首页 > 文章中心 > 碳减排的经济影响分析

碳减排的经济影响分析

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇碳减排的经济影响分析范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

碳减排的经济影响分析

碳减排的经济影响分析范文第1篇

关键词:EKC曲线;经济增长;经济发展权;国际碳减排合作机制;二氧化碳排放;碳减排义务;碳减排效果;京都议定书

中图分类号:F064.2;F113 文献标志码:A 文章编号:1674-8131(2012)02-0066-06

International Comparison of the Carbon Emissions

Reduction Based on Fair Development RightsLI Jun-jun, ZHOU Li-mei

(Economics School, Fujian Normal University, Fuzhou 350007, China)

Abstract: Developed countries and developing countries have a lot of controversies about historical responsibility for carbon emissions and the task for carbon emission reduction, which make international cooperation mechanism uncertain for international carbon emission reduction responding to global climate change. This paper consturcts an international panel data model to analyze the influence of carbon dioxide emission on economic growth in 32 developed countries and 17 developing countries during 1971―2009, the results show that the income elasticity coefficient of carbon emissions is increasing, that the income elasticity coefficient of carbon emission in developed countries is continuously bigger than that of developing countries, that the developed countries have not strictly fulfilled the obligation for carbon emission reduction, meanwhile, dual policy under “Kyoto Protocol” has not made abnormal transfer of industry. Based on economic development rights owned by each country, it is unfair to require developing countries for taking carbon emission reduction obligation currently, the income elasticity coefficient of carbon emission should be used to evaluate carbon emission reduction effects of each country.

Key words:EKC Curve; economic growth; economic development rights; global carbon emission reduction cooperation mechanism; carbon dioxide emission; carbon emission reduction obligation; carbon emission reduction effect; Kyoto Protocol

一、引言

温室效应导致气候异常变化,已经引起国际社会广泛关注,国际碳减排合作机制正在不断完善之中,以图遏制碳排放量的过快增长。但世界工业发展方式还未实现根本性转变,在维持经济持续增长的压力下,各国都在继续大量使用化石能源,碳排放的增长趋势短期内难以扭转。同时,由于各国经济发展水平的差异和受气候变化的影响程度不同,实施碳减排的经济基础和发展低碳经济的动机也不同,碳减排任务的分配将是一个长期的利益博弈过程。《联合国气候变化框架公约》(简称《公约》)规定了发达国家和发展中国家应对气候变化的不同责任,即“共同但有区别的责任”原则,就是考虑到发展中国家经济发展水平较低,碳减排压力太大。2005起年生效的《京都议定书》进一步要求发达国家在2008年到2012年第一承诺期内的温室气体排放量比1990年平均减少5.2%,大多数国家要求在1990年基础上减排8%,而澳大利亚、冰岛和挪威则允许一定幅度的上升。但事实上,包括美国、日本等国在内的大多数发达国家都没有完成既定的碳减排目标,并企图抛弃《京都议定书》,要求中国等发展中国家也承担硬性碳减排义务,其理由是发展中国家的碳排放总量迅速增长,占全球比重越来越高,对发达国家和发展中国家不同要求的双重政策不公平。

李军军,周利梅:基于公平发展视角的碳减排国际比较按照“污染避难假说”,在不同国家的碳减排政策标准和实施力度有差距的情况下,碳减排压力较大的国家,政策措施更为严格,对产业的影响就越大;同时,为了避免能源约束和碳税等低碳政策带来的不利影响,资本就会转移到碳减排政策更宽松的国家,导致产业非正常转移,二氧化碳排放也随之转移。为了吸引外资,低收入国家可能竞相放松碳排放管制,从而破坏碳减排国际合作机制。积极应对气候变化,是人类面临公共环境问题和可持续发展问题的共同选择,如果不能建立各方都认可的碳减排国际合作机制,全球气候环境就可能陷入“公地悲剧”。那么,《京都议定书》是否真的是约束了发达国家的碳排放,而提高了发展中国家的碳排放增速?发展中国家是否由于宽松的碳减排政策而获得额外经济增长?

从公平角度来看,发达国家和发展中国家都需要发展,都有保持经济增长的权利,但经济结构和发展阶段不同,经济增长过程中碳排放量也不同,要正视这种差异。按照环境库兹涅茨曲线(EKC),二氧化碳排放量和收入之间存在一个倒U形曲线的关系:在相对较低的收入水平,随着收入的增加,能源的消费量增加并引起二氧化碳排放量增长,此时,两者呈正相关关系;随着收入增长到一定的高水平,因为环境保护意识增强,提高了环境政策的调控和传导效果,二氧化碳排放量将减少,两者呈负相关关系。因此,在建立和完善国际碳减排合作机制过程中,应该考虑经济增长对碳排放的影响,科学评价各国经济增长过程的碳减排效果。

自从Grossman 等(1991)较早发现空气污染和人均GDP之间存在倒U曲线关系后,当前多用EKC曲线研究碳排放和经济增长的关系,如:Ang(2007)、Zhang等(2009)、Fodha等(2010)分别建立向量自回归模型、自回归分布滞后模型(ARDL)或者向量误差修正模型(VECM)检验二氧化碳排放和GDP之间因果关系,Azomahou(2006)和Romero-ávila(2008)等人用面板数据模型(Panel Data)验证EKC曲线。但这些研究大多数都基于单个国家或局部区域;也有一些文献选择经合组织或大量国家(Wang,2011)作为样本的,但也都是侧重于验证EKC曲线,没有从国际对比的角度分析不同碳减排义务的国家。有鉴于此,本文将从经济发展对碳排放影响的角度分析处于不同发展阶段的国家碳减排效果。

二、面板数据模型与数据分析

不失一般性,假设碳排放主要来自化石能源消耗,影响二氧化碳排放增长的主要原因是经济增长,据此建立双对数面板数据模型:

如果β>1,说明碳排放增长速度超过经济增长速度,碳减排形势恶化,碳排放强度上升;如果β

为了比较发达国家和发展中国家经济增长对碳排放的影响程度,可以把面板数据的样本分成发达国家和发展中国家两部分,分别估计以后比较弹性系数,根据弹性系数的大小来判断碳减排政策的作用。如果发达国家的弹性系数小于发展中国家,说明经济发展程度高的国家碳减排形势好于发展中国家。尽管《京都议定书》规定了发达国家2008年至2012年的强制性碳减排义务,但协议是从2005年开始生效,此后发达国家之间的碳排放交易非常活跃,清洁发展机制(CDM)也允许发达国家和发展中国家进行项目级的碳减排量的转让,在发展中国家实施温室气体减排项目,CDM项目数量和规模都增长迅速。因此,要判断碳减排协议的签订对各国碳减排效果的影响,可以把2005年作为分水岭,分别估计并比较前后两个期间的弹性系数,如果弹性系数下降,说明碳减排政策取得实质性效果。

《京都议定书》规定41个发达国家具有强制性碳减排义务,由于9个国家缺失部分碳排放统计数据,本研究把具有完整数据的32个发达国家纳入分析范围,包括澳大利亚、奥地利、比利时、保加利亚、加拿大、捷克、丹麦、芬兰、法国、德国、希腊、匈牙利、冰岛、爱尔兰、意大利、日本、卢森堡、马耳他、摩洛哥、荷兰、新西兰、挪威、波兰、葡萄牙、罗马尼亚、斯洛伐克、西班牙、瑞典、瑞士、土耳其、英国、美国。由于发展中国家较多,本研究选择其代表性国家,选择依据是2009年二氧化碳排放量超过一亿吨,符合这个标准的国家共17个,分别为中国、印度、伊朗、韩国、沙特、墨西哥、印尼、南非、巴西、泰国、埃及、阿根廷、马来西亚、委内瑞拉、阿拉伯联合酋长国、巴基斯坦和越南。二氧化碳排放和GDP数据都采集自国际能源署(IEA)的能源统计年鉴,时间跨度为1971年至2009年。其中二氧化碳排放(CO2)单位是百万吨;GDP以十亿美元为单位,按汇率(GDPE)和按购买力评价(GDPP)两种方法折算为2000年不变价格。

数据测算表明,2009年世界各国二氧化碳排放总量为290亿吨,是1990年的1.38倍,比1971年翻了一倍。样本中49个国家碳排放总量为238.3亿吨,占全球总量的82.2%,具有较好的代表性。其中,17个发展中国家碳排放总量从1990年的47.9亿吨快速增长到2009年的126.9亿吨,年均增长5.26%,占全球总量的比重从1990年的22.9%上升到2009年的43.9%。同期32个发达国家的碳排放总量则从108.1亿吨上升到111.3亿吨,上涨了3%,比重从51.6%下降到38.4%。据此来看,近年来全球碳排放总量的快速增长主要归因于发展中国家,只有发展中国家实施严格的碳减排措施,才能有效控制全球碳排放总量的过快增长,这也是近年来在全球气候峰会上,发达国家强硬要求发展中国家承担硬性碳减排义务的主要原因。但是从碳排放和经济发展的关系来看,发展中国家的经济发展水平较低,大多处于工业化起步阶段,增长速度普遍高于发达国家,碳排放增速较快是正常的;而发达国家基本完成工业化,经济增长速度普遍放缓,碳排放增速理应降低。如果不顾这个事实,强行要求发展中国家承担严格的碳减排义务,不但忽视了发达国家碳排放的历史责任,也会剥夺发展中国家的经济增长的权利,加大发达国家和发展中国家的差距,对发展中国家而言是极不公平的。衡量发展中国家碳减排效果,重要的是看经济增长过程中碳排放的收入弹性,如果弹性系数和碳排放强度下降,就说明其碳减排政策的有效性。

三、检验与参数估计

1.单位根检验

由于每个时间序列都是由多个国家组成,其检验方法要考虑到截面的差异。LLC方法是应用于面板数据模型时间序列单位根检验较早的方法,假设各截面序列具有一个相同的单位根,仍采用ADF检验形式(Levin et al,2002);而IPS检验则是对每个截面成员进行单位根检验以后,利用参数构造统计量检验整个面板数据是否存在单位根(Im et al,2003)。Fisher-ADF检验和Fisher-PP检验也是对不同截面进行单位根检验,利用参数的p值构造统计量,检验整个面板数据是否存在单位根。分别用四种方法对CO2、GDPE和GDPP三个序列进行单位根检验,检验时的滞后阶数都按AIC最小化准则确定,结果如表1所示。表1 面板数据序列的单位根检验

四种方法的检验结果非常接近,通过对原序列和一阶差分的单位根检验结果进行判断,在1%显著性水平下三个变量都是非平稳序列,都有单位根,并且是一阶单整。因此,可以对三个变量进行协整检验。

2.协整检验

协整检验是判断变量之间是否存在长期稳定关系的方法,Engle和Granger最早提出的协整检验方法是判断两个或多个变量回归后的残差是否平稳,如果残差是平稳的,说明变量之间存在协整关系;对于面板数据的协整检验,Pedroni(1999)的检验方法是假设各截面的截距项和斜率系数不同,Kao(1999)的检验方法却规定第一阶段回归中的系数相同;Maddala等(1999)提出根据单个截面序列的协整检验结果构建新的统计量,从而判断整个面板数据的协整关系。表2列出了采用不同方法分别对CO2和GDPE、CO2和GDPP两组变量协整检验的结果。检验结果一致拒绝不存在协整关系的原假设,表明CO2和GDPE、CO2和GDPP两组变量之间存在长期的稳定关系,据此可以对模型(1)进行参数估计。

表2 面板数据变量的协整检验

CO2与 GDPECO2 与GDPPPanel v-Statistic-0.40-0.39Panel rho-Statistic-2.53**-2.53**Panel PP-Statistic-4.36***-4.36***Panel ADF-Statistic-5.27***-5.27***Kao(Engle-Granger)6.49***4.20***Johansen FisherTest trace statistic 163.00*** 163.30***Max-eigenvalue statistic 159.90*** 159.70***

3.参数估计

由于各国经济发展程度不同,碳排放水平有很大差异,参数估计应该选择面板数据的变截距模型;至于选择固定效应还是随机效应,尽管样本国家只有49个,但仅仅用于分析这些个体,不涉及其他国家,因此选择固定效应模型更为合适。另外,截面随机效应的Hausman检验p值为0.94,也不支持采用随机效应模型。考虑到存在截面异方差,采用加权广义最小二乘法(GLS)估计参数,并处理序列相关性,参数估计结果如表3所示。

方程1的解释变量是按汇率计算的国内生产总值(GDPE),方程2的解释变量是按购买力平价计算的国内生产总值(GDPP),方程拟合优度较高,除截距项外参数都能通过1%显著性检验,两个方程的系数比较接近,说明以不同方式换算的GDP对结果影响不大。考察不同期间的系数,1971―2009年碳排放的收入弹性系数0.607

D.W.2.0982.1362.571.8991.8741.759Chow-F1.72***0.79方程3的样本由32个发达国家组成,方程4的样本由17个发展中国家组成,方程拟合优度较高,除截距项外参数都能通过1%显著性检验。方程3的系数0.712大于方程4的系数0.574,在两个不同时期内,发达国家的碳排放的收入弹性系数都超过发展中国家。按照公式(2),方程3的分割点检验Chow-F值在1%显著性水平下通过检验,也是明显大于2005年以前的弹性系数。而发展中国家的弹性系数虽然也有上升,但没有通过分割点检验。

四、结论

在环境和能源约束下维持经济持续稳定增长,无疑是各国经济政策的重要目标。旨在应对气候变化的国际碳减排合作机制能否发挥作用,关键在于碳减排目标的设定对经济增长的影响程度以及碳减排任务的分配能否得到各国认可。只有在碳减排任务合理、公平分配的前提下,兼顾到处于不同发展阶段国家的承受能力,才能得到广泛认可,形成合作的基础。碳排放的收入弹性系数反映经济增长对碳排放的影响程度,弹性系数的大小和变化趋势能够说明一个国家应对气候变化的努力程度和碳减排效果,也可以作为碳减排任务分配的依据之一。利用面板数据模型分析1971―2009年主要国家经济增长对碳排放的影响,弹性系数为0.6,碳排放增幅低于经济增幅,碳减排政策发挥了一定的作用。但是分割点检验判定弹性系数有明显上升趋势,说明近年来经济增长过程中碳减排力度在减小。对比发达国家和发展中国家,尽管发达国家的碳排放总量增长缓慢,部分国家的碳排放总量甚至下降,而发展中国家的碳排放总量增长比较快,但发达国家碳排放的收入弹性系数在各个阶段一直大于发展中国家,2005年以后也没有明显改变。这一方面说明发达国家碳减排政策实施力度不够,效果还不甚明显;另一方面也说明《京都议定书》规定发达国家和发展中国家不同的碳减排义务形成的政策差异,并没有造成资本因为规避碳排放约束而发生明显的非正常转移。

因此,从各国公平拥有经济发展权的角度来看,应该坚持“共同但有区别的责任”原则,在明确发达国家碳排放历史责任前提下,发挥发达国家良好经济基础和先进技术优势,确实降低碳排放强度。同时,加强国际合作交流,加大技术转让和资金援助力度,扩大碳排放权交易范围,完善清洁发展机制,提高发展中国家的碳减排积极性,降低发展中国家的碳排放增速。只有建立在公平、合理基础上的国际碳减排合作机制,才能发挥各国碳减排的积极性,有效控制全球碳排放过快增长。

参考文献:

ANG J B. 2007. CO2 emissions, energy consumption, and output in France[J]. Energy Policy(10):4772-4778.

