)1.5 V,此时应向(右)调节滑片,使电压表的示数仍为1.5 V.

(3)若在这个电路中,电源电压是3 V,滑动变阻器的最大阻值是15 Ω.实验过程中小明控制定值电阻两端的电压恒为1.5 V,最后用20 Ω的电阻替换10 Ω的电阻接入电路中进行实验,发现无法读取与20 Ω的电阻对应的电流值.经检查,电路连接无误,且元件完好,请你帮他找出两种可能的原因.(原因1:滑动变阻器的最大阻值偏小;原因2:控制定值电阻两端电压偏小)

2.3利用这个电路进行伏安法测电阻实验的问题设计

问题1:伏安法测电阻的原理是什么?

学生:根据欧姆定律I=U/R.

问题2:在电路连接过程中应注意哪些问题?

学生:连接电路时,开关应断开.开关闭合前,应将滑动变阻器的滑片移到最大阻值位置.

问题3:在连接电路时,电流表与电压表的量程应怎样选择?

学生:电压表根据电源电压来选择量程;电流表根据电路中所估测的最大电流来选择量程.

问题4:此实验中滑动变阻器的作用是什么?表格应怎样设计?

学生:保护电路;多次测量取平均值,以减小实验误差.(表格略)

问题5:若用这个电路测小灯泡电阻,测出的小灯泡电阻不同,是由于实验误差的原因吗?

学生:不是,灯泡电阻受温度影响.

问题6:在伏安法测电阻的实验和探究电流和电压、电阻关系的实验中都做了三次实验,它们的目的相同吗?

学生:不同,前者是多次测量求平均值以减少误差,后者是排除实验偶然性.

问题7:在利用这个电路测量定值电阻阻值时,若电流表损坏,如何利用余下的实验器材测出定值电阻的阻值?

(1)方法1:如图2甲所示,闭合开关,先用电压表测出待测电阻Rx两端电压为U1,再用电压表测出滑动变阻器R两端电压为U2,变阻器一直处于最大阻值位置,则Rx=U1R/U2.

(2)方法2:如图2乙所示,闭合开关,将滑动变阻器滑片P滑到a端读出电压表示数为U1,滑片P滑到b端读出电压表示数为U2,则Rx=U2RU1-U2.

(3)方法3:若再提供一个电阻箱,如图2丙所示,保持滑动变阻器的滑片P不动,只闭合开关S1读出电压表示数为U;只闭合开关S2,并调节电阻箱R0使电压表示数仍为U,则电阻箱R0的阻值为此时待测电阻的阻值.此方法为等效替代法.

问题8:在利用这个电路测量定值电阻阻值时,若电压表损坏,又如何利用余下的实验器材测出定值电阻的阻值?

实验设计总体思路:电路并联.

3利用基本电路,提高学生解题能力

笔者认为,本章习题繁多,教师在复习时,若不注重总结、归纳和引导,容易使学生陷于题海中.本章虽题目繁多,但通过《义务教育物理课程标准》的学习和对大量题型的认真分析与总结,许多题目设计总是围绕笔者所提供的基本电路展开.在一节课复习时间有限的前提下,以此电路为基础,注重对重要知识点和重点题型的设计就显得尤为重要.通过对此电路相关问题的精心设计,在师生共同讨论与分析前提下,可提高学生分析问题和解决问题的能力,还能使学生触类旁通,起到事半功倍的效果.

问题1根据表1数据回答:在这个基本电路中,连接电路需用导线,应从铜线和铁线中,选用.制作滑动变阻器选择电阻线材料时,应从锰铜合金和镍铬合金中,选用.

表1导线电阻R/Ω导线电阻R/Ω铜0.017锰铜合金0.44铁0.096镍铬合金1.1(导线长1 m,横截面积1 mm2,温度20 ℃)

问题2当滑动变阻器的滑片向右移动时,电流表的示数,电压表的示数,电压表与电

流表的示数之比.

问题3当滑动变阻器的滑片向右移动时,若电流表示数不变且为零,但电压表的示数较大,可能的电路故障是;若电流表有示数,但电压表没有示数,可能的电路故障是.

