前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇机电一体化重点范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
【关键词】机电一体化 电机控制 相关讨论
众所周知,随着科学技术的不断发展以及现代先进生产加工技术的不断完善,相关执行机构的重要性不言而喻,因为执行机构在自动控制系统工作中起着至关重要的作用。但是当前我国国产大流量电动执行机构无论是在相关控制手段上还是在机械传动机构上都出现明显落后和偏多的情况,同时电动执行机构中其结构相对复杂且其可靠性能也相对较低。本文针对执行机构发展的相关缺陷和不足,对如何采用机电一体化技术将阀门和控制器进行有机融合进行深度探究。
一、机电一体化发展历程与现代化技术发展趋势
从始初的数控机床逐渐演变为微电子技术机电一体化并在基础上沿用了可编程控制器,同时电力电子的出现也会机电一体化的发展奠定了重要基础。还需要强调的是,现代机电一体化技术主要是由激光技术和信息技术以及相应的模糊技术共同构成,其无论是在运转效率上还是在工作质量上都有着较大进步。
微控制器在生产数字化机电产品中起着重要作用,数控机床施工和机器人施工都是数字化机电一体生产中的重要表现形式,与此同时,随着科学技术的飞速发展和计算机系统的广泛应用,虚拟设计技术以及集成制造技术都是数字化机电一体应用中的重点环节。其优点一般具有软件可靠性、软件可维护性和软件自行诊断性以及软件高可靠性等。新型数字化技术的出现在一定程度上使远程操作远程诊断和远程修复成为可能。
智能化就是要求在进行机电产品生产的过程中其产品又有一定的智能特性,并使相关产品能够独立进行逻辑思考和自主决策。CNC中的人机对话功能就是机电产品智能化的的一种重要表现形式,其会在设置智能工艺数据库的同时使产品使用和产品操作以及产品维护带来较大便利。需要强调的是,模糊控制技术、灰色理论技术、神经网络技术和小波理论技术以及混沌分岔技术都是机电一体化产品智能化的几种体现,并在此基础上为机电一体化技术的发展奠定了有力基础。
因为生产机电一体化产品的商家和种类相对较多,那么在进行研制机械接口和研制动力接口以及开发环境接口的过程中就会产生一定的困难,具有集减速变频调的动力驱动单元以及需要进行视觉信息处理和图像信息识别等工作就是其中厂商研制开发机电一体化产品中的典型实例。
二、硬件控制与相关工作原理分析
(一)机电一体化智能执行机构主要分为智能控制部分以及智能执行驱动部分两种,而我们通常所说的控制部分主要包括单片机、IPM逆变器、输入输出通道和整流模块以及报警电路等,而智能执行驱动部分主要是由三相伺报电机结构以及位置传感器结构二者共同构成。
(二)被检测逆变模块中的电压位置信号以及三相输出电流会被相关程序转换,并在此过程中传送相应单片机上。而单片机则是用过8255控制PWM波发生器的,通过其中的光电耦合被逆变模块IPM所应用,这样就在一定程度上实现了阀位控制工作以及电机变频调速工作等。需要注意的是,在逆变模块进行正常工作的过程中,380V电源调整模式会将其所需直流电压信号进行全桥整流。
(三)双环控制技术是进行机电一体化电机控制工作中的主要技术,其内环和外环分别为速度环和位置环。我们需要了解的是,速度环的主要工作任务是将基础速度与设定速度进行相互比较,之后通过对PWM波发生器的载波频率的变换实现机电一体化电机自动转速调节,此时的速度调节器是以模糊神经网络控制算法为主要计算手段的。而外环中的相应速度设定则主要是根据其当前所处位置来完成并在此基础上形成内环设定值的。因为流量阀减速和流量阀匀速以及流量阀加速是其机构运行中的三个主要运行阶段,此时每个阶段中的运行时间和运行加速度以及特定位置特定运行的频率也有所不同,速度给定发生器的主要工作原理就是当实际阀位与相关给定阀位不等时,其会以恒定加速度为主要加速手段,此时的减速点会根据相关阀位值和阀位给定值以及当前速度这三者的大小来进行计算并得出具体数值。