AZOMAHOU T,LAISNEY F,VAN P N. 2006. Economic development and CO2 emissions: a nonparametric panel approach[J]. J Public Econ,90:1347-1363.

FODHA M,ZAGHDOUD O. 2010. Economic growth and pollutant emissions in Tunisia: an empirical analysis of the environmental Kuznets curve[J]. Energy Policy,38:1150-1156.

GROSSMAN G M,KRUEGER A B. 1991. Environmental impacts of a north American free trade agreement[R]. National Bureau of Economic Research,working paper,No.3914:1-38.

IEA.2011. CO2 Emissions from Fuel Combustion 2011[EB/OL].省略.

IM K S,PESARN M H,SHIN Y. 2003. Testing for unit roots in heterogeneous panels[J]. J Economet,115:53-74.

KAO C.1999. Spurious regression and residual-based tests for cointegration in panel data[J]. J Economet,90:1-44.

LEVIN A,LIN C F,CHU C. 2002. Unit root tests in panel data: asymptotic and finite-sample properties[J]. J Economet,108:1-24.

MADDALA G S,WU S.1999. A comparative study of unit root tests with panel data and a new simple test[J]. Oxford Bull Econ Stat,61:631-652.

PEDRONI P.1999. Critical values for cointegration tests in heterogeneous panels with multiple regressors[J]. Oxford Bull Econ Stat, 61:653670.

ROMERO-AVILA D.2008. Convergence in carbon dioxide emissions among 37 industrialised countries revisited[J]. Energy Econ,30:2265-2282.

碳减排的经济影响分析范文第2篇

自1979年召开第一次世界气候大会以来,随着公约框架下全球多边气候谈判的不断推进,气候变化问题也日益成为国际社会普遍关注的焦点,同时国内外学术界也掀起了低碳经济的研究热潮。其实早在1896年,瑞典科学家Svante Arrhenius 就提出了“温室气体效应”的科学假说,但后来历经学者百余年的考证和质辩,直至2007年IPCC才科学地证实:全球气候变暖是由温室气体排放造成的。期间,各国学者虽对能源消耗、经济发展与温室气体排放等问题开展了研究,但真正首次提出低碳经济概念的是英国。基于对气候变暖和能源短缺的双重忧虑,英国在2003年颁布的能源白皮书中率先提出将以实现低碳经济作为其未来能源战略的首要目标。此后,更多的学者运用不同的研究方法从不同的视角对低碳经济理论做了更加全面、深入的探析与研究,以下本文拟就主要研究成果进行梳理与述评。

二、主要研究方向和内容介绍

(一)经济发展、能源消耗与碳排放的关系

Ugur Soytas,et al(2007,2009)采用VAR模型对美国和土耳其的实证研究均表明,碳排放增长的格兰杰成因并非GDP,而是能源消耗,并据此提出了降低能源强度、增加使用清洁能源等措施来实现碳减排的政策。Xingping Zhang (2009)基于多元模型对中国的实证研究显示,GDP对能源消耗量存在单向格兰杰因,能源消耗量对碳排放存在单向格兰杰因,而碳排放量和能源消耗量都不是经济增长的格兰杰因。碳排放与经济发展之间的关系也是国外学者研究的重点。Schmalesee(1998)、Gale Ahuja (1999)均证实了人均收入和碳排放量间存在着倒U型曲线关系,Grubb(2004)对早期英国的实证研究也得出了两者间类似的对应关系。Huang(2008)对21个发达国家的GDP与温室气体排放关系进行了分析,发现有7个国家出现了EKC现象。OECD(2002)对比分析了脱钩指标的国家差异后,发现环境与经济脱钩的现象普遍存在于OECD国家中,而且还有可能实现环境与经济的进一步脱钩。Tapio(2005)通过脱钩指标体系的设计,将脱钩现象进一步细分为相对脱钩和绝对脱钩,前者指GDP 增长率高于碳排放增长率,而后者则指GDP稳定增长时碳排放量反而减少的情形。其实,EKC曲线反映的就是经济增长与环境污染的关系从不脱钩到相对脱钩、再到绝对脱钩的动态变化轨迹。

(二)碳排放的影响因素

首先,Kaya Yoichi (1990) 提出了著名的KAYA恒等式, 即一国或地区碳排放量的增长主要取决于人口、人均GDP、能源强度和能源结构等4个因素的推动。而后,Salvador Puliafito (2008)与Michael Dalton (2008)分别采用L-V模型和PET模型的研究,均验证了人口数量与结构、GDP及能源消耗对碳排放量的影响。但Lantz V、Feng Q(2006)对加拿大1970-2000年的数据进行回归分析后,得出的结果却表明人均GDP与 CO2 排放不相关,人口与 CO2 排放呈倒 U型关系,而技术与 CO2 排放呈U型关系。Fan Ying等(2006)利用 STIRPAT模型分析了不同经济发展水平的国家后,客观地指出人口、经济和技术水平等因素对不同发展水平国家碳排放的影响是不同的。国际贸易也是影响碳排放的一个不可忽略的因素。Paul B Stretesky (2009)以1989-2003年世界169个国家的面板数据为样本,采用了固定效应模型进行估计,其结果显示:各国人均碳排量与对美国出口量之间存在显著关系。YanYunfeng、et al(2010)基于对中国因出口而增加碳排放的实证研究表明,国际贸易具有促进碳排放在各贸易国间自由转移的作用。

(三)国民经济中的高碳产业

由于不同产业使用能源的种类、强度与方式与不同,国民经济中不同产业排放温室气体的数量与特征有很大差异。T.C Chang (1999)采用灰色关联分析法测算了台湾34个行业产值、各种能源使用量与碳排放量之间的灰色关联系数,其结果显示:造纸、橡胶、石化与金属制品等11个行业属于能耗强度、碳强度与碳排放系数 “三高”的碳密集型行业。Marco Mazzarino(2000)采用比较静态法和货币估值技术研究后发现,运输业是OECD国家碳排放量最大的行业,约占到碳排放总量的1/3。R. Rehan (2005)指出,水泥制造业是高碳排的主要行业,在京都议定书三种碳交易机制下水泥业的发展前景值得进一步探讨。Keith Paustian(1998)认为农业生产对碳循环的影响具有“双刃剑”的作用,一方面农业生产使自然生态系统转换成农业土地利用,增加了大气中CO2排放;另一方面也可通过土地利用变化、土地整治等增加碳“汇”,从而减少碳排放。

(四)发展低碳经济的政策工具

开征碳税和推行碳交易被认为是最有效的减排政策工具。Toshihiko Nakata(2001)研究发现,能源税和碳税的征收能使碳排放下降到预计目标水平,同时也使能耗结构由煤向天然气转换。Annegrete Bruvoll(2004)对碳税征收先行国挪威的研究也发现,1990-1999年挪威平均单位GDP的碳排放降低了12个百分点,但碳税对碳减排的贡献只有2.3%,因此碳税的效果并不理想。Cheng F Lee(2007)基于灰色理论和投入―产出理论,运用模糊目标规划法构建模型,模拟预测了3种碳税方案下碳减排的力度和经济影响,以期为各国选择碳税方案增强碳税效果提供依据。Andrea Baranzini (2009)进一步分析指出,当前各国碳税税率的差别仍然很大,要达到减排目的,必须协调各国税率并对能源税制进行改革。目前世界上最大的碳交易项目是基于《京都议定书》架构下的三种排减机制,即清洁发展机制(CDM)、联合履行(JI)、排放交易(ET)。J Liski (2000) 指出,CDM机制下的项目型碳交易不仅有利于发展中国家吸收发达国家的资金和技术,也是发达国家降低减排成本的有效途径之一。Wara(2007)也认为,CDM不仅是全球碳交易市场的主要部分,而且也是一种变通的旨在援助发展中国家的政治机制。在“限额-贸易”排放交易机制中,初始排放权的分配直接影响到各国的发展权利和济福利水平,所以其有效、公平的分配一直是国外学者研究的焦点。当前比较认可的三种分配原则是:按人均碳排放量分配、按GDP排放强度分配以及按历史责任分配。Grubb和Sebenius (1992)则基于上述原则提出了“混合”分配原则,即以人均碳排量为基准进行分配时,兼顾各国经济总量和单位GDP排放强度。Smith,Swisher 和 (1993)都主张在分配初始排放权时,应同时考虑一国能够且愿意支付的可用资源和基于人均累积排放的历史责任两个因素。

(五)碳减排的经济成本

OECD(1992)、Manne(1992)、Ha-Duong(1997)都对减少碳排放的经济代价和社会影响进行了研究,结果表明,严厉的碳减排措施将影响经济发展,但减排强度与经济风险呈非线性相关。Danny Harvey(1996)在分析了无管制排放的危害后,也论述了碳减排的经济风险,诸如挤占紧缺资源、减缓经济增长、政府过多干预造成市场扭曲、减排措施产生副效应或成本高于预期或减排措施失灵等。但也有一些研究结论认为,碳减排的成本并非想象的那么高,也不一定会带来经济衰退,证据是1998年中国、欧盟和日本的经济发展与碳排放均实现了不同程度的绝对脱钩。LARS H・KONSEN(1997)通过引入外部性和碳税两个变量对经济福利模型进行扩展分析后,也指出在当代实施碳减排的成本其实是负的,因此减排属于无悔政策。Reyer Gerlagh(2004)则构建了以技术为内生变量并基于两种能源的宏观经济模型,分析后指出若要将全球升温控制在2度以内,必须尽早采取减排措施,而且减排成本也是很低的。

三、结语

碳减排的经济影响分析范文第3篇

关键词 低碳经济;经济增长;制度安排;国别研究

中图分类号 F205 文献标识码 A 文章编号 1002-2104(2010)09-0018-06 doi:10.3969/j.issn.1002-2104.2010.09.004

随着世界工业经济的发展、人口的剧增、人类欲望的无限上升和生产生活方式的无节制 ,世界气候面临着越来越严重的问题。尤其是由化石燃料过度消耗所导致的全球变暖,引起了世界范围的广泛关注。全球变暖严重危害了社会经济的发展,深刻触及到能源安全、生态安全、水资源安全和粮食安全,甚至威胁到人类的生存。这一现象亦引发了国际社会对现有经济发展模式的反思,在此背景下,“低碳经济”(lowcarbon economy)的概念应运而生,并越来越受到国际社会的重视。

“低碳经济”的概念最早由英国政府在2003年发表的《能源白皮书》中提出,题为“我们能 源的未来:创建低碳经济” 。《能源白皮书》指出,“低碳经济是通过更少的自然资源消 耗和更少的环境污染,获得更多的经济产出;低碳经济是创造更高的生活标准和更好的生活质量的途径和机会,也为发展、应用和输出先进技术创造了机会,同时也能创造新的商机和更多的就业机会。”

低碳经济发展模式提出后,各国纷纷相应。学术界围绕低碳经济的研究也不断地发展和丰富。国外学者对低碳经济的研究起步较早,研究成果也颇为丰富。总结国外现有的研究成果, 主要可以归纳为三个方面:一是低碳经济与经济增长,研究重点在碳排放的影响因素,碳排放与经济增长的关系及碳减排对行业发展的影响等;二是低碳经济实现的制度安排,研究主要集中对碳税(carbon tax)和碳交易(carbon trading)的讨论;三是不同国家发展低碳经济的进程。

1 低碳经济与经济增长

关注“低碳经济”的一个重要方面就是对碳排放量(carbon emission)的控制,碳排放量受到哪些因素的影响一直是学者们研究的一个热点。通过对现有文献的分析发现,碳排放量的影响因素不仅包括Kaya公式所揭示的人口、GDP和能源消耗[1],还包括国际贸易,两国的商品贸易为碳排放创造了一种转移机制。

1.1 人口规模、结构对碳排放量的影响

不言而喻,人口越多,碳排放量就越多。即便中国超过美国成为全球碳排放最多的国家,也不足为怪,因为中美人口相差4倍多。此外,人口结构对碳排放量也有影响。Salvador Enrique Puliafito, et al采用LotkaVolterra模型对人口、GDP、能源消耗与碳排放量的相互关系的探析,Michael Dalton, et al采用PET模型(PopulationEnvironmentTechnology model)的研究,均验证了上述结论。随着世界人口转型,人口老龄化现象逐渐凸显,发达国家将在2020年前后进入老龄化社会,人口老龄化因素会降低碳排放量,这一效果与技术变革的效果相当[2-3]。

1.2 GDP、能源消耗与碳排放量的因果关系

低碳经济不是贫困的经济,因此不能通过降低GDP实现碳减排。碳排放最主要的来源是能源的消耗,能源强度和碳强度是衡量能源消耗的两个重要指标。“能源强度”(Energy Intensity)是指单位GDP的能源用量。不同产业的能源强度不同,一般第二产业的能源强度最高,而第二产业中,重化工的能源强度又远高于一般制造业。能源强度还受到技术的影响,同一行业中技术水平低则能源强度高。因此降低能源强度,提高技术水平是减排的有效方向之一。而单位能源用量的碳排放量,则称为“碳强度”(Carbon Intensity)。能源种类不同,碳强度差异很大。化石能源中,煤的碳强度最高,石油次之,天然气较低。可再生能源中,生物质能有一定的碳强度,而水能、风能、太阳能、地热能、潮汐能等都是零碳能源。