问题4在这个电路中,若电源电压为6 V且保持不变,定值电阻阻值为8 Ω,滑动变阻器R的最大阻值为10 Ω.小明所选用的电压表量程为0~3 V,电流表量程为0~0.6 A.为了保证电路安全,实验中滑动变阻器接入电路的阻值范围是

A.0~2 ΩB.0~8 Ω

欧姆定律的实验探究范文第5篇

一、滑动变阻器的变动对电流电压的影响

图1例1(2011年山东临沂)如图1所示的电路,电源电压保持不变,闭合开关,当滑动变阻器的滑片向右滑动时,下列分析正确的是()

(A) 灯泡变亮,电流表的示数变大

(B) 灯泡变暗,电流表的示数变小

(C) 灯泡亮度不变,电流表的示数变大

(D) 灯泡亮度不变,电流表的示数变小

解析:滑片移动时可知滑动变阻器接入电阻的变化,则由欧姆定律可得出电路中电流的变化,由电流变化可知灯泡的亮度变化.当滑片向右移动时,接入电阻变小,故电路中总电阻减小,因电压不变,由欧姆定律I=U/R 可得,电流增大,故电流表示数变大,灯泡的实际功率变大,故亮度变大.(A)正确.

答案:(A)

点拨:本题属于电路的动态分析,此类题可先分析局部电阻的变化,再将滑动变阻器和定值电阻视为整体进行分析,得出总电阻的变化,最后由欧姆定律分析电流的变化.此类题目也属于欧姆定律的常规题目,体现了电学中整体法的应用.

图2例题延伸:如图2所示,电源电压保持不变,闭合开关,将滑动变阻器的滑片向右滑动时,则()

(A)通过灯L的电流变小,变阻器两端的电压变小

(B) 通过灯L的电流变大,变阻器两端的电压变大

(C) 灯L两端的电压变小,通过变阻器的电流变小

(D) 灯L两端的电压变大,通过变阻器的电流变小

解析:滑动变阻器的滑片右移,变阻器接入电路中的电阻增大,电路中的总电阻增大,则电流减小,同时灯L分得的电压也减小,则变阻器分得的电压就变大.

答案: (C)

点拨:本题考查滑动变阻器的原理、电阻对电路中电流的影响以及串联电路的分压原理,考查学生分析问题的能力.

二、滑动变阻器与电表的测量目标问题

例2(2011年山东聊城)如图3所示,闭合开关S,使滑动变阻器的滑片向左移动,则( )

(A) 电流表示数变小(B) 电压表示数变大

(C) 电压表示数不变(D) 灯泡变亮

解析:从图中可以看出,这是一个串联电路,即滑动变阻器与小灯泡串联,电压表测量的是滑动变阻器两端的电压.当滑片向左移动时,其阻值减小,电路中的总电阻减小,故在电源电压不变的情况下,电流中的电流变大,通过小灯泡的电流变大,小灯泡变亮,(A)项错误,(D)项正确;由于滑动变阻器的阻值减小,故它分得的电压也减小,(B)、(C)两项错误.

答案:(D)

点拨:判断电路中的电表示数变化情况时,应首先明确电路的连接方式及电表的测量对象,然后根据欧姆定律及串并联电路的电流、电压特点进行分析.

图3图4例题延伸: 如图4所示电路,电源两端电压保持不变.闭合开关S,当滑动变阻器的滑片P向右滑动时,下列判断正确的是 ( )

(A) 电压表V1示数变小,电压表V2示数变大,电流表示数变小

(B) 电压表V1示数变大,电压表V2示数变小,电流表示数变小

(C) 电压表V1示数变小,电压表V2示数变小,电流表示数变小

(D) 电压表V1示数变大,电压表V2示数变大,电流表示数变大

解析:从题图可知,电路为串联电路,电压表V1测滑动变阻器两端的电压,电压表V2测定值电路R2两端的电压.闭合开关S,当滑动变阻器的滑片P向右滑动时,变阻器连入电路的电阻变大,电路中电流变小,定值电阻R2两端的电压变小,即电压表V2的示数变小,根据串联电路的电压规律可知,变阻器两端的电压变大,即电压表V1的示数变大,答案为(B).