(四)阀门柔性开关以及阀位极限位置判定是我们在执行机构是所要考虑的两项主要技术因素,阀门柔性开关的主要功能是当阀门开关的过程中保证阀门不受损伤,正确的做法是,我们应该运用微处理器对变频器输出电压和变频器输出电流进行相对精准的计算,并在计算的过程中得出输出力矩,在得出力矩信息后自动调节速度以防止阀门撞击。阀门全开位置以及阀门全关位置就是阀门的极限位置,传统执行机构中阀位监测在监测的过程中容易出现阀门松动,我们应该运用单片机将两次监测信号进行具体对比,并在确认已达到正确阀门极限位置的同时切断异步供电电源。
三、结束语
综上所诉,机电一体化中的电机控制是当下我们要亟待解决的问题,正确的做法是要根据机电一体化技术的技术发展现状和技术应用现状作为分析基础,之后进行对新型电动执行机构的相应合理方案进行较为科学的制定。本文针对执行机构发展的相关缺陷和不足,对如何采用机电一体化技术将阀门和控制器进行有机融合进行深度探究,希望为我国机电行业的发展贡献出一份力量。
参考文献:
[1]李晓华,尹项根,陈德树.中小型电动机综合保护[J].电力自动化设备2000(5)
【关键词】机电一体化;汽车;应用
计算机尤其是微型计算机在20世纪80年代被广泛的应用在机械生产控制中,将机电有效的结合在一起,逐渐发展为一种一体化技术。机电一体化技术的广泛应用,对机械行业产生了十分明显的经济效益,提升了生产效率,同时增强了产品的质量功能,有效减少了材料能源的耗损。提高了企业在行业中的整体竞争能力。
一、机电一体化技术的基本内容
机电一体化技术的重要出发点是工程系统,结合电子机械等相关技术,充分实现最优化的系统或者产品的技术综合。机电一体化技术是指将技术相关原理在机电一体化系统中充分的应用与发展。机电一体化技术也可以被看作是技术群的综合名称。机电一体化产品系统通过具有若干个特殊功能的电子机械要素共同组成的有机体,能够充分符合人的最佳使用要求,同时也是机械系统与电子系统的有机置换和结合,进一步对新的产品赋予全新的性能,拥有优良的人机合作关系。机电一体化系统工程集成综合了机械与电子工程,也就是提供机电一体化系统的规格与功能,技术工作人员应用机电一体化技术对整个体系过程实施必要的制造与设计。机电一体化的重要思想是设计系统原理与集成综合技术。工程系统、信息控制理论属于机电一体化的技术方法论。在某种意义上分析,机电一体化思想可以称之为一体化的思想。
二、机电一体化技术特点
(一)机电一体化技术具有极高的安全性
机电一体化的相关产品具有的功能包括自动化监控、警报、自动化诊断、自动化保护等性能。在工作整体过程中,当电力出现过载、过流等一系列故障时,能够采用自动化的保护方法,尽量防止与减少人员与机械设备发生事故,明显提升了使用设备的安全性能。
(二)机电一体化技术具有较高的生产能力
机电一体化的产品大部分都具有自动信息处理与控制的能力,其检测控制的灵敏性、精敏度以及应用范围都产生了极大程度提升,利用自动控制系统能够更加准确的保障机械机构的执行情况按照设计的具体要求完成既定的操作,保证工作获得最好的质量和产品的合格效率。与此同时,因为机电一体化的产品已经充分实现了自动化控制,有效提升了生产的能力。
(三)机电一体化技术提升了使用功能
机电一体化技术通常利用控制程序与数字化完成现实,操作手柄与按钮数量的逐渐减少,促使操作过程逐渐简单化并且十分便捷。机电一体化技术操作程序按照预先设定的过程逐渐通过电子操作系统完成实现,系统可以对全部操作反复实现。机电一体化高级产品能够利用被控制对象具备的数学相关模型以及外界变化的参数自动随机寻找最理想的工作方式,充分实现最优化自动操作。