尹希果等:国外低碳经济研究综述

中国人口•资源与环境 2010年 第9期学者也对GDP、能源消耗与碳排放量的关系进行了定量研究。Ramakrishnan Ramanathan采用DEA方法(Data Envelopment Analysis,数据包络分析法)同时分析了GDP、能源消耗、碳排放量之间的联系。他指出以往研究的缺陷是,只分别分析了GDP对碳排放量的影响或者能源消耗对碳排放量的影响,没有对三者的联系进行分析。在指标选取上,他以化石能源消耗释放的二氧化碳代表碳排放量,化石能源包括了石油、天然气和煤炭;以全球生产总值衡量经济增长;能源消耗中只选取了非化石能源消耗量,包括水利、核能和地热能,没有包括化石能源消耗量是为了避免与第一个指标的重复。在DEA分析效率指标构建中,将GDP和碳排放量作为产出,非化石能源消耗作为投入。结果显示效率指标在1980年时最高,接下来的7年急剧下降,随后呈现反复震荡下跌趋势,1996年开始回升。基于DEA分析的技术预测(technology forecasting)得到了碳排放量与能源消耗量的曲线图[4]。

Ugur Soytas, et al采用包含GDP、能源消耗、二氧化碳排放量、劳动力和固定资本总额等变量的VAR模型研究了美国能源消耗、GDP与碳排放量之间的因果关系。研究发现碳排放量的格兰杰成因不是GDP增长,而是能源消耗。并提出碳减排政策的制定应该从降低能源强度角度考虑,还应该增加如风能、太阳能等清洁能源的使用,提高可再生能源的利用率[5]。后来,Ugur Soytas, et al对土耳其的实证研究也得到类似的结论[6]。

XingPing Zhang, XiaoMei Cheng研究了中国能源消耗、碳排放量与经济增长之间的格兰杰因果关系及方向。他建立了一个包含GDP、能源消耗量、碳排放量、资本和城市人口指标的多元模型,以1960-2007年的实证结果显示,GDP对能源消耗量存在单向格兰杰成因,能源消耗量对碳排放量存在单向格兰杰成因,而碳排放量和能源消耗量都不是经济增长的格兰杰成因。这意味着,从长远来看,中国政府可以推行渐进的能源政策和碳减排政策,而不会妨碍经济增长[7]。

定量分析的结果表明,低碳经济是经济增长与化石能源消耗脱钩的经济。化石能源消耗是碳排放的主要来源,在低碳经济模式下,经济增长不依赖于化石能源的消耗。从长期来看, 经济增长与碳排放量也不存在因果关系,而能源消耗是碳排放量的重要影响因素。因此碳减排政策应关注能源消耗:通过技术改革、产业结构 升级,降低能源强度;增加清洁能源的使用和可再生能源的利用率,降低碳强度。

1.3 行业碳排放量存在差异

碳减排的重要措施是降低能源强度和碳强度,而由于行业差异以及不同行业使用能源的差异,不同行业的碳排放量相差很大。因此将行业分类,并研究其在低碳经济下的发展是一个不可忽视的问题。

T C Chang, S J Lin采用灰色关联分析(Grey Relation Analysis)测算了台湾34个行业产值与碳排放量的灰色关联系数、总能源使用量以及各种能源使用量与碳排 放量的灰色关联系数。研究结果显示,在分辨系数取0.5的情况下,从34个行业的平均情况来看,产值与碳排放量的灰色关联系数为0940,总能源使用与碳排放量的灰色关联系数为-0912,单个能源与碳排放量的灰色关联系数分别为电力0913、煤炭0.800、石油-0.79、天然气0.513。这些结果说明了台湾经济依赖于二氧化碳密集型的行业,电力能源在台湾经济发展中起着越来越重要的作用。分行业来看,根据产值与碳排量的灰色关联系数、能源使用与碳排量的灰色关联系数的正负及其大小关系,可以将行业分成两种不同的类型。其中,采矿业、有色金属、电力和发电业、公路运输业为“三低行业”,即能源强度低、碳强度低、碳排放系数低。而农林渔业、食品业、纺织业、皮革业、造纸业、石化原料业、橡胶业、化工产品业、金属制品业、运输设备业、燃气及水供应业、建筑业等11个行业为“三高行业”,它们的能源强度高、碳强度高、碳排放系数高,因此减排政策的制定应主要关注这些行业[8]。

此外,Marco Mazzarino采用比较静态方法(comparative static approach)和货币估值技术的研究发现运输业是OECD国家碳排放量最大的行业,约占到总碳排放量的三分之一[9]。R. Rehan, M. Nehdi(2005)认为水泥业也是温室气体排放的主要行业,并探讨了在清洁发展、联合履行、排放交易三种机制下水泥业的发展前景[10]。

1.4 碳排放量随国际贸易而转移

关于碳排量的影响因素,不仅有国内因素,如人口、GDP、行业等,同时国际贸易也是影响 碳排放量的一个重要因素。Paul B Stretesky , Michael J Lynch以1989-2003年世界169个国家的面板数据为样本,研究了各国人均碳排量与对美国出口量之间的关系。以人均二氧化碳排放量为因变量,各国对美国的出口量为自变量,人口密度、GDP和FDI为控制变量,采用固定效应模型的估计结果显示:人均碳排放量与出口有着显著的关系。细分产业后的分析结果显示在出口行业中,天然气、石油和煤炭、化工产品和再进口产品等四个行业对人均碳排放量的影响最大。这意味着,在控制了人口密度、GDP和FDI的情况下,一国对美国出口越多,人均碳排放量也越大,出口产品中天然气、石油和煤炭、化工产品和再进口产品所占的比重越大,人均碳排放量就越大[11]。

Yan Yunfeng, Yang Laike提出,国际贸易创造了一种转移机制,不仅使产品可以在世界各国之间自由流动,同时也使得碳排放可以自由转移。1997-2007年,中国碳排放量的10.03%-26.54%是由出口产品的生产所引致的,进口产品的碳排放量仅占到4.40%(19 97年)和9.05%。世界其他国家因转移机制减排的二氧化碳从1997年的150.18Mt增加到2007年的593Mt,而中国在1997-2007年间因生产出口产品而净增的二氧化碳达到4 894Mt。他们的研究为近年来中国碳排放量激增找到了一个新的解释视角,同时这些数据也印证了中国在国际贸易中处于世界工厂的地位。对这一领域的研究,正催生着像在国际贸易中征收碳关税这样的动议,有学者担忧这会引发新一轮的贸易保护主义[12]。

2 低碳经济实现的制度安排

低碳经济是在全球气候恶化的背景下提出的,是世界经济发展的新模式。为实现经济发展中的“低碳”,各国主要的制度安排有征收碳税和碳交易制度。前者是由政府通过税率来确定进行碳排放的活动要付出多少代价;后者是在《京都议定书》的规定下,通过碳排放权的交易实现全球范围内碳减排的目的。

2.1 碳税

碳税是指针对二氧化碳排放所征收的税,它通过对燃煤和石油下游的汽油、航空燃油、天然气等化石燃料产品,按其碳含量的比例征税,以实现减少化石燃料消耗和二氧化碳排放的目的。碳税最早由芬兰于1990年开征,此后,瑞典(1991年)、挪威(1991年)、荷兰(1992年)、丹麦(1992年)、斯洛文尼亚(1997年)、意大利(1999年)、德国(1999年)、英国(2001年)、法国(2001年)等国也相继开征。近年来,为履行《京都议定书》义务,一些国家如日本、加拿大、瑞士等国也纷纷开征碳税。

关于这些国家实施碳税的经验,Andrea Baranzini, et al在分析了各国能源产品的碳税税率后指出:各国的能源税(energy tax)税率差别相当大,从而碳税税率各不相同,这成为国际协调碳税的一个主要障碍;从理论上说,征收碳税的目的在于提供一种碳减排的激励机制,但在实践中存在其他目的,如基于财政(筹集资金)的目的,对需求弹性很小的产品征收很高的碳税;对于某些能源产品,如煤炭,有些国家的碳税税率相当低,有些国家还实行补贴,因而还不是真正意义上的碳税;要达到减少碳排放的目的,实施碳税的同时要对能源税进行改革[13]。

在此之后,日本的研究发现,能源税和碳税的使用能够使碳排放下降到预计目标水平,同时也使能源种类的使用发生了变化,即由煤到天然气[14]。对碳税征收先行国挪威的研究发现,1990-1999年挪威平均每单位GDP的碳排放降低了12个百分点,但碳税对碳减排的贡献只有2.3%,碳税的效果并不理想。原因在于挪威对不同的产业实行差 别税率,且不同类型燃料的碳含量与税额的比率也不相同[15]。Cheng F Lee, et al在 灰色理论(grew theory)和投入―产出理论(inputoutput theory)的基础上,运用模糊目标规划(fuzzy goal programming)方法构建模型,模拟了三种碳税方案下碳减排的力度和经济影响。预测碳税实施的影响有助于各国碳税方案的选择,也能更好的发挥碳税的效果[16]。

2.2 碳交易

碳交易是为促进全球温室气体减排,减少全球二氧化碳排放所采用的市场机制,即把二氧化碳排放权作为一种商品,从而形成了二氧化碳排放权的交易[17]。其兴起源于《京都议定书》所制定的三种减排机制:一是排放贸易机制(ET,Emission Trade),允许附件 一国家(主要是发达国家)之间相互转让它们的部分“容许的排放量”(“排放配额单位”);二是联合履行机制(JI,Joint Implementation),允许附件一国家从其在其他工业化国家的投资项目产生的减排量中获取减排信用,实际结果相当于工业化国家之间转让了同等量的“减排单位”;三是清洁发展机制(CDM,Clean Development Mechanism),允许附件一国家的投资者从其在发展中国家实施的、并有利于发展中国家可持续发展的减排项目中获取“经核证的减排量”。即允许附件一国家出资支持无减排义务的国家通过工业技术改造、造林等活动,降低温室气体的排放量并抵顶附件一国家的减排指标。

根据以上三种机制,碳交易可以分为两种形态:基于配额的交易和基于项目的交易。配额型交易指总量管制下所产生的排减单位的交易,主要是《京都议定书》规定的附件一国家之间超额排减量的交易,通常是现货交易。项目型交易指因进行减排项目所产生的减排单位的交易,如清洁发展机制下的“排放减量权证(CERs)”、联合履行机制下的“排放减量单位(ERUs)”,主要是通过国与国合作的排减计划产生的减排量交易,通常以期货方式预先买卖。自2005年《京都议定书》正式生效后,碳交易市场发展迅速。根据世界银行的数据,2008年碳交易市场成交总额为1 263.45亿美元;预计2012年成交总额将达到1 500亿美元,有望超过石油市场成为世界第一大市场。

清洁发展机制是《京都议定书》中唯一涉及到发展中国家的机制,并且《京都议定书》还承认了森林碳汇(carbon sink)对减缓气候变暖的贡献,并要求加强森林可持续经营和植被恢复及保护,允许发达国家通过向发展中国家提供资金和技术,开展造林、再造林碳汇项目,将项目产生的碳汇额度用于抵消其国内的减排指标[18]。这些规定的出现在发达国家和发展中国家之间开启了一个巨大的碳交易市场。CDM项目和碳汇CDM项目成为发展中国家的一个新的经济增长点。

3 低碳经济的国别研究

3.1 发达国家的低碳经济

英国作为第一次工业革命的先驱,正从自给自足的能源供应走向主要依靠进口的时代,按传统的消费模式,预计2020年英国80%的能源都必须进口。因此英国于2003年首次以政府文件的形式正式提出“低碳经济”概念,并积极推动世界范围的低碳经济。随后,Johnton D et.al(2005)探讨了英国大量减少住房二氧化碳排放的技术可行性,认为利用现有技术到本世纪中叶实现1990年基础上减排80%是可能的[19]。Treffers T, et al探讨了德国在2050年实现1990年基础上减少温室气体排放80%的可能性,认为通过相关政策措施,经济的强劲增长和温室气体排放减少的共同实现是可能的[20]。Koji Shimada , et al构建了一种描述城市尺度低碳经济长期发展情景的方法,并将此方法应用到日本滋贺地区[21]。

在实践中,低碳经济发展模式受到各国政府组织的广泛关注和青睐,向低碳经济转型成为世界经济发展的大趋势。英国把发展低碳经济置于国家战略高度,2008年颁布实施的“气候变化法案”使英国成为世界上第一个为温室气体减排目标立法的国家。按照该法律,到2050年英国要达到减排80%的目标。另外,政府大力促进商用技术的研发推广,以占领低碳产业的技术制高点。在低碳生活上,英国社会运用多种手段引导人们生活方式的转变。比如,要求所有新盖房屋在2016年达到零碳排放,新建房屋中至少有三分之一要体现碳足迹减少计划,不使用一次性塑料袋,等等。在洁净能源的开发上,英国发挥其海岛国家的自然优势,注重利用海洋资源,在发展海上风能、海藻能源等低碳能源方面居于全球领先水平。

同样是岛国的日本也在向低碳经济发展模式转变。日本内阁会议于2008年7月通过的“低碳社会行动计划”阐述了在未来三五年内将家用太阳能发电系统的成本减少一半等多项有关减排的措施,其重要内容都与开发新能源有关。根据日本内阁政府2008年9月的数字,在科学技术相关预算中,仅单独列项的环境能源技术的开发费用就达近100亿日元,其中创新性太阳能发电技术的预算为35亿日元。2009年4月,日本又公布了名为《绿色经济与社会变革》的政策草案,目的是通过实行减少温室气体排放等措施,强化日本的低碳经济。

为带动欧盟经济向高能效、低排放的方向转型,2007年3月欧盟委员会提出一揽子能源计划,承诺到2020年将可再生能源占能源消耗总量的比例提高到20%,将煤炭、石油、天然气等一次能源的消耗量减少20%,将生物燃料在交通能耗中所占的比例提高到10%。此外,2007年年底,欧盟委员会通过了欧盟能源技术战略计划,明确提出鼓励推广低碳能源技术,促进欧盟未来能源可持续利用机制的建立和发展。欧盟国家利用其在可再生能源和温室气体减排技术等方面的优势,积极推动应对气候变化和温室气体减排的国际合作,力图通过技术转让为欧盟企业进入发展中国家能源环保市场创造条件。

3.2 发展中国家的低碳经济

《京都议定书》是旨在限制发达国家二氧化碳排放的国际协议,发展中国家未被规定必须承担减排义务。但是随着发展中国家的工业化和城市化进程加速,其二氧化碳排放量也迅速增加。虽然历史排放量和人均排放量还相对较低,但是在后京都时展中国家尤其是中国的减排压力已经越来越大。在2009年的哥本哈根会议上,中国是否应该承担减排义务及能否获得资金支持成为会议争论的一个焦点。