答案:(B)

点拨:本题考查串联电路和欧姆定律的知识,解此类题的关键是明确电压表所测的对象,弄清各用电器之间的关系,熟记串联电路的分压原理.

三、滑动变阻器与伏安法实验探究

例3(2011年浙江绍兴)小敏用如图5甲所示的电路图,研究通过导体的电流与导体电阻的关系,电源电压恒为6 V.改变电阻R′的阻值,调节滑动变阻器滑片,保持R两端的电压不变,记下相应的4次实验的电流和电阻值,描绘在乙图中.

图5 (1)实验过程中,移动变阻器滑片时,眼睛应注视(选填序号);

(A) 变阻器滑片(B) 电压表示数(C) 电流表示数

(2)在丙图中,用笔线代替导线,将电压表正确连入电路.

(3)实验中,他所选择的变阻器是(选填序号)

(A) 10 Ω,0.5 A(B) 20 Ω,1 A(C) 50 Ω,2 A

(4)乙图中阴影部分面积表示的科学量是.

(5)实验过程中,如果出现了电流表示数为0,电压表示数接近6 V,电路发生的故障可能是.

解析:探究电压一定时,电流与电阻的关系时,在不断的改变定值电阻的同时,必须不断的移动滑动变阻器,使得电压表的示数是一个定值,故在移动滑片的同时,眼睛观察电压表的示数;通过电流与电阻的图像中可以看出保持电压表的示数是2 V,故电压表接入电路中时,所选的量程应该是0~3 V的,且并联在电阻两端;阴影部分为电压值;滑动变阻器型号的选择应该与定值电阻的阻值差不多,故所选型号为“10 Ω,0.5 A”的;如果电路中出现电流表的示数为零,说明在电路中出现了断路,电压表有示数说明是电阻R处出现了断路.

图6答案:(1)(B)

(2)如图6所示 (3)(C) (4)电压 (5)电阻R处有断路

点评:此题从实物图的连接、滑动变阻器型号的选择、故障的分析等方面较为综合的考查了学生,从中加强了学生综合能力的培养,是一道不错的电学中考题.

图7例4(2011年四川绵阳)如图7所示是测量小灯泡电阻和电功率的实验电路图,当滑动变阻器的滑片向左移动时,电流表、电压表的示数变化情况是( )

(A) 增大、增大 (B) 增大、减小

(C) 减小、增大 (D) 减小、减小

解析:当滑动变阻器的滑片向左移动时,电阻R的阻值减小,电路中的总电阻减小,根据欧姆定律I=U/R可知电路中的电流增大,即电流表的示数增大.同样根据欧姆定律推导公式U=IR可得出灯泡两端的电压增大,即电压表的示数也增大,所以(B)(C)(D)均是错误的.

答案:(A)

点拨:本题考察的是综合运用欧姆定律的知识,这也是初中物理的重点和难点内容,也是同学们容易出错的地方,在套用公式时容易“张冠李戴”.

四、滑动变阻器与电阻的匹配问题

图8例5(2011年南京)小华用如图8所示的电路探究电流与电阻的关系.已知电源电压为6 V,滑动变阻器R2的最大电阻为20 Ω,电阻R1为10 Ω.实验过程中,将滑动变阻器滑片移到某一位置时,读出电阻R1两端电压为4 V,并读出了电流表此时的示数.紧接着小华想更换与电压表并联的电阻再做两次实验,可供选择的电阻有15 Ω、30 Ω、45 Ω和60 Ω各一个,为了保证实验成功,小华应选择的电阻是 Ω和 Ω.

解析:为了探究电流与电阻的关系,应保持4 V电压,当所换电阻为45 Ω和60 Ω时,无论如何调节,所换电阻两端的电压都超过4 V,故45 Ω和60 Ω电阻不可以.