(四)广泛的适用范围
机电一体化产品已经超出了相关产品的单项技术功能的控制,拥有复合功能技术,极大程度上提升了产品自身的自动化功能与水平。机电一体化产品通常具备一定的自动补偿功能、自动监控功能、自动保护功能以及智能化等,能够在不同领域场合的应用,符合客户提出的更强的应变需求。
三、汽车机电一体化技术的发展
机电一体化技术在汽车行业的应用初级阶段。这个阶段主要发生的时间是在上世纪60年代到70年代,这段发展时间重点是利用电子机电技术对部分汽车机械功能实施有效的改善,机电一体化技术此阶段在汽车上最典型的应用就是电子控制喷射燃油。上世纪70年代到90年代是汽车机电一体化技术应用发展时期。在这个阶段中发生的制造设计,重点是利用机电一体化进行集成大规模电路应用,集成大规模电路的有效运用能够及时解决自动控制机械设备的各类问题,对于提升汽车运行过程中的可靠功能发挥了关键作用。上世纪90年代至今是汽车机电一体化技术应用的成熟发展阶段。在这个阶段中制造设计的汽车,伴随着逐渐发展兴起的微点机电一体化技术,推动了汽车机电一体化技术的日渐成熟,在这个时间内应当尤其重视整体机电一体化技术的设计,再结合网络计算机与技术信息在制造生产汽车行业中的大范围运用,使得汽车更加的智能自动化。
四、机电一体化技术在汽车上的应用
汽车的电子化开始于电源系统。从前的发电机都属于直流类型发电机,之后被硅二级管与交流发电机共同结合所替代,能够有效提升充电效率的可靠性能。从此以后,调整之后的电压也从电路固体调节器替代了电压机械式调节器,进一步在点火发电机上的配电设备上也从凸轮机械式开关转变为晶体管功率。
(一)微机控制发电机体系
控制发电机单元的中心是利用微处理器或是专门设计的发动机集成大规模电路。通过各个传感器接收电压模拟信号以及从输出轴发动机获得的脉冲信息全部传输至控制发动机单元。信号模拟利用数字模拟直接转变为信号数字。将这些信息作为重要基础,在控制发动机单元中对燃料空气比例、点火具体时间、循环排气效率实施最好的计算,将最终的计算结果当做喷射阀燃料控制与点火设备的驱动信息进行输出,用来对空气与燃料质量之间的比例实施控制。当燃料空气比例增加时,燃料十分稀薄,点火非常困难。相反,当燃料空气比例减少时,因为缺乏充足的氧气,在气体排放过程中缺乏充足的燃烧的一氧化碳增加的含量。所以,将燃料控制比例很好的在最佳情况下实施控制,对于各种发动机运动保持正常负荷是非常关键的。
(二)汽车激光测距雷达系统
汽车防按控制系统与激光单片机的有效组合,能够在行驶正常速度下或者是倒车减速时对前后方距离范围内检测是否存在障碍物体,并且在关键时间组织报警,进一步有效阻止发生的交通事故。这个系统重点通过计算机对车间距离的处理器、雷达测距、前后汽车状况等进行控制。
在汽车格栅前部安装测距激光雷达。通过光学天线发射的光束遭遇了前方的障碍物之后,出现了散射的后方信号,同时被光学天线进行了接收,并且调节出方位距离信息。利用中央处理设备分析持续输出的方位距离信息,能够准确判断出物体是否在前面运动,计算出相应的汽车间距和速度,并且判断它能否与本车进行必要的接触,进一步决定汽车行驶的安全速度。当出现危险情况时,系统与警报装置接触,发送警报信号。
(三)自动变速器的电子监控
自动化变速器的重要作用是为了其损耗功率的降低,提升传递动力系统的有效功率,增加了变速装置的档数,有利于汽车最佳行驶的速度比例,充分实现了汽车的安全、舒适功能。发动机具体工作情况需要利用传感器实施检测,接收的数据信息将被电子监控装置输入且处理,并且安装换挡具体信息,开关的程序以及开关自动跳合有关信息,通过选择的电子监控设备符合最佳行驶条件的信息档次,成功被转变为电液元件执行的变量液压对换挡实施控制。使用自动变起器对电路实施监测可以有效的对电子监控设施进行自检监测,也就是在行驶之前监测所有的电路。假如汽车发动之后,报警灯处于熄灭情况,表明其具备了正常的功能。相反,假如系统出现了故障,自动化变速器表现为非电控状态,这时,电子监控虽然已经失去了优化性能,可是变速器能够持续工作。