发展中国家中尤其是中国,被指责为一个“搭便车者”,在降低碳排放、延缓气候变暖上毫无贡献。ZhongXiang Zhang(2000)通过分析中国1980-1997年间二氧化碳排量的历史演变,以及中间燃料转换、能源消耗、经济增长和人口规模增长对二氧化碳排量的影响,指出上述指责是没有根据的。实际上,中国在能源节约上采取了一系列的措施,1997年单位GDP能耗只有1980年的一半。如果没有这些努力,1997年的能耗总量将比实际排量多出50% [22-23]。Walter V Reid, José Goldemberg的研究也指出,发展中国家已经采取了有效措施遏制二氧化碳的排放。他指出中国从80年代开始实行能源价格改革,碳补贴从1984年的37%下降到1995年的29%,石油补贴从1990的55%下降到2%。另外,中国在提高能源利用率,开发可再生能源上也取得了一定的成效[24]。Paul B. Stretesky, Michael J. Lynch(2009)、YanYunfeng, Yang Laike(2010)的研究则指出两国之间的商品贸易为碳排放提供了一种转移路径。中国为美国的碳减排做出了很大的潜在贡献,因此美国等发达国家应该为中国等发展中国家提供切实有效的气候与环境友好型技术援助。

尽管中国的碳历史排放量和人均排放量相对较低,但是其排放总量的激增引起了世界各国的关注。中国的碳排放受到哪些因素的影响,为迈入低碳经济中国应如何改进措施,Hu Chuzhi, et al的研究比较具有代表性。他基于EKC模型,采用平均分配余量的分解方法,构建了中国碳排放的因素分解模型,定量分析了1990-2005年经济规模、产业结构和碳排放强度对碳排放的贡献,即规模效应、结构效应和技术效应。结果表明:①采用EKC曲线模拟结果显示,我国碳排放量呈现“N”型,并没有呈现严格的倒“U”型特征,这与规模效应具有一致性。说明我国经济增长并不会自发导致碳排放量的减少,经济增长也并不一定引发碳排放的增加,关键是我国的环境治理的机制、市场和政策不完善,若不施行合理有效的控制措施,未来在降低碳排放方面面临着许多风险。②我国的碳排放政策的缺失,节能减排政策实施滞后,这是导致我国碳排放持续上升的又一重要因素。③在规模效应、结构效应和技术效应中,只有结构效应的平均值为负,表明经济结构优化能降低碳排放,是减少碳排放的有效手段。④我国碳排放技术效应具有随意性,这说明技术在降低碳排放方面并未发挥优势,现行技术应用主要目的是提高劳动生产率,许多技术进步并非与提高环境质量有关,尽管技术进步非常快,但对降低碳排放的作用并不大。在此基础上,他提出了控制碳排放的政策性建议:建立和实施不同时间尺度上的环境调控政策;积极推进产业结构向节能型、高级化发展,并大力发展环保产业;推行削减碳排放的技术,提高能源利用效率;发展低碳能源和可再生能源,改善能源结构[25]。

Guo Ru, et al以上海为例,采用情景分析法(scenarios analysis)对上海2010-2020年的碳排放量进行了估计,并提出了一些碳减排建议。研究结论显示:①上海的主要能源消耗在过去的15年呈现不断上升的趋势。②上海的能源主要是用于生产,而第二产业的能源消耗占比最大。③上海2005年的碳排放量达到58.05 Mt Ceq,是1990年的两倍。④在“十一五”计划指导下,上海的碳减排量将分别达到17.26 Mt Ceq(2010年)和111.04 Mt Ceq(2020年)。作为中国的发达城市之一,上海在碳减排上要承担起更多的责任,基于以上分析上海可以通过以下措施实现低碳经济:①上海的碳排放主要来自于第二产业,因此提升产业结构是第一要务。发展能耗低且产品附加值高的行业,同时加快第三产业的发展。②优化能源结构和能源效率,结合地域优势开发使用清洁能源,如上海可以开发风能。③加强碳汇建设,树木、绿化带、湿地、农田是上海重要的碳汇。扩大城市树木和绿化带的范围,对崇明和南汇的湿地要加强保护[26]。

4 结 语

“低碳经济”概念的提出源于全球气候恶化的背景,从《京都议定书》到“巴厘岛路线图”,及至最近的哥本哈根会议,世界各国都在为解决气候问题而努力。围绕低碳经济,学者们从不同视角、运用不同方法、对不同区域(全球、国家、地区)进行了研究。

关于低碳经济与经济增长,目前比较一致的结论有:①影响碳排放量的因素有人口、能源消耗、技术水平等,国际间的商品贸易也可以导致碳排放的转移。②经济增长对碳排放量的影响是通过能源消耗来实现的,为实现低碳经济,应该增强能源强度及碳强度,逐渐由化石能源过度到清洁能源的使用。③不同行业的碳排放量有显著差异,一个国家或地区应该在总体层面上规划产业发展,提升产业结构。在研究方法上,灰色关联分析法、数据包络分析法以及对人口经济学中LotkaVolterra模型的应用等,值得国内研究者的借鉴。在实践中,实现低碳经济的制度安排主要有征收碳税和碳交易制度。发达国家是低碳经济发展模式的倡导者,在向低碳经济的转变进程中,推出了各种法案措施。低碳经济已成为一种国际潮流,也影响着发展中国家的经济社会发展进程。各国都致力于向低碳经济的转变,并从中寻找新的经济增长点。

参考文献(References)

[1]省略/anglais/documentationa/greenhouse/kayaequation.htm

[2]Salvador Enrique Puliafito, José Luis Puliafito, Mariana Conte Grand. Modeling population dynamics and economic growth as competing species: An application to CO2 global emissions[J]. Ecological Economics, 2008,(65): 602-615.

[3]Michael Dalton, Brian O'Neill, Alexia Prskawetz, Leiwen Jiang, John Pitkin. Population aging and future carbon emissions in the United States[J]. Energy Economics, 2008,(30): 642-675.

[4]Ramakrishnan Ramanathan. A multifactor efficiency perspective to the relationships among world GDP, energy consumption and carbon dioxide emissions[J]. Technological Forecasting & Social Change, 2006,(73): 483-494.

[5]Ugur Soytas, Ramazan Sari, Bradley T. Ewing. Energy consumption, income, and carbon emissions in the United States[J]. Ecological Economics, 2007,(62): 4 82-489.

[6]Ugur Soytas, Ramazan Sari. Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member[J]. Ecological Economics, 2009,(68): 1667-1675.

[7]Zhang XingPing, Cheng XiaoMei. Energy consumption, carbon emissions, and economic growth in China[J]. Ecological Economics, 2009,(68): 2706-2712.

[8]T C Chang, S J Lin. Grey relation analysis of carbon dioxide emissions from industrial production and energy uses in Taiwan[J]. Journal of Environmental Management, 1999,(56): 247-257.

[9]Marco Mazzarino. The economics of the greenhouse effect: evaluating the climate change impact due to the transport sector in Italy[J]. Energy Policy, 2000,(28): 957-966.

[10]R Rehan, M Nehdi. Carbon dioxide emissions and climate change: policy implications for the cement industry[J]. Environmental Science & Policy, 2005,(8): 105-114.

[11]Paul B Stretesky, Michael J Lynch. A crossnational study of the a ssociation between per capita carbon dioxide emissions and exports to the United States[J]. Social Science Research, 2009,(38): 239-250.

[12]YanYunfeng, Yang Laike. China's foreign trade and climate change: A case study of CO2 emissions[J]. Energy Policy, 2010,(38): 350-356.

[13]Andrea Baranzini, José Goldemberg, Stefan Speck. A future for carbon taxes[J]. Ecological Economics, 2009,(32): 395-412.

[14]Toshihiko Nakata, Alan Lamont. Analysis of the impacts of carbon ta xes on energy systems in Japan[J]. Energy Policy, 2001,(29): 159-166.

[15]Annegrete Bruvoll, Bodil Merethe Larsen. Greenhouse gas emissions in Norway: do carbon taxes work?[J]. Energy Policy, 2004,(32):493-505.

[16]Cheng F Lee, Sue J Lin, Charles Lewis, Yih F. Chang. Effects of carbon taxes on different industries by fuzzy goal programming: A case study of the petrochemicalrelated industries, Taiwan[J]. Energy Policy, 2007,(35): 4051-4058.

[17]John A Mathews. How carbon credits could drive the emergence of renewable energies[J]. Energy Policy, 2008,(36): 3633- 3639.

[18]J Liski, T Karjalainen, A Pussinen, GJ Nabuurs, P Kauppi. Trees as carbon sinks and sources in the European Union[J]. Environmental Science & Policy, 2000,(3): 91-97.

[19]Johnston D, Lowe R, Bell M. An Exploration of the Technical Feasibility of Achieving Carbon Emission Reductions in Excess of 60% Within the UK Housing Stock by the Year 2050[J]. Energy Policy, 2005,(33): 1643-1659.

[20]Treffers T, Faaij APC, Sparkman J, Seebregts A. Exploring the Possibilities for Setting up Sustainable Energy Systems for the LongTerm: Two Visions for the Dutch Energy System in 2050[J]. Energy Policy, 2005,(33): 1723-1743.

[21]Koji Shimada, Yoshitaka Tanaka, Kei Gomi, Yuzuru Matsuoka. Developing a Longterm Local Society Design Methodology Towards a Lowcarbon Economy: An Application to Shiga Prefecture in Japan[J]. Energy Policy, 2007,(35): 4688-4703.

[22]Zhong Xiangzhang. Decoupling China's Carbon Emissions Increase from Econo mic Growth: An Economic Analysis and Policy Implications[J]. World Development, 2000,(28): 739-752.

[23]Zhong Xiangzhang. Can China afford to commit itself an emissions cap? Aneconomic and political analysis[J]. Energy Economics, 2000,(22): 587-614.

[24]Walter V Reid, José Goldemberg. Developing countries are combating climate change:Actions in developing countries that slow growth in carbon emissions[J]. Energy Policy, 1998,(26): 233-237.

[25]Hu Chuzhi, Huang Xianjin. Characteristics of Carbon Emission in Chi na and Analysis on Its Cause[J]. Chn Popu Res Envi, 2008, 18(3): 38-42.

[26]Guo Ru, Cao Xiaojing, Yang Xinyu, Li Yankuan, Jiang Dahe, Li Fengting. The strategy of energyrelated carbon emission reduction in Shanghai[J]. Energy Policy, 2010,(38): 633-638.

A Synthesis of Foreign Scholars' Research on Low Carbon Economy

YIN Xiguo HUO Ting

(Institute of Population Resource and Environmental Economy, Chongqing University, Chongqing 400044, China)

碳减排的经济影响分析范文第4篇

关键词:碳税工具;碳交易体系;碳金融市场;制度设计;效应评价

中图分类号:F062.2文献标识码:A文章编号:1008-2670(2014)02-0045-13

一、引言

从1896年Arrhenius首次发现大气中的CO2对地球温度的影响开始,气候变化问题逐渐演变成为全球性的生态危机,也成为全球经济发展的难题。斯特恩(Stern)报告[1]中指出经济发展继续依赖能源消耗、“照常营业”的做法不可取,在气候变化问题上尽早采取有力行动的收益要大于成本。若各国能够做出有力而周详的政策选择,如碳定价、发展低碳技术,就有可能实现所需的“去碳”规模来实现气候安全,并保持经济增长。自20世纪90年代国际气候谈判以来,从《联合国气候变化框架公约》到《京都议定书》,从后京都时期“巴厘岛路线图”到哥本哈根谈判协议,经历无数冲突与磨合,各国都在逐渐形成经济发展与全球减排的统一认识,多国经济经历了不同程度的低碳化。在环境压力和政治博弈中,全球经济向低碳化绿色经济方向转型。

尽管我国对碳税、碳交易、碳金融等的研究起步较晚,但随着我国经济发展模式的转型,我国也在积极探索促进经济低碳发展的理论与实践。低碳经济机制的研究也日益受到重视。本文就碳税、碳交易和碳金融等促进经济社会绿色发展的低碳工具的国内外实践及研究进行归纳与述评,并对下一步研究进行展望。

二、碳税

(一)碳税的引入与内涵

碳税的引入基于庇古税(Pigovian Tax)概念。由于大气层属于公有资源,具备竞争性和非排他性特征,极容易被滥用破坏,产生负外部性。庇古(Pigou)[2]在其著作《福利经济学》中首次提出庇古税概念,他认为自然环境存在市场缺失和价格缺失,这种不完全信息带来外部性效果,政府可以通过对产生负外部性的活动征税和对正外部性的物品给予补贴把外部性内在化,即对边际私人纯产值大于边际社会纯产值的部门课税,使其产品价格提高,产销量降低;对边际私人纯产值小于边际社会纯产值的部门实行补贴,减少边际私人纯产值与边际社会纯产值之间的差距,进而增加社会福利。Baumo和Oates[3]认为,信息的缺乏导致导致边际社会成本难以测量,无法确定最优税收水平,庇古税存在实用性限制。他们运用一般均衡分析方法,从环境政策、污染控制、污染税与统一排污成本等方面进行研究,提出了“标准定价法”,依据一个可接受性强的标准定量收税,达成环保目标。随着“污染者付费原则”理念的深入,Burrows提出了逐步控制法,即在信息不充分情况下,政府为达到环境效益最优可以逐步、连续地对庇古税税率调高或调低进行调整,最终找到最优税率。

碳税的内涵和外延在实践中不断丰富和发展。Hoeller和Wallin[4]认为给碳定价是对投资减碳新技术的激励,碳税是碳定价的一种形式。苏明等人[5]认为碳税与中国现有能源税在对化石燃料的征税上存在一定的重合,且都具有对CO2的减排功用,但碳税与能源税的最大区别在于碳税的征税对象、计税依据等方面都是专门针对碳排量设计的。崔军[6]提出碳税是以减少CO2排放为目的,对化石燃料按照其碳含量或碳排放量征收的一种税。碳税与能源税、硫税、氮税、污水税等税种共同构成了环保税体系。

(二)碳税实践

碳税在诸多排放税中居首要地位,是世界上许多国家应对气候变化的重要政策工具。

以芬兰、丹麦为代表的北欧国家从1990年开始逐次推行碳税,到了20世纪末,基本上构建起较为完备的碳税制度。丹麦碳税由能源消费税演化而来,从1992 年开始,丹麦正式对家庭和企业一并开征碳税,税基较广,包括了除汽油、天然气和生物燃料以外的所有CO2排放,税率并非基于碳排放的边际成本,而是结合了政治和经济方面的考虑。在征收碳税的同时,丹麦实行税收返还和循环机制,将税收的一部分用于补贴工业企业的节能项目,同时工业企业还能通过税收返还和减免来减轻实际税负。挪威对石油、天然气、煤、焦炭、商用柴油等都征收碳税,涉及航空、汽车多个领域,拥有品种繁多的碳税及相关税种,但对面临国际竞争的空运、海运和渔业予以豁免。瑞典碳税税率一直处在较高水平并逐步调高家庭碳税税率,同时降低劳动收入税率。不同于严苛的家庭碳税,瑞典对本国企业尤其是能源密集型产业,如采矿、造纸、电力等行业给予税收减免。

北欧国家碳税实践的特点:一是征收的碳税多从固有的环境税种过渡而来,在征税对象、税率等方面进行了相应调整;二是税基广泛,尽可能扩大碳税的覆盖面;三是对不同行业特别是对高耗能行业和出口依赖型行业实施差别税率和补贴政策,以保护本国产业的核心竞争力。

以美国、德国、加拿大为代表的欧美发达国家碳税起步较晚,在OECD组织的带动下相继开征碳税。碳税在美国并未全面征收,仅在个别地区进行试点。由于美国93%的煤炭用于电力生产,科罗拉多州的博尔德市2007年对除风力发电以外的电力这一中间排放源征收碳税,税率按电费比例征收并逐步上调。碳税收入一般用于提高建筑能源效率以及清洁能源开发等方面。德国能源结构与中国类似,富煤少气,为引导能源消费结构转型,德国设计了复杂的碳税体系,对不同种类和用途的燃料设定不同的税率,制造业、农林渔牧业只需支付税率的20%,其税收循环偏向工业。自2004年德国进行了新一轮碳税改革,税收优惠逐步减小。2008年加拿大不列颠哥伦比亚省开始在能源最终消费环节征税开征碳税,征税对象几乎涵盖所有化石燃料,不同燃料税率有所差别,且逐步提高。当地的家庭住户是主要纳税义务人,缴纳的碳税税收的一部分用于抵消家庭或企业的其他税负如劳动收入税。

欧美发达国家碳税实践的特点:一是量体裁衣,根据本国实际设计税制。各国碳税税率大都采用固定税率,同时根据能源的不同类别实行差别税率。二是逐步推行、循序渐进,构建动态调整机制。在初期为顺利推行碳税,多数国家设计较低碳税税率和配套的优惠政策,在顺利引导家庭和企业改变能源消费选择后逐步提高税率,减少乃至取消某些暂时性补偿。

近年来为履行京都议定书义务,以中国、南非、印度等为代表的发展中国家政府和学者正在积极探索碳税制度构建之路。苏明等人提出中国碳税可以对生产环节中因消耗化石燃料产生的CO2估算排放量作为计税依据,采用从量计征的定额税率形式。碳税在起步的时候定价可放低,对受碳税影响较大的能源密集型行业建立合理的税收减免与返还机制,对低收入群体进行减免优惠,在条件成熟时期渐进提高税率。南非政府拟从2015年1月起开征碳税,并对汽车行业碳税的标准进行调整。为减缓碳税给企业带来的冲击,南非政府还将企业碳排放量前60%的部分免税,同时对出口行业、碳排放强度大的行业给予额外补贴。印度是发展中国家开展碳税的积极探索者,自2010年7月首先在全国范围内对生产和进口的煤炭征收碳税。

发展中国家碳税实践的特点:一是审慎对待,充分考虑国内和国际的政治、经济条件,联系本国减排形势,结合与化石燃料相关的税制改革进程,在前提条件成熟后,选择适时开征碳税。二是在碳税要素、实施路径、调整机制选择上参考国际碳税经验,并结合本国实际进行创新探索。三是注重建立激励机制,对开展节能项目的企业实施税收减免与返还,对低收入群体给予税收补贴,实现税收中性,避免产生消费扭曲。

(三)碳税效应评价

碳税影响广泛而深刻,涉及生态环境、政治经济等诸多方面。国内外学者分析征收碳税的效果,主要对CO2减排效果、国家经济发展、产业竞争力、收入分配效应等进行了研究。

Jorgenson和Wilcoxen[7]认为,相比于能源税,碳税更具成本效益比,也满足全球减排的成本最小化条件,当碳税等于CO2减排的边际成本,就会由碳价因素引发节能行为及对燃料消费的重新选择。不考虑消费者行为变化,Labandeira和Labeaga[8]利用IO(Input-output Model)微型模型,研究碳税在西班牙的环境效应,发现在西班牙财政收入大幅增加的情况下,碳税在减少碳排放方面的影响是温和有效的。Bruvoll和Larsen[9]使用1990-1999年数据,运用Divisia指数分解法和一般均衡模拟方法,指出挪威碳税覆盖大约60%的能源消耗产生的CO2排放,可减少挪威2.3%的CO2排放量。Floros和Vlachou[10]利用希腊1982年至1998年期间时间序列数据,研究碳税对该国制造业和煤炭、石油等能源行业CO2排放量的影响,发现餐饮业、纺织业、冶金业最容易受碳税影响,减少碳排放,开征碳税可以减缓气候变暖的速度。

中国气候变化国别研究组采用一种可计算的一般均衡ERI-SGM模型,结合我国实际试算了两种碳税税率方案,分别为100元/吨碳和200元/吨碳。其结果显示:征收碳税可显著地降低能源消费的增长,改善能源的消费结构,并能有效削减温室气体的排放。魏涛远和格罗姆斯洛德[11]利用CNAGE(China General Equilibrium Model)模型定量分析了对每吨碳排放量征收5美元及10美元碳税对中国短期、长期经济和CO2排放的影响,研究表明,征收碳税将使中国经济在短期内承受损失,但碳排放量将有所下降,长期来看碳税的负面影响将小得多。

Pearce[12]在对碳税的研究中提出双重红利(Double Dividend)理论,所谓双重红利是指若导致税收扭曲的税种能被环境税所替代,将产生双重红利,一能通过纠正市场负外部性,改善生态环境得到绿色红利;二能通过减少税制扭曲,提高效率,进而带来社会福利形成蓝色红利。Feldstein进一步指出碳税不仅通过减少污染物排放达成环境红利,而且还额外具有减少整体经济的成本,提高政府收入的红利。Meng等人[13]根据澳大利亚数据的模拟结果,提出碳税可以有效削减排放,但会造成经济温和收缩。由于GNP中包括本国企业在外国的产值(不受本国碳税约束),不包括外国企业在本国的产值,因而较GDP受碳税影响更小。若碳价格信号机制畅通,碳税补偿计划不会对减排造成重大影响,同时会大大减轻碳税对经济的负面影响。

王金南等人[14]采用国家发改委能源研究所自主开发的我国能源政策综合评价模型――能源经济模型,根据中国目前的CDM价格及外国碳税税率,模拟了三种功能不同碳税方案对中国国民经济、能源节约和 CO2排放量的影响,结果表明即使忽略中国减少进口、增加新兴产业投资等利好因素,三种方案对中国GDP的影响也不会超过0.5%,近期在中国征收碳税是一种可行的选择。同时随着税率的提升,碳税对能源消费的影响愈加显著。当2030年碳税价格为200元/吨碳时,与基准情形相比节能率可达20%,节能效益也将近3%。

Karki等人的[15]分析表明,用非化石燃料替代化石燃料(如核能和可再生能源)可完成全球二分之一的碳减排目标,碳定价政策如碳税更能促进这种替代带来减排效应。征收化石燃料碳排放税,可以提高化石燃料发电价格,减少客户对此方面的能源需求,同时提高可再生能源发电量,这被称为碳税的“收入效应”和 “替代效应”。两种效应叠加影响一国能源产业的格局,风能、生物能等产业有可能占据主导地位。Baker和Shittu[16]研究了企业在不确定的碳税的情景下为实现利润最大化的研究与发展(Research & Development,R&D)投入选择。面对两个不同的研发项目:实现降低低碳能源技术成本研发和现有技术的减排研发,他们发现最优的R&D并不单纯因碳税的征收而递增,一般而言,企业面临碳税压力时对传统能源技术的研发会经历先升后降的过程,那些灵活的企业在面对不确定的碳税税率时会选择研发能源替代技术,实现能源转型。

Zhang和Baranzini[17]认为相对于劳动力成本、国际汇率变动等宏观因素而言,碳税对一国企业的竞争力影响比通常认知要更为微弱。碳税在增加了无碳和低碳产业的竞争力、保护环境的同时,可增加国民收入。税收循环政策比退税和免税措施对贸易和能源密集型产业的成本效益比要高,且更具减排效应。考虑到未来碳税可能以较高的利率征收,其所产生的经济影响如对收入分配、社会福利等的影响可能比当前更加尖锐。

事实上早在1994年,Symons等人就从不同角度探讨了碳税对不同收入阶层的影响,其分析结果显示,碳税具有累退性,碳税导致家用能源、交通、食品价格上涨,相对高收入家庭而言,低收入家庭对家用能源的支出占收入比重更大,会承受更多的负面影响。Metcalf等人也发现碳税的税率增长实际影响着社会福利成本,但其累退性在短期一般均衡中被高估了,碳税的福利损失每年减小0.5%。进一步研究中,Metcalf和Weisbach[18]指出应在碳税征收中考虑通过调整所得税等税收制度改革来平滑碳税的再分配效应。

(四)简要述评

国内外学者多从庇古税角度研究碳税,并提出初步的碳税设计方案。欧美国家相继开征碳税对碳税的效应研究逐渐增多,研究者大多通过构建CGE等相关理论模型,利用数值模拟和情景分析等方法,分析碳税的总体效应和不同的碳税方案产生的效应。碳税效应可分为直接和间接两个方面,直接效应是指征收碳税通过碳定价对能源消耗、CO2排放和气候环境造成的影响,间接效应是指碳税虽不对末端收入征税,但间接对经济发展、产业格局、福利分配等方面造成影响。在对碳税效应的研究中学者们的观点可分为两类:一种观点认为,碳税减排效果明显,对经济、企业竞争力、社会福利等的负面影响小,甚至还能通过税收返还制度使低收入者受益;另一种观点认为,碳税减排的激励效果并不理想,反而会导致化石能源和电力价格上涨,显著拉低国民的生活水平,碳税的累退效应甚至会扩大收入差距,削弱国民的动力。由于存在国家和地区差异,加之可用数据缺乏,各项碳税效应研究结果有所不同,但碳税的负面影响说明对碳税税制进行反思和动态调整是非常必要的。

三、碳交易

(一)碳交易的引入与内涵

碳排放权交易的理念可追溯到污染权交易。排污权交易源于科斯(Coase)定理,科斯[19]最早指出外部性产生的根源在于模糊的产权,只要明确界定产权(在交易成本为零的条件下),就可以最小的成本解决外部性问题。Dales[20]首次提出排污权交易的概念,并指出排污权交易应包括两方面内容:实行排污许可证制度及准许排污许可证转让、买卖制度。Montgomery[21]证明了基于市场机制的排污权交易均衡是存在的,排污权交易体是一种兼具成本优势和公平性的环保手段。Manne和Richel[22]进一步阐释了交易对排放权体系的必要性,认为无论初始排放权如何分配,不同区域的排放权价值很有可能存在偏差,限制交易会导致比较优势的扭曲。Stavins[23]认为排放权交易制度应考虑八方面因素:总量控制目标、分配机制、排污许可、市场运行、市场定义、监督与实施、分配和政治性问题、与现行法律和制度的整合。

1992年,政府间气候变化专业委员会(IPCC)通过谈判,达成了《联合国气候变化框架公约》(UNFCCC,简称《公约》)。1997年12月《公约》的第一个附加协议《京都议定书》正式通过,提出将市场机制作为减排以CO2为代表的温室气体的新路径,将CO2排放权作为一项商品进行交易。《京都议定书》同时建立了三种灵活交易机制,即国际排放交易机制(International Emission Trading,IET)、联合履约机制(Joint Implementation,JI)以及清洁发展机制(Clean Development Mechanism,CDM)。IET机制规定具有减排义务的特定缔约方可以转让碳排放权配额(Assigned Amount Unit,AAU),并形成相应的基于配额的碳金融市场;JI机制允许特定缔约方之间通过投资节能减排项目获取减排单位(Emission Reduction Unit,ERU),相当于在工业国家间转化减排单位;CDM 则允许特定缔约方用在发展中国家推行减排项目获得的经核证的减排量(Certified Emission Reductions,CER)来抵减其减排指标,同时也为发展中国家实现可持续发展,参与国际碳金融市场提供了机遇。

(二)碳交易实践

排放权交易机制可以三种模式建立:限额交易模式、基准线信用模式和混合模式。按照交易的原生产品(CO2排放权)的来源,可分为基于配额的市场(Allowance-based Market)和基于项目的市场(Project-based Market)。配额市场在碳交易市场中占据主导地位,其交易原理为限额交易制度(Cap & Trade),由管理者指定总的排放配额,并在参与者间进行分配,参与者根据自身的需求来进行排放配额的买卖。《京都议定书》中的国际排放交易IET机制、欧盟排放交易体系(European Union Emission Trading Scheme,EU ETS)及一些自愿交易机制均属此类市场。项目市场的交易原理为基准线交易(Baseline & Trade),这类交易主要涉及具体项目的开发,低于基准排放水平的项目或碳吸收项目在经过认证后可获得减排单位。项目市场主要分为JI市场和CDM市场。本文以碳交易市场中的典型代表EU ETS、CDM和芝加哥气候交易所(Chicago Climate Exchange,CCX)自愿减排机制为例进行介绍。

EU ETS属于强制性的配额市场,涵盖整个欧盟层面的区域排放交易体系,它以限额交易为基础,以CO2为管制气体,以能源活动、黑色金属生产与处理、采矿等为管制对象,覆盖电力、热力、钢铁、航空等高排放行业。基于总量控制原则,欧盟评估各成员国的减排目标并分配给各国CO2可排放量(在EU ETS初期配额都是以祖父式分配无偿取得,自2013年起逐渐变为拍卖)。根据历史排放、预期排放等因素,这些配额又被分配到各国的排放企业。经第三方认证机构核准,在区域内CO2排放总量低于允许排放量的条件下,区域内各排放源之间可通过排放配额交易方式调剂余裕排放量。同时欧盟许可其成员国使用JI和CDM项目带来的核证减排量折抵其CO2排放量,形成核证减排交易。