(四)制动系统
为了能够令汽车在行驶的整体过程中凭借适合的减速速度降低直行车速停车,确保了行驶的可靠、安全性能,汽车上全部装置了制动行车设备。最先仅在汽车后轮上安装制动设备,可是伴随着不断提升汽车速度与质量,简单依靠后轮缺乏制动来提升充足的制动能力,这样才会促使汽车前轮上安装制动设备。人们一般对制动发生时出现的动态轴荷转移、前轮重量增加以及后轮重量减轻的认知,后轮发生抱死更加容易出现汽车失去控制方向的能力,同时还要逐渐开发对汽车后轮制动产生限制效果的设备,也就是汽车抱死制动装备。其重要的功能就是制动轮可感知的每一个瞬间产生的运动行为,并且按照这种运动情况对应的调节制动装备具有的大小动力钜,防止汽车轮出现抱死现象。其中ABS系统在汽车上应用是最为显著的电子监控技术,利用制动设备对方向稳定性的维持以及对制动距离的缩减,能够有效提升了汽车行驶的安全性。
关键词: 机电一体化技术;煤矿;应用;发展趋势
中图分类号:TH-39文献标识码:A文章编号:1671-7597(2012)0110129-01
0 前言
机电一体化技术就是机械、计算机、信息处理和自动控制技术综合运用的复合技术,是微电子技术向传统机械工程渗透而形成的融合机械工程、电气工程、计算机技术、信息技术等为一体的新兴综合技术。机电一体化技术顺应了当今科学技术发展的规律,示了强大的生命力。由于煤炭生产是将数百、数千万吨煤炭从地层深处采掘、运送到地面,因此需采用大量的机电设备才能实现这一目标,而机电一体化煤矿产品则是实现高产高效的最好选择。机电一体化将机械与电子技术融为一体,使物流、能流、信息流融为一体。
1 机电一体化在煤矿中的应用
在煤炭行业中,如西方国家发展了连续采煤机,采用一种介于房柱式和长壁式体系之间的一种短壁式的开采模式进行开采,该方法的特点是液压支架是不能自行的。随后发展了一种可移动的支架(1979年),它是在锚杆钻机基础上改装而成。随后将长壁式回采工作面支撑掩护式支架架型移植到行走支架上,又发展了履带式的行走支架,目前国际上应用的履带行走支架均属此类产品。我国的煤炭行业随着长期的大规模的粗放开采,原始的开采方式已不再适合国家对能源的需求。特别是大量的矿井边角煤、残留煤、“三下”煤及大量被掠夺式开采破坏的煤炭资源的回收越来越紧迫。急需发展适合该类资源回收的采掘设备。
1.1 矿井安全生产监测监控系统中的应用。矿井安全生产监控系统是最能体现煤矿机电一体化的技术之一。我国监测监控技术应用较晚,20世纪80年代初,先后从波兰、法国、德国、英国和美国等引进了一批安全监控系统(如DAN6400、TF200、MINOS和Senturion-200),在部分煤矿中应用;在引进的同时,通过消化、吸收并结合我国煤矿的实际情况,研制出KJ2,KJ4等系统并通过了鉴定。
20世纪90年代以来,我国自行研制开发出了一批具有世界先进水平的监控系统,如煤炭科学研究总院重庆分院的KJ90系统、煤炭科学研究总院常州自动化研究所的KJ95系统等,它们的主要特点是:测控分站的智能化水平高;具有网络连接功能;系统软件采用了Windows操纵系统。同时,在“以风定产,先抽后采,监测监控”12字方针和煤矿安全规程有关条款指导下,划定了我国各大、中、小煤矿的高瓦斯或瓦斯凸起矿井必需装备矿井监测监控系统。自此,大大小小的系统生产厂家如雨后春笋般的不断掘起,为各煤矿提供了更多的选择机会,且促进了各厂家在市场竞争前提下不断优化产品质量和服务意识。经过多年的实践表明,安全监测监控系统为煤矿安全生产和治理发挥了十分重要的作用。对国产煤矿监测监控系统及配套传感器等设备的现场应用效果进行综合评价,煤炭科学研究总院重庆分院的KJ90、天地科技股份公司常州自动化分公司的KJ95、煤炭科学研究总院抚顺分院的KJF2000和北京瑞赛公司的KJ4,KJ2000等系统代表了我国煤矿监测 监控系统的现有技术水平。
1.2 矿井提升机中的应用。矿井提升机是一种实现机电一体化较好的矿山大型设备,全数字化,交、直流提升机。特别是内装式提升机,从结构上将滚筒和驱动合为一个整体,大大简化了机械结构,是典型的机电一体化设备,充分体现了机械-电力电子-计算机-自动控制的综合体。全数字提升机高度可靠,具有可重复性故障寻址、完整的诊断举措措施和自诊断功能,以及简朴而快速的通讯功能;它采用总线方式,大大简化电气安装;硬件配置简朴,互相兼容,零备件少;可以利便地实现软启动、软件控制和改变瞬间加速度。国产全数字化直流提升机已成为各煤矿提升机的首选机型。我国研制成功的具有自主知识产权的全数字化直流提升机的核心部件ASCS是由双CPU构成的计算机系统。除此之外,我国还用SIMADYND和S7研制成功了第一台交-交变频器供电的交流提升机。提升机因为采用了计算机技术,其安全保护系统更为完善。该系统的主要特点是:采用两台计算机装置,每台都有自己独立的检测、传感装置和数据处理系统。这两台计算机同步工作,互相检测,互为备用,对提升行程实现直接检测和间接检测容器位置相结合的方式,两者进行比较、校正,实现行程自动控制。计算机对安全回路、制动回路、电源和驱动回路进行实时检测,实现故障记忆,极大地提高了提升机的安全性能。
1.3 井下带式输送机中的应用。大型综采设备的使用,极大地带了带式输送机的技术水平的发展,大功率、长间隔带式输送机的枢纽技术研究和新产品的研发也取得了很大的提高。如大倾角长间隔带式输送机成套设备、高产高效工作面顺槽可伸缩带式输送机等,并对带式输送机的枢纽技术及其主要元部件进行了理论研究和产品开发,成功的研制了多种软起动和制动装置以及以PLC为核心的可编程电控装置、驱动系统采用调速型液力耦合器和行星齿轮减速器,我国已自行生产制造了多种类型的带式输送机。
2 煤矿机电一体化技术应用的发展趋
我国自造的煤矿机电一体化设备都具有智能化、程序化、信息化的特点,以及设备体积小、操作、维护方便、保护齐全、性能可靠等优点。这些设备在煤炭生产中的广泛应用,不仅减轻了操作人员的劳动强度,而且极大地提高了煤矿的生产水平和能力,创造了巨大的经济效益和社会效益。但是,我国的煤矿机电一体化技术与发达国家相比,还有一定的差距,因此还有很多的工作需要继续研究,未来应该开发有自主知识产权的以煤矿开采技术及配套装备为主导的核心技术,研究具有自主知识产权的核心装置;增加产品的通信功能,以适应综合自动化的需要;开发以微处理器和微机为基础的矿井设备工况和健康监测以及微处理器、计算机和专家系统的应用等;煤矿机器人仍然是煤矿机电一体化技术今后研究的重点之一。
3 结束语
近年来,随着微电子技术、计算机技术、软件技术、传感器技术和自动化技术的飞快发展,信息流成为机电一体化的主要特色。其产品实现自动化、数字化、智能化,在性能和功能方面均实现了质的飞跃。
因此,机电一体化技术是企业信息化的重要支撑技术,是矿山综合自动化的基础。机电一体化技术在煤矿采、掘、运装备的应用和推广,极大地提升了我国煤矿生产的综合实力,为实现高效、安全、洁净、结构优化的煤炭工业生产打下了扎实的基础。
关键词:机电一体化;传感器;应用
中图分类号:TH39文献标识码:A
doi:10.14031/j.cnki.njwx.2018.02.031