CDM属于项目市场的重要组成部分,是发达国家与发展中国家各自发挥比较优势的双赢选择,核心是发达国家企业实体经发展中国家批准利用资金和技术优势在东道国实施减排项目换取CERs。CDM可分为两级市场:一级市场基本由发展中国家提供,由于风险较大,CERs价格偏低;二级市场囊括了远期合约签订而CERs尚未生成时的交易,市场效率较高,交易额度较大。CDM项目涉及能源工业、化学工业、交通、采矿等十三大项,一方面通过垃圾填埋等清洁技术减少温室气体的排放,另一方面通过改善土地运用和造林等方式增加对大气中温室气体的吸收。项目流程包括论证、设计、审批、注册、实施、核查核证等多个环节,项目设计是其中关键。目前中国是全球 CDM 项目市场的重要参与者,占据签发的 CERs 的半壁江山。

CCX自愿减排市场是全球笫一个运用法律约束力和市场机制来进行温室气体减排的国际性平台。该交易所开展的减排交易项目涉及电力、能源、制造等行业产生的CO2、CH4、N2O、HFCs、PFCs和SF6等六种温室气体,提供温室气体排放配额、经核证的排放补偿量和经核证的先期行动补偿量三种基本产品。目前CCX有四百多个会员实体,会员分别来自航空、汽车、电力等数不同的行业,可分为两类:一类是必须遵守其承诺的减排目标的企业、城和其它减排单位,其义务是在事先设立的减排目标基础上每年减少1%,四年减排4%,若没有完成目标就需向其他会员购买排放许可证,或通过投资减排项目产生的抵扣性碳信用额抵减原来的减排量;另一类则是该交易所的参与者,通过将减排项目集成打包出售、直接出售碳排放权等方式参与交易。

(三)碳交易制度研究

CO2排放权是一种稀缺资源,其初始分配的公平性和有效性是碳交易顺利推行的基础。排放权初始分配主要有两种形式:免费分配和公开拍卖。免费分配包括依据排放企业的历史排放标准获取一定比例排放权的祖父制分配及依据企业当前产量和单位产量获得排放权的分配。由于排放权具有同质多物品属性,公开拍卖多采用标准密封投标方式,包括单价拍卖、首价拍卖和维克里拍卖三类。此外拍卖还可以采用增价拍卖,该拍卖方式具有较好的价格发现机制。多数研究者更倾向于公开拍卖。Goulder等人[24]、Fullerton和Metcalf[25]等运用一般均衡模型分析认为非拍卖的配额方式带来的成本大于其他分配方式,若进行拍卖分配并将所得用来削减排放税带来的税收扭曲,则会带来祖父制分配二倍的成本效益。拍卖可以提高企业革新技术的积极性,减少政治摩擦。同时拍卖方式保障了新进入的企业与原有企业在取得排放权配额方面平等一致。Venmans[26]认为免费分配带来的意外收益将使财富由消费者向企业转移,降低了收入分配的公平性。不过也有学者如Vesterdal和Svendsen[27]认为祖父制分配更适应当前不完备的市场现状。

碳价格是影响碳交易市场的主要力量之一,关于碳价格的研究集中在价格驱动因素等方面。Christiansen等人[28]提出政府政策、技术指标、市场基本面乃至气候等因素都在一定程度上影响了排放权价格,宏观经济状况则决定了市场的均衡价格。Mansanet-Bataller等人[29]运用多元分析法研究了电价和天然气价格与碳价格的关系,发现二者互为因果,极端气候也对排放权价格具有一定影响。Hintermann[30]证实,极端寒冷气候与碳价格存在非线性相关。Chevallier[31]通过EGARCH模型分析,指出企业年度减排的违规情况以及后京都议定书时代国际协议不确定性的增加,可以解释碳价格的不稳定波动。Nazifi[32]通过对EUAs和CERs的动态价格变化的参数分析指出交易限制、监管变化和CERs的不确定性是影响排放权价格的重要因素。在对EU ETS碳价格的研究中,Benz和Hengelbrock[33]依据EU ETS 中排放权价格动态机制指出存贷机制和交易的时间间隔对价格也具有影响。Bredin和Muckley[34]使用静态和递归的Johansen多变量协整近似比率检验,发现在EU ETS的第二阶段产生了新的排放权定价机制,并由市场基本面要素推动价格走向成熟。

在碳交易系统设计方面,一些学者认为热点(hot spots)是限制排放权进行空间覆盖的主要原因,如果不考虑时间热点(temporal hot spots)的风险,一个具有成本效益的排放权交易体系应具备时间柔性,即排放权可以储存和借用。Vesterdal和Svendsen在对于欧洲温室气体排污权交易进行分析,发现管理者在计划初始期间应避免覆盖太多行业,以尽量减轻对经济的负面影响和减少反对者。Perdan和Azapagic[35]认为在克服技术和非技术障碍后,应在政治支持和经济稳定条件下逐步在地域、时间和覆盖行业等范畴扩大排放交易。

各国在实施减排计划的同时,也面临着碳交易所带来的行业管制、经济安全、法律等多方面的风险,以CDM机制为例,Dutschke等人[36]认为CDM项目存在基准线评估风险、商业风险、经营风险、自然灾害等风险,马建平和庄贵阳[37]指出CDM 项目开发过程中可能发生审批失利、审定退回、注册失败、报告偏差和协议违约等五大风险事件和宏观经济不确定性风险,给业主造成经济损失或减少其减排收益,业主须通过关注宏观政策动态、科学确定基准线、加强环境治理等方式规避风险。

(四)碳交易效应评价

有关碳交易效应的研究集中在CO2减排效果、经济发展、行业格局等方面。Babiker等人运用CGE模型和EPPA模型分析认为,国际碳排放交易机制可能导致贸易国的福利损失。通过对印度经济学家Bhagwati提出的贫困化增长国家案例进行分析,他们发现贸易条件恶化和扭曲性税收的交互作用抵消了一国在碳排放交易因低减排成本获得的收益。Silva和Zhu[38]认为由于富裕国家的排放许可证价格更高,国际贸易将导致污染产业由富国转移到较贫穷的国家。同时没有参与《京都议定书》的国家会因排放更多的国际污染和更低的本地污染而获得双重收益。但也有众多学者发出反对声音,Stankeviciute等[39]通过研究欧洲部分部门的边际减排成本曲线,比较不同国家和地区在2010和2020年两种不同的碳交易市场结构下ET EUS的有效性后认为,在短期内超过50%的CO2减排量都是在欧盟排放交易体系中的行业部门尤其是电力部门中实现的。

Bode[40]认为在免费分配机机制中,因引入碳交易导致电价上涨,电力部门从此获益最多。Bunn的研究也证实得出碳排放权确实可以影响天然气或电力的价格。Lee等[41]指出在石化部门,上游行业从碳排放交易中赚取利润,而下游行业因未能实现其减排目标不得不购买额外的排放权。Gulbrandsen和Stenqvist[42]的研究发现,EU ETS通过影响电力价格对纸浆和造纸业产生冲击,造纸业在CO2减排技术的研发和应用方面进行大量投入。Tuerk等人[43]提出具有碳中性特征、零减排成本的生物能源将来会成为碳交易计划的重中之重,对农业和林业部门的政策偏移可以有效引导对碳价格反应敏感的企业发展生物能源。

(五)碳交易与碳税的比较研究

碳税属于价格调节型市场化工具,碳排放权交易制度是数量控制型市场化工具,关于二者的比较研究一直是学界热点。早期受庇古和科斯启发,人们认为只要边际排放成本与碳价格相等即可达到减排作用,碳排放权交易与碳税实质上是等效的。但Weitzman发现,由于政策制定者在决定税率或确定排放许可数量的不确定性,排污边际成本曲线的斜率与边际效率曲线斜率不同,导致两种工具不再等效。Newell和Pizer[44]修改了Weitzman模型并将其应用到环境问题上,发现价格工具比数量工具更加灵活,税收政策所产生的的社会净福利更高。Goldblatt[45]认为考虑到福利冲击、政策的长期稳定性等因素,碳税比碳交易更适合中等收入的发展中国家。但是由于碳税的减排效果确定性较差和政治阻力,碳税并不比碳交易更受国际社会欢迎,《京都议定书》最终选择碳排放权交易制度作为全球减排的主要机制。

也有学者探讨碳税与碳交易综合运用成为复合工具或双轨机制的可能性。McKibbin和Wilcoxen[46]提出混合利用碳税和碳交易政策具有单一措施不具备的优点:可以避免碳税的再分配问题、提供内在的监督与实施机制,还可以获得真实边际减排成本的信息。Tamura和Kimura[47]也提倡碳税与碳交易的结合,他们认为对于日本等工业能耗已经极具效率的国家,仅靠碳税难以实现减排目标,加入排放权交易后,碳税对企业利润的不良影响将减少50%,并且通过贸易的增加获取更多利益。

(六)简要评述

碳交易的研究初期集中在制度设计上,如交易模式、排放总量确定、初始额度分配、交易监管等。在ET EUS、CDM等机制付诸实践后,学者对上述机制的效应评价、制度改进等方面的研究越来越多,对电力、石化、造纸等行业予以特别关注。普遍认为碳交易带来的影响是复杂的,碳交易制度对节能减排有明显作用,但对行业格局、国家福利与发展却有利有弊。多位学者对价格的驱动因素进行了分析,但由于碳交易实践期间短、碳价格数据缺乏,现有的实证研究无法给出碳价格形成机制的有力证明。随着碳交易在各国实践的深化,英国、澳大利亚相继走上碳税与碳交易综合运作的探索之路。在下一步研究中,碳交易与碳税的结合、碳交易的国际流动与协调、交易风险的识别与规避、交易创新机制等都是探讨的新方向。

四、碳金融

(一)碳金融的引入与内涵

从演进进程看,碳金融是环境金融的一个重要分支。Sandor首次提出环境金融定义后,Salazar[48]对环境金融进行了较为深入的研究,认为环境金融是金融业为服务环境产业的新需求而进行的升级和创新,存在体系差异的金融业和环境产业通过环境金融衔接起来,实现保护环境的功用。Cowan[49]认为环境金融解决的是社会推行的环保事项的资金融通问题,并不涉及干预社会决策。金融业在促进资金融通的同时也能从发展环境产业中受益。此外他探讨了实现环境金融的途径,如发展环保基金、小规模排污权交易、债务掉期合约等。Labatt和White[50]将环境金融分为两部分,一是可持续发展与金融绩效的关系,二是环境金融中银行和金融服务的实现。在此基础上他们定义了环境金融产品,认为它是所有为实现保护环境,规避环境风险而开发的、市场化运作的金融产品。

《京都议定书》签订后,三种碳交易市场机制的出现使得温室气体排放权由免费的公共资源变成具有交换价值的私有物品,具备金融资产属性,极大推动碳交易市场与碳金融的形成和发展。世界银行在的研究报告中指出,碳金融为购买产生(或估计产生)温室气体减排量的项目所提供的资源,其定义应为碳减排项目投融资。我国学者王遥[51]也给出碳金融的解释,认为碳金融是应对气候变化的金融解决方案,包含市场、机构、产品和服务等因素,是实现可持续发展、减缓和适应气候变化、灾害管理三重目标的低成本途径。碳金融市场可理解为狭义和广义两个层次:狭义碳金融市场仅指由国际上温室气体排放权指标及其衍生产品的标准化市场;广义碳金融市场还包括与碳交易市场发展紧密相关的CDM投融资市场及节能减排项目融资市场等,本文所指的碳金融市场为广义概念的市场。

(二)碳金融实践

经济低碳化的重点在于节能减排和发展可再生资源,碳金融的功用正在于减排项目的投融资和金融工具的创造。目前碳金融市场集中在欧盟碳排放交易体系和北美碳减排交易体系,本文主要从碳金融市场的参与者与产品角度观察碳金融市场实践。

衍生品交易占到碳金融市场70%以上,欧洲气候交易所(ECX)以EUAs和CERs为基础产品,在2005年4月首次引进EUAs期货合约交易,目前发展相对成熟,引进了具有标准格式、明确规范的碳金融交易合同。纽约―泛欧证券交易集团BlueNext环境交易所现已成为全球规模最大的碳信用额现货交易市场,交易产品有CERs与EUAs的现货和期货。目前全球主要的期货和期权产品为限定于欧盟排放交易体系下的ECX金融合约、EUAs期货及期权、CERs期货及期权。纽约商业交易所(NYMEX)旗下的绿色交易所(Green Exchange)和芝加哥气候期货交易所(CCFE)都是碳金融衍生品交易的活跃平台。

银行业是碳金融市场的主要参与者,绿色信贷是其较早参与的碳金融项目,依据“赤道原则”商业银行在进行贷款投放时,审慎评估贷款方项目的环境破坏风险,有选择性地对可再生资源和清洁燃料项目予以倾斜。荷兰银行、巴克莱银行、花旗银行、兴业银行等银行已经开展了包括低碳项目融资、商业建筑贷款、绿色汽车贷款等多门类的绿色信贷工作。此外,在碳金融市场上商业银行提供的产品和服务还包括:投资参股低碳企业;对CDM等碳项目应收账款融资,并促成排放权交易;为低碳项目交易双方提供咨询、担保、融资租赁、信用增级等中间服务;提供CERs二级市场交易平台,增强碳交易的流动性;推出气候信用卡等个人“碳中和”业务;开发各种与碳交易价格、气候指数挂钩的金融产品,为碳排放权买家提供有效的风险管理工具,为投资者提供新的投资渠道。

为了推进国际碳交易活动,一些国际金融组织实施了专项集合投资计划,设立碳基金。低碳投资的载体一般可分为三类:项目机构、政府购买计划和碳基金,一般而言以上三类都可算作碳基金。按投资主体的不同,碳基金可以分为由国际组织或政府设立管理的公共基金(如英国碳基金、亚太碳基金),由政府、投资银行和企业联合设立实行企业化管理的混合基金(如日本碳基金、德国碳基金)和企业为投资获利而出资设立管理的私人基金(如瑞银绿色投资基金、德银气候保护基金)。目前世界银行管理着12个碳基金以及相关机构,主要有碳原型基金、生物碳基金等特别基金和意大利碳基金、欧洲碳基金等国别基金,特别基金主要功能在于培育京都机制下碳市场的形成和发展,国别基金的主要功能在于购买Jl或者CDM项目的温室气体减排额度,帮助相关工业化国家完成减排目标。