机电一体化涉及到机械制造、自动控制等多种技术,而传感器技术是其实现自动化控制的重要一环,它的技术高低对系统的功能起着影响和决定作用。
1传感器技术的意义
机电一体化系统中最核心的部件就是传感器,同样的传感器技术也是系统的关键技术。传感器能够获取被测物体的相关信息,并对系统进行传输,为系统的决策和控制效率的提升提供技术保障。机电一体化系统中测量部分是由电路和传感器等部分组成,主要是对待测对象的信息采集和收纳,再给系统的控制提供参数等数据的决策参考,保证系统的有效控制。传感器在测量部分中能够提高收集参数的准确率和数据获取的速度,有利于测量模块更高效准确地为系统提供科学准确运行的信息,也能够使系统进行自动化检测。
2传感器技术在机电一体化系统中的运用
传感器技术所涉及的范围非常广泛,主要是利用物理特性将非电量转换为电量,能够使机电一体化系统达到更高的自动化水平和准确度[1]。
2.1汽车行业的传感器技术运用
在汽车生产中使用传感器技术是实现汽车自动化控制的关键,尤其是近些年车用电子装置的增加,如娱乐装置、防抱死系统等,都需要传感器技术。汽车机电一体化系统是用电子自动化控制代替机械式控制,这就要求汽车的整体都要覆盖检测控制装置,如底盘控制用传感器、发动机控制传感器等。
汽车传感器要求具有适应性强、抗干扰和稳定可靠性强的特点,随着新型传感器技术的应用,汽车的性能也得到了提高,如可以减少汽车的耗油量、降低尾气排放量,并为使用者提供更人性化的安全稳定服务。以汽车发动机部分为例,这一部分的传感器是众多传感器的中心,其包括温度、气体含量和爆震传感器等种类,可以有效的提高汽车发动机的实用性能。但汽车运行中会出现振动和电磁波,在选择传感器时要注意抗干扰和抗震的性能。
2.2机械加工过程中的传感器技术运用
机械加工过程中,步骤繁多需要检测的部分也很多,大致可以分为三个阶段。一是加工前,要对加工设备和配件进行自动化检测,自行判断和调整夹持方向,确定变形情况和夹紧力的大小,保证机械加工过程的正常运行。二是加工过程中,首先要确保产品的精确程度和合格率,对工程中的切削速度、力度、温度、压力等参数严格检测,达到最佳的加工条件。如其中的切削传感器技术,在切削过程中,传感器主要对切削力度的变化、过程中的振幅、声发射以及电击功率进行检测。为了检测切削状态下的稳定性和加工精度的问题,多采用应变式和压电式三向切削力传感器进行测量。三是在加工完毕后,对工件进行检测,以保证产品的合格。检测时会对工件的尺寸、光滑度、形状和圆度等位置公差测量;齿轮等样式的工件,除了以上的检测外,还要增加齿距、导程等的测量。在测量合格后,将检测参数作为下一道工序的选用条件。
2.3数控机床中的传感器技术运用
数控机床就是利用数字信号对机床的运动和加工过程进行控制,就是将刀具等工具的移动加工信息用数字代码表示。在数控机床上使用的传感器,主要有光电编码器、温度传感器、电压传感器、红外传感器等多种传感器,主要用来测量线位移、角位移、速度、压力等方面。在数控机床实际运行中,常会发生传动轴振抖的现象,为了解决这种现象,就可以使用光电传感器、超声传感器或红外传感器对传动轴振抖的现象及时检测。而且可以利用压力传感器对数控机床的夹紧力进行检测,当夹紧力大于设定值时会导致工件过紧,这时检测系统发出警报和刀具停止运行。此外,压力传感器还能够对刀具的切削力进行检测[2]。
传感器在数控机床的液压系统、气压系统中也被广泛应用,用来检测油路和气路中的压强,当气压值低于标准值时,触点会将故障位置信息传输到数控系统。
传感器技術还应用于工业机器人中,安装的传感器主要是视觉传感器和触觉传感器两种。视觉传感器可以识别工业传送带上的机械零件是否完整,可以完成危险材料的装运和自动导航。而触觉传感器则是对零件的孔洞、曲面等因素进行检查。随着机械自动化水平的不断提高,对传感器技术的要求也不断的增加,这就要求发展连续、瞬时检测的传感器。
机电一体化系统是未来工业的发展方向,而传感器技术在机电一体化系统中的运用,能够有效的提高系统的自动化和智能化水平,提高工作效率。其主要运用于机械加工、汽车行业、数控机床等机电一体化行业,为生活和工程生产提供便利。
作者:吕忠毅
参考文献:
1智能控制在机电一体化中的总体方案设计
机电一体化采用智能控制进行操控是机电一体化发展的必然趋势,智能控制的优劣能够决定机电一体化技术的优劣,可以说智能控制在机电一体化中的已经取得决定性的地位。智能控制在机电一体化系统之中大体上可以分为四种设计方案,分别是专家系统、模糊系统、神经网系统和遗传系统。通过这四种方案,智能控制与机电一体化之间的联系越来越紧密,不仅相互可以成为独立的个体,还能够彼此结合,形成相互渗透的整体。
2智能控制在机电一体化中的硬件设计
机器人实际电一体化设计中典型的硬件设计,通常情况机器人在智能控制中具备非常多的控制信息,这些控制信息往往呈现出非线性、强耦合与时变的不规则控制变化,尤其是在传感器信息传递时,其控制变量的传播是复杂多变的。基于这样的实际情况,在机器人系统中应用智能控制是非常正确和恰当的。例如,智能控制系统能够对机器人内置的传感器和感应器等信号进行处理,而后根据信息反馈数据通过多种信息相互融合与相互决定来进行对于机器人的控制,这样一来就能够使得机器人具备各种本领,例如自动的绕过障碍,进行各种舞蹈动作,还能够模拟人类进行交流。可以说,智能控制对于机电一体化的硬件设计起到了至关重要的作用,这些性能不仅能够改变传统控制方式单一、死板的弊端,还能够使得人类对于创新性能方面进行不断的探索与追求。通过智能控制,能够使毫无生气的硬件相互结构,共同组成活灵活现、能歌善舞的机器人,可以说没有智能控制,就没有机电一体化这样的成功。对于机电一体化来说,智能控制方面的控制主要是通过神经网络所完成的。其中神经网络具备很强大的自主学习能力和非线性映射能力。通过这两者性能相结合,就能够保证机器人做出当各种动作非常协调与稳定,才能够使得机器人能够像人类一样自由的活动。智能控制机电一体化设计应用于多自由度机械臂方向来说是非常合适的,通过神经网络对于各个传感器之间的信号进行融合,从而使得智能控制机电一体化系统具备非常强力的容错性与鲁棒性。为了使得智能控制机电一体化系统的鲁棒性与适应性更加的高效,我们采用将多种智能控制方法与控制机理相互融合,形成一种集成的智能控制系统。
3智能控制在机电一体化中的软件设计
对于智能控制在机电一体化软件设计中的应用,最主要的表现方面在于伺服驱动装置的设计。伺服驱动装置是非常典型的机电一体化重要组成部分,不仅能够保证电信号与机械动作之间实现同步协调,还能够保证电信号无缝转换为机械动作,通过伺服驱动装置,才能够对机电一体化系统中的动态功能、质量控制等方面具有决定作用。
4智能控制级机电一体化的实验结果
智能控制级别的机电一体化系统不仅具备更高的性能、更好的精准度,与传统的智能控制系统相比还具备更多的职能处理能力,例如模拟数据、扩展等知识的自动处理。智能控制级机电一体化对于温度控制的实验结果如图2所示。可以说智能控制级机电一体化通过不断的实验与检测,经过各种检测与复杂环境的考验,已经能够具备建立精准的数学模型功能、利用控制理论知识进行操控的功能,而且很多的信息是我们无法通过传统的控制方法实现的。可以说智能控制在机电一体化系统中的实验是非常成功的,不仅能够促进智能级别机电一体化系统不断的完善,更加有利于人们的使用和操作,而且更使得机电一体化系统的发展更加的趋向于人类,使得机电一体化系统能够具备类似人一样的感知能力和判断能力。
5结束语