碳金融发展需要金融服务业全方位支持。从碳排放权的产生到最终进入二级市场,过程中资金需求大,未来收益不确定,瑞士再保险创造了具备或有上线的减排交易远期保险产品,美国保险公司已经推出了碳排放信用保险、碳交易保险产品,为碳交易双方提供保障。近年来还出现巨灾债券和天气衍生金融产品规避天气变化对企业运营和销售等造成的不利影响。

(三)碳金融市场研究

碳金融产品价格是吸引和激励投资者与企业关注气候变化,投资碳减排的重要机制。在现货与期货价格的相关性研究中,Wagner和Uhrig-Homburg[52]认为碳期货是合适的风险对冲工具,期货与现货的价格差别在于持有成本,即期货价格是现货价格加上应计利息,风险中性定价理论可运用于碳期货估值。在现货价格与期货价格的关系研究上,Rittler[53]分析EUA现货与期货的短期动态价格和长期价格,发现价格波动传递结构被扩大至高频水平,期货价格最先反映市场信号,后影响现货价格,具有价格发现功能。Arouri 等人[54]也通过VAR模型和STR-EGARCH模型对第二期EUA碳现货和期货价格间的关系进行研究,发现二者的收益和波动性是不对称和非线性的,非线性模型可作为预测EUA价格的有效手段。

碳金融交易是否能够有效运行,市场是否有效,核心在于碳金融产品价格在信息可获得条件下是否有效。Benz和Hengelbrock利用向量误差修正模型对EUA期货市场的ECX和Nord Pool交易平台2005-2007年数据进行分析,发现随着交易强度增加,即使是交易成本较高,流动性较差的期货市场也有助于价格发现。Daskalakis和Markellos[55]对欧盟碳排放交易体系的三个主要交易市场Powernext、Nord Pool和ECX的碳金融资产现货价格和期货价格建模分析,发现现货价格具有跳跃性与非平稳性的特征,碳金融市场是弱势有效的,主要原因在于欧盟碳交易体系尚未成熟,以及政府对短期投资和碳配额融资的限制。

在市场风险方面,Blyth等人[56]采用随机模型分析,发现气候政策不仅对碳金融产品预期价格有直接影响,也强影响碳市场的风险特征。市场设计影响市场风险,同时也影响投资行为。政府在制定碳金融市场规则,预期投资者对价格信号反应程度时应综合考虑风险因素,同样,企业在制定投资和交易时也要区分驱动因素和风险因素。Fankhauser和Hepburn[57]从允许碳排放额度的跨期储藏和跨期借贷等方面对碳金融交易市场进行多角度设计,以此达到碳排放权交易市场具有灵活性和碳排放权价格波动能够具有可预测性。

创新是碳金融不断发展的动力,Fankhauser和Hepburn基于当前碳市场灵活性最大化和成本最小化要求的挑战,从碳排放额度的跨期储藏和跨期借贷等方面进行多角度创新设计。在创新和完善碳市场的研究中,Knox-Hayes[58]提出发达国家碳市场已相对成熟,碳交易可通过现代虚拟的平台实现,但仍需要一个真实的社会连通和人际网络,对于建立未来新型市场,出于社会协调互补和降低沉没成本的考量,可以在现有市场基础上发展伦敦和纽约市场并加强这些金融中心的重要性。

(四)碳金融效应评价

由于具有交易迅捷、流动性高、风控成熟等优势,碳金融衍生品市场在吸引市场参与者、防范碳交易风险方面发挥重要作用。Benz和Klar认为衍生品的价格发现功能可以使投资者对碳交易产品价格做出更合理的估计,制定更加有效的交易策略与风险管理决策。碳金融衍生产品的出现和发展无疑成为碳市场更好发挥资源配置作用的重要推动力量。

相较于传统模式,Haigler[59]认为碳金融通过对温室气体排放权定价的方式提供了更加环保、健康、经济高效的减排机制,可以极大促进发展中国家的清洁能源技术发展。Hogarth[60]对乌拉圭太阳能计划低碳信贷项目的研究得出结论贷款改变当地居民的能源结构,显著降低太阳能使用家庭的系统成本。

杜莉等人[61]还从理论和实证角度分析碳金融的溢出效应,认为碳金融体系的不断拓展,推动减排成本收益的转化,推进能源链转型的资金融通,促进低碳产业发展技术的国际传导,同时转移和管理气候风险,对低碳产业发展发挥重要的助推效能。Kozlecka等人[62]对国际碳基金的研究也从侧面证实国际碳市场的发展和欧盟交易体系的存在提高了投资者特别是欧洲投资者对碳交易的积极性。

(五)简要述评

碳金融已成为低碳研究中一个十分引人注目的新领域。国外研究少见“碳金融”字眼,多以碳市场代替,且研究多基于微观层面(如碳金融产品设计和定价、市场效率、政策设计等),重点关注EU ETS平台和CDM机制,对金融业、工业、农业等各个行业,欧盟、北美、发展中国家均有涉及。由于碳金融仅处在试点阶段,缺乏实践经验,国内研究集中于宏观领域(如市场发展步骤、交易制度选择等),重点研究CDM机制,多为定性分析,定量研究相对缺乏。国内外研究者对碳金融的影响、市场效率等问题有较一致的认识,认为碳金融促成了更规范、安全的碳交易平台,但在微观层面如碳衍生产品定价模式、风险监管等方面莫衷一是。当前的理论研究还难以适应多元发展的碳金融实践,迅速发展的碳金融市场需要加丰富的、前瞻性的理论研究来支撑。

五、主要结论及研究展望

低碳经济实践及低碳研究已经持续数十年,基于上述实践扫描和文献述评可以发现,国内外学者均对以上三种低碳经济工具从不同角度进行了分析和探讨,特别是国外学者对各种工具的优劣、工具和产品定价、制度设计、影响效应等方面已经进行了兼具深度和广度的研究。但囿于实践历史短、数据匮乏、视野狭窄、创新缺乏等原因,各项研究尚未形成一个系统的理论体系,仍存有较多缺陷。为实现低碳实践良性发展,低碳经济理论还有广阔的发展空间。

碳税研究应构建逻辑明晰的因果模型,分析碳税决策者和纳税主体所期望达到的目标、面临的约束及可能的选择,进而对碳税的影响进行科学评价。由于碳税具有累退性,如何在征税同时实现公平是个难题,碳税的设计应着重考量税率上限设定、动态调整、税收返还等方面实现税收中性。单纯依靠征税减排不可避免存在局限性,下一步还应探讨各种减排工具之间的交叉效应及混合工具的设计,以实现最佳成本效益。

碳交易研究中碳排放权配给是起点,随着碳交易市场成熟,分配制度改革是必然趋势,需要更加科学的模型和数据进行理论支持。近年来对碳价格的研究多限于价格驱动因素分析,对价格形成机制、价格波动和调控机制的研究还未深入,欧盟碳排放体系目前处于供大于求状态,且经过金融危机后价格不断下跌,亟需进行价格管理机制的研究。众多文献分析了碳交易市场对电力、能源、造纸等产业的影响,还需随着市场的发展扩展视野,将区域乃至全球层面的产业结升级纳入碳交易市场效应分析架构中。此外欧盟倡议的碳关税充满争议,其正当性辨析和影响分析也有待研究。

因实践起步较晚,国际碳金融市场建设还处于新生阶段,如何设计和建立发展中国家碳金融市场,如何完善发达国家和地区碳金融市场,乃至如何在全球层面建立跨地域、多层次、高效率的市场体系将成为研究重点。在微观层面,碳金融产品定价仍是核心问题,需利用金融学如行为金融、复杂性金融等前沿理论进行研究,形成具有普适性的定价分析范式。金融机构是碳金融市场主要参与者和产品研发者,对其经营模式评价、风险管控进行研究具有重要意义。值得一提的是,随着交易链的不断延展和碳资产证券化,碳掉期交易、碳交易CDs 等创新衍生品将不断涌现,碳金融产品创新设计需要学界给予更多关注。

同时,国内学者应加强对国外经验和理论的学习与反思,考察现行政策和试点实践,结合我国实际,设计我国可行政策组合及实现流程,提出全方位、深层次、多角度的低碳经济实现机制。

参考文献:

[1]STERN N. The Economics of Climate Change: the Stern Review[M]. Cambridge University Press,2007.

[2]PIGOU A C. The Economics of Welfare(4th)[M]. Transaction Publisher,1924.

[3]BAUMOL W J,OATES W E. The Use of Standards and Prices for Protection of the Environment[J]. The Swedish Journal of Economics,1971: 42-54.

[4]HOELLER P,WALLIN M. Energy Prices,Taxes and Carbon Dioxide Emissions[M]. Paris: OECD,1991.

[5]苏明,傅志华,许文,等. 我国开征碳税问题研究[J]. 经济研究参考,2009(72):2-16.

[6]崔军.关于我国开征碳税的思考[J]. 税务研究,2010(1):41-44.

[7]JORGENSON D W,WILCOXEN P J. Reducing US Carbon Emissions: An Econometric General Equilibrium Assessment[J]. Resource and Energy Economics,1993,15(1): 7-25.

[8]LABANDERIRA X,LABEAGA J. Combining Inputoutput Analysis and Micro-simulation to Assess the Effects of Carbon Taxation on Spanish Households[J]. Fiscal Studies,1999,20(3): 305-320.

[9]BRUVOLL A,LARSEN B M. Greenhouse Gas Emissions in Norway: Do Carbon Taxes Work?[J]. Energy Policy,2004,32(4): 493-505.

[10]FLOROS N,VLACHOU A. Energy Demand and Energyrelated CO2 Emissions in Greek Manufacturing: Assessing the Impact of A Carbon Tax[J]. Energy Economics,2005,27(3): 387-413.

[11]魏涛远,格罗姆斯洛德. 征收碳税对中国经济与温室气体排放的影响[J]. 世界经济与政治,2002(08):47-49.

[12]PEARCE D. The Role of Carbon Taxes in Adjusting to Global Warming[J]. The Economic Journal,1991,101(407): 938-948.

[13]MENG S,SIRIWARDANA M,MCNEILL J. The Environmental and Economic Impact of the Carbon Tax in Australia[J]. Environmental and Resource Economics,2013: 1-20.

[14]王金南,严刚,姜克隽,等. 应对气候变化的中国碳税政策研究[J]. 中国环境科学,2009(01):101-105.

[15]KARKI S,MANN M D,SALEHFAR H. Substitution and Price Effects of Carbon Tax on CO2 Emissions Reduction from Distributed Energy Sources[C]//Power Systems Conference: Advanced Metering,Protection,Control,Communication,and Distributed Resources,2006. PS'06. IEEE,2006: 236-243.

[16]BAKER E,SHITTU E. Profitmaximizing R&D in Response to A Random Carbon Rax[J]. Resource and Energy Economics,2006,28(2): 160-180.

[17]ZHANG Z X,BARANZINI A. What Do We Know about Carbon Taxes? An Inquiry into Their Impacts on Competitiveness and Distribution of Income[J]. Energy Policy,2004,32(4): 507-518.

[18]METCALF G E,WEISBACH D. The Design of A Carbon Tax[J]. Harvard Environmental Law Review,2009,33(2): 499.

[19]COASE R H. Problem of Social Cost[M]. JL & Econ,1960:1-44.

[20]DALES J H. Pollution,Property and Prices: An Essay in Policy-making and Economics[M]. Edward Elgar Publishing,1968.

[21]MONTGOMERY W D. Markets in Licenses and Efficient Pollution Control Programs[J]. Journal of Economic Theory,1972,5(3): 395-418.

[22]SUSSMANN A,RICHELS R G. Buying Greenhouse Insurance: The Economic Costs of Carbon Dioxide Emission Limits[M]. The MIT Press,1992.

[23]STAVINS R N. Transaction Costs and Tradeable Permits[J]. Journal of Environmental Economics and Management,1995,29(2): 133-148.

[24]GOULDER L H,PARRY I W H,WILLIAMS Ⅲ R C,et al. The Costeffectiveness of Alternative Instruments for Environmental Protection in a Secondbest Setting[J]. Journal of Public Economics,1999,72(3): 329-360.

[25]FULLERTON D,METCALF G E. Environmental Controls,Scarcity Rents,and Pre-existing Distortions[J]. Journal of Public Economics,2001(80): 249-267.

[26]VENMANS F. A Literaturebased Multicriteria Evaluation of The EU ETS[J]. Renewable and Sustainable Energy Reviews,2012,16(8): 5493-5510.

[27]VESTERDAL M,SVENDSEN G T. How Should Greenhouse Gas Permits Be Allocated in The EU?[J]. Energy Policy,2004,32(8): 961-968.

[28]CHRISTIANSEN A C,ARVANITAKIS A,TANGEN K,et al. Price Determinants in The EU Emissions Trading Scheme[J]. Climate Policy,2005,5(1): 15-30.

[29]MANSANET-BATALLER M,PARDO A,VALOR E. CO2 Prices,Energy and Weather[J]. The Energy Journal,2007: 73-92.

[30]HINTERMANN B. Allowance Price Drivers in The First Phase of The EU ETS[J]. Journal of Environmental Economics and Management,2010,59(1): 43-56.

[31]CHEVALLIER J. Detecting Instability in The Volatility of Carbon Prices[J]. Energy Economics,2011,33(1): 99-110.

[32]NAZIFI F. Modelling The Price Spread between EUA and CER Carbon Prices[J]. Energy Policy,2013,56:434-445.

[33]BENZ E,HENGELBROCK J. Liquidity and Price Discovery in The European CO2 Futures Market: An Intraday Analysis[C]. 21st Australasian Finance and Banking Conference. 2008: 16-18.

[34]BREDIN D,MUCKLEY C. An Emerging Equilibrium in The EU Emissions Trading Scheme[J]. Energy Economics,2011,33(2): 353-362.

[35]PERDAN S,AZAPAGIC A. Carbon Trading: Current Schemes and Future Developments[J]. Energy Policy,2011,39(10): 6040-6054.

[36]DUTSCHKE M,SCHLAMADINGER B,WONG J L P,et al. Value and Risk of Expiring Carbon Credits from CDM Afforestation and Reforestation[J]. Hamburg Institute of International Economics,2005,5(1):109-125.

[37]马建平,庄贵阳. CDM项目开发的风险因素识别与规避对策[J]. 华中科技大学学报(社会科学版),2011(2):87-92.

[38]SILVA E C D,ZHU X. Emissions Trading of Global and Local Pollutants,Pollution Havens and Free Riding[J]. Journal of Environmental Economics and Management,2009,58(2): 169-182.

[39]STANKEVICIUTE L,KITOUS A,CRIQUI P. The Fundamentals of the Future International Emissions Trading System[J]. Energy Policy,2008,36(11): 4272-4286.

[40]BODE S. Multiperiod Emissions Trading in The Electricity Sectorwinners and Losers[J]. Energy Policy,2006,34(6): 680-691.

[41]LEE C F,LIN S J,LEWIS C. Analysis of The Impacts of Combining Carbon Taxation and Emission Trading on Different Industry Sectors[J]. Energy Policy,2008,36(2): 722-729.

[42]GULBRANDSEN L H, STENQVIST C. The Limited Effect of EU Emissions Trading on Corporate Climate Strategies: Comparison of A Swedish and A Norwegian Pulp and Paper Company[J]. Energy Policy,2013,56:516-525.

[43]TUERK A, COWIE A, LEOPOLD A. The Influence of Emissions Trading Schemes on Bioenergy Use[C]. IEA Bioenergy Task,2011.

[44]NEWELL R G,PIZER W A. Regulating Stock Externalities under Uncertainty[J]. Journal of Environmental Economics and Management,2003,45(2): 416-432.

[45]GOLDBLATT M. A Comparison of Emissions Trading and Carbon Taxation as Carbon Mitigation Options for South Africa[R]. Putting A Price on Carbon: Economic Instruments to Mitigate Climate Change in South Africa and Other Developing Countries: Papers Read at The Energy Research Centre,University of Cape Town,Held in Cape Town on,2010(24): 181-195.

[46]MCKIBBIN W J,WILCOXEN P J. The Role of Economics in Climate Change Policy[J]. The Journal of Economic Perspectives,2002,16(2): 107-129.

[47]TAMURA H,KIMURA T. Modeling and Policy Assessment of Carbon Tax and Emissions Trading for Preserving Global Environment[C]. World Congress. 2008,17(1): 15505-15510.

[48]SALAZAR J. Environmental Finance: Linking Two World[C]. A Workshop on Financial Innovations for Biodiversity Bratislava,Slovakia. 1998: 112-117.

[49]COWAN E. Topical Issues In Environmental Finance[R]. Economy and Environment Program for Southeast Asia (EEPSEA),1998.

[50]LABATT S,WHITE R R. Environmental Finance [M]. New York: John Wiley and Sons,2003.

[51]王遥. 碳金融:全球视野与中国布局[M]. 北京:中国经济出版社,2010.

[52]UHRIG-HOMBURG M,WAGNER M. Futures Price Dynamics of CO2 Emission Allowances: An Empirical Analysis of The trial Period[J]. The Journal of Derivatives,2009,17(2): 73-88.

[53]RITTLER D. Price Discovery and Volatility Spillovers in The European Union Emissions Trading Scheme: A High-frequency Analysis[J]. Journal of Banking & Finance,2012,36(3): 774-785.

[54]AROURI M E H,JAWADI F,NGUYEN D K. Nonlinearities in Carbon Spot-futures Price Relationships during Phase II of The EU ETS[J]. Economic Modelling,2012,29(3): 884-892.

[55]DSDKALAKIS G,MARKELLOS R. Are The European Carbon Markets Efficient?[J]. Review of Futures Markets?,2008,17(2) 103-128.

[56]BLYTH W, BUNN D, KETTUNEN J, et al. Policy Interactions, Risk and Price Formation in Carbon Markets[J]. Energy Policy, 2009, 37(12): 5192-5207.

[57]FANKHAUSER S, HEPBURN C. Designing Carbon Markets. Part I: Carbon Markets in Time[J]. Energy Policy,2010,38(8): 4363-4370.

[58]KNOX-HAYES J. The Developing Carbon Financial Service Industry: Expertise,Adaptation and Complementarity in London and New York[J]. Journal of Economic Geography,2009,9(6): 749-777.

[59]HAIGLER E. Carbon Finance for Development: An Efficient Cookstove Case Study[J]. Colo. J. Int'l Envtl. L. & Pol'y,2011(22): 283.

[60]HOGARTH J R. Promoting Diffusion of Solar Lanterns Through Microfinance and Carbon Finance: A Case Study of FINCA-Uganda's Solar Loan Programme[J]. Energy for Sustainable Development,2012,16(4):430-438.

碳减排的经济影响分析范文第5篇

关键词:碳排放权分配;碳博弈;完全信息;激励政策

中图分类号:F713 文献标识码:A 文章编号:1001-828X(2014)010-000-02

据IPCC第四次报告指出,1970年至2004年期间,全球二氧化碳排放量已经增加了大约80%。由此引发温度上升、冰雪圈消退、海平面上升、生物圈变化等一系列气候变化。而中国正处于经济快速发展阶段,能源消耗不断上升,二氧化碳排放量也急剧上涨,现今中国已成为仅次于美国的世界第二大二氧化碳排放国。针对二氧化碳排放问题,2009年12月在哥本哈根会议上,中国提出至2020年将在2005年基础上削减碳密度40%-50%。然而在近几十年内,一方面由于经济发展所需能源量上涨且以煤炭为主的能源消费结构仍在我国占主导地位,另一方面由于企业自觉进行节能减排的动力不足,因此在市场化体制下政府必须实施有效经济激励手段实现减低碳排放的目标。经济激励手段是指利用价格机制,通过影响成本和收益,采取管制和激励机制,促使污染者减少或消除污染,从而实现污染外部性内部化的目标。因此本文将通过企业与政府的节能减排博弈分析,讨论政府应如何实施碳税(管制)和补偿(激励)机制刺激企业进行节能减排以缓解我国碳排放压力,并讨论在管制下的政府与企业收益。

一、问题的描述及假设

现今中国60%~70%的碳排放来自企业生产活动中的能源消耗,然而企业不愿意花费大量财物在于削减碳排放。其主要问题在于碳排放的公共性与负外部性,企业追求利润最大化,社会追求社会总福利最大化,企业的私人收益与社会收益不一致,从而导致了碳排放配额的最优而非社会最优,这通常会导致环境污染、资源消耗,从而表现出市场失灵[1]。而市场与社会效益的不一致单纯依靠市场本身无法得到有效解决,因此需由国家采取干预手段促使外部污染内部化,最终实现“帕累托”最优,实现企业私人利益最大化与社会福利最大化的统一[2]。

关于环境内部化的政府经济激励手段,奥斯彻(Opschoor)和沃斯(Vos)将其分为收费、补贴、押金-退款、建立市场和执行刺激五大类,据统计意大利、瑞典、美国、法国、德国、荷兰六国的污染控制手段中50%是通过税收收费,30%是通过补贴促进设备更新和技术更新,剩下的为押金-退款和排污权交易等机制[3]。税收收费手段旨在通过对碳排放中二氧化碳的排放以及碳处理等征收一定的费用,从而造成外部性的主体(即企业等排污者)承担相应的外部成本或外部效果。即企业承担部分污染的环境净化处理费用,从而将部分外部成本转化为内部成本。目前芬兰、瑞典、英国、荷兰、加拿大等国已实行碳税征收政策。补贴主要是政府根据企业用于设备更新或污染物处理中的支出费用进行相应补贴,补贴的金额为边际社会成本与边际私人成本之差[4]。我国学者也论证了实行碳税和补贴政策可显著削减二氧化碳的排放,且对未来经济无明显的负面影响[5~6],但现今我国关于碳税和补贴的尺度问题并为形成统一定论,因此,本文主要是从碳税和政府补贴两个方面分析政府的经济激励手段并对其进行定量分析。为了分析博弈过程,本如下假设:

(1)假设在某个高碳消耗的行业中存在两类特征相同的企业,设为企业1和企业2。即企业1与企业2提供的产品对消费者而言效用一致,在无其他干扰项时,其在产品、利润一致。现企业1为了企业长远发展及于环境协调采取了设备更新、技术投入等一系列节能减排措施;企业2仍保持原先生产模式。设企业1和企业2的需求量分别为q1和q2,产品价格为p,a,b为常数,则

(2)企业与政府都是“理性经济人”,政企之间博弈为完全信息博弈。即在动态博弈中,企业的价格对竞争对手和政府是透明的;政府政策对企业之间也是透明的。

(3)单位产品单位产品成本为C0,采用新技术或税收促使单位产品降低成本CX,其中CX=f(I),I为企业用于设备更新和技术等的投资水平。

二、模型的建立与分析

1.基于政府补贴的动态完全信息碳博弈

本模型为三阶段动态博弈描述企业与政府之间的博弈:第一阶段,政府宣布对企业节能减排的设备更新进行补贴,补贴率为β,即政府与企业对设备更新分担比率分别为βI和(1-β)I。第二阶段,企业在政府政策引导下决定节能减排的设备更新和技术投入水平I,假设设备更新可使企业单位产品成本降低CX=dI,其中d反应的是投资节能减排对污染物排放量的降低效益,设为设备更新效益,则d越大则减排效果越明显,那么企业节能减排的成本越大。第三阶段,假设两个效用一致的企业1与企业2,对企业间进行Cournot产量竞争[7]。

(1)K=3:企业1进行节能减排,对设备更新、碳处理等的投资金额为I;企业2保持传统生产,则企业利润为:

令,,则可得

(2)K=2:企业1决定其投资水平I,

令则

(3)K=1:政府基于政企福利最大化的角度对补贴率β进行确定,且假设企业1投资I为每单位产品增加环境福利C1,则政企总福利W为:

令则可得:

通过对以上各均衡结果的分析我们得到如下结论:

一、企业的最佳投资金额与d成反比关系,即如果单位投资对二氧化碳减排效果明显企业对设备更新的投资热情并不足。现今我国多数新设备含有很高技术含量,节能减排效果明显,尤其在温室气体排放的处理上,但是大多数企业对更新设备热情不高,不愿花费大量投资在于节能减排设备上。二、政府的最佳补贴率与d成正比,即投资对Cx影响大则政府会通过补贴刺激企业增大投资,每单位投资对二氧化碳减排效果越明显则政府的补贴率越高。补贴率的制定和最佳投资金额反应了政府与企业之间的博弈关系。如果补贴率过高则企业会积极响应投资,但是这会降低了社会总福利,而补贴率太低,则企业投资的动机明显不足。

2.基于碳税的动态碳博弈

本模型采用三阶段逆序求解法,第一阶段,政府决定对企业的二氧化碳排放进行收税,每单位产品征收税款t;第二阶段,企业选择研发水平I,假设投资I可使单位产品的碳税等节约成本Cx,假设Cx=DI;第三阶段,企业在市场中进行Cournot竞争[7]。

(1)K=3:企业1和企业2的利润分别为:

令,则可得

(2)K=2:企业一决定其投资水平I,

令则可得:C

(3)K=1:政府决定碳税水平t,则政企总福利为:

其中eI为碳排放的减少量对政府福利的增进量

令则可得:

通过对以上均衡结果的分析可得:首先企业的最佳投资金额与碳税成反比,即碳税制定高投资金额反而少,这表明即使碳税征收并不是促使企业节能减排的唯一措施且过高碳税对企业节能减排起到了反作用。其次,碳税t与d呈正比,则若单位投资对碳排放减排力度越大,则政府越有必要提高其碳税。因此可知碳税的制定与d相关,d越高则会促进政府提高t,但是d过高,则会降低企业I的投入,因此碳税制定必须合理制定,否则不仅起不到节能减排效果还会减慢企业更新设备的步伐。

三、结论

在碳排放权分配中,因为二氧化碳排放的负外部性原则和企业追求自身利益最大化,所以企业更新设备降低二氧化碳排放量的动机不足。因此政府必须通过管制和激励手段促使企业的节能减排行为。本文通过构造三阶段动态博弈模型分析政府通过补贴和碳税机制促进企业进行设备更新与技术改造从而降低碳排放。从博弈模型分析得到:第一,当政府采取设备更新补贴时,补贴率与d呈正比,则当单位投资对碳减排效益越高,政府越有必要提高补贴率;第二,单位投资对碳减排效益高,则政府越有必要提高碳税征收标准,这样可以促进企业更新设备节能减排。第三,企业的投资金额与d呈反比,即使单位投资对碳减排效益高,但是企业投资热情并不高,这解释了为何我国现大多数企业排污技术设备落后。因此,单纯依靠市场的调节作用并不能有效使企业节能减排,需要通过政府的经济激励手段激发企业进行排污设备更新,而现阶段大多数企业排污设备落后,应先通过补贴提高企业技术研发能力和设备更新能力,通过补贴从而使企业进行技术革新,提高单位投资的碳减排效率,减少能源消耗。当企业减排效率和设备水平提高至一定阶段后,采取税收手段强迫企业采用减排效果更高的设备、工艺并进一步增进企业研发水平。

二氧化碳的不断排放激发了温室效应、冰川融化等问题又威胁到人类的生存。节能减排刻不容缓,首先必须依靠科技的进步,只有科技的进步才能提高单位投资的碳减排效率,提高设备和技术效益,促使企业积极降低碳排放。其次,必须采取有效经济激励手段,我国现今应实施碳补贴政策,通过补贴促使企业更新设备,提高单位投资的碳减排效率,继而实施碳税征收,更进一步促进企业设备更新水平。再次,必须实行有效的经济激励机制和政策法令,只有通过经济手段与政府法令的结合才能促使企业实行节能减排。最后,从点滴做起,培养节能减排意识。

参考文献:

[1]庇古.福利经济学[M].1920.

[2]Tom Tietenberg.环境与自然经济学(第五版)[M].经济科学出版社,2003.

[3]Opschoor J.B and Vos. Economic Instruments for Environmental Protection . OECD,Paris,1989.

[4]赵晓兵.污染外部性的内部化问题[M].南开经济研究.1999(04):14-17.

[5]中国气候变化国别研究组.中国气候变化国别研究[M].北京:清华大学出版社,2000.

[6]魏涛远,格罗姆.斯洛德.征收碳税对中国经济与温室气体排放的影响[J].世界经济与政治,2002(8):47-49.

相关期刊更多

石油石化绿色低碳

部级期刊 审核时间1个月内

中国石油化工集团有限公司

中国汽车界

部级期刊 审核时间1个月内

中国机械工业联合会

摩擦学学报

北大期刊 审核时间1-3个月

中国科学院