首页 > 文章中心 > 医学影像技术行业环境分析

医学影像技术行业环境分析

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇医学影像技术行业环境分析范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

医学影像技术行业环境分析

医学影像技术行业环境分析范文第1篇

关键词:医学影像诊断学;教学做一体化;教学实践

随着现代医疗技术的不断进步,临床影像诊断也成为各类医学院的重点教育内容。《医学影像诊断学》是基于图像的一门基础性专业课程,传统的教学方式也应用了理论与实践相结合的模式,然而理论课程与实践课程是独立开来的,先完成了理论课程后再进行实践课程的操作学习。这种教学方式极易导致理论与实践的脱节,学生的学习效果较差,不能适应现代医学人才的需求。为了迎合快速发展的医疗事业需求,必须从教学方式上进行改革,该文提出“教学做一体化”的教学方式,以期为医学事业培养出影像高级技术应用型人才。

1教学做一体化教学改革的优势

教学做一体化是一种新型的教学模式,融合了理论教学与实践教学的部分,打破了传统教学模式的局限,使得教学效果更佳显著。对于一个环节的教学内容可以在同一教学场所完成,既达到了对理论知识的学习及巩固,又能够通过实际操作或参观等方式,将抽象的理论知识形象化,便于学生理解[1]。一般而言,在对学生进行教学做一体化教学时,既可以直接带领学生去医院参观学习,也可以在实验室里动手操作完成,达到真实的体验。通过这种方式的教学使得以往死板的课堂变得更加活跃,充分调动了学生的积极性,培养了学生的动手能力,提高了实际操作技能。

2教学做一体化教学改革所应做出的努力

对影像技术专业进行教学做一体化的教学改革时还需要对其他教学环境进行相应的改革及调整,该文从以下4个方面进行介绍。2.1教学环境的一体化改革影像诊断学的教学必须辅以影片的分析及判断,课堂教学时通常会引入多媒体设备以及其他资源进行教学。而一体化教学在教学过程中必须有配套的软硬件教学设施,保证足够的教学设备以及仿真的实训环境。为保证理实充分结合的教学,需要配备投影仪、数码摄像机、PACS系统、超声或核医学诊断影片、各系统教学用MRI、CT或X线影片等[2]。2.2配套教材的一体化改革在进行影像诊断学的一体化教学时还需要有匹配的教材。以往理实分开的教学模式在教材上多偏重理论知识,具有十分系统化的知识点,而缺乏实践课程的设计及安排,一体化课程无须过多的理论知识,需要通过理论与实践的结合,进而启发学生自主学习以及扩展更多的知识点。教材改革时可以依据教学内容的不同进行细化分类,例如超声诊断、放射线诊断以及其他影像学诊断的内容,以项目为引导、以任务为驱动,科学合理地开展技能训练项目[3]。同时,还可编写配套的电子教材,在其中分享大量的临床资料以及图片分析,辅助学生更好地学习,保证教学的实用性更强。2.3课程设计的一体化改革影像诊断学是通过对病患的影像学资料进行分析,进而作为病情诊断的依据。在教学时,需要依靠实际的临床需求进行课程设计。为保证理实一体化的深化改革,不仅需要借助多媒体资进行病例及图片的重点评析,还可改变以往的教学思维方式。模拟临床医师对病情诊断的过程,设计出病例分析的实践环节,通过教师的提问以及引导,激发学生进行相应的思考,以解决实际问题为主,对病情特征进行分析[4]。学会知识点的融会贯通,具备综合分析能力。

3教学做一体化在《医学影像诊断学》中的实践探索

3.1研究对象该文对影像技术专业实施一体化实验教学的实验主要针对2014级影像专业2班与3班的两个班级学生作为实施对象进行对照研究,每个班级均有35名学生。3.2实践方法将教学内容《医学影像诊断学》作为该次研究的实践课程,对两个班级均进行X线诊断环节的学习,对影像资料进行分析,判断是否存在任何疾病,总结归纳各种影像学特征,做出病情评估,并完成实验报告[5]。两个班级分别进行了两个阶段的教学实践训练,3班采取了教学做一体化的教学模式,2班采取了传统的理论与实践教学分开的模式,最终以调查问卷的模式评估两个班级学生的学习效果,并比较在两个阶段的学习完成后两班学生认为所采取教学模式对临床指导是否存在意义的比例。教学做一体化教学共安排40个课时完成,主要具有下述几项任务:(1)在明晰此次实验目的后对影像学检查进行模拟演练,进行检查申请单的填写;(2)分组完成影像学检查及拍摄;(3)完成影像学资料的后期暗室操作工作;(4)对影像学资料进行观察及分析,总结影像特点,并判断是否异常;(5)对影像资料进行报告的书写,做出正确的评估判断[6]。3.3实践结果此次实验完毕后对两个班级的实验完成结果进行对比分析,问卷调查结果如下。从表1可知,3班学生学习成绩达标的占比71.4%,明显高于2班的34.3%,且未达标的占比0.0%,明显低于2班的22.9%,组间比较差异具有统计学意义(P<0.05)。说明采用理实一体化教学可使学生达到更高的学习效率,有助于对知识点的理解,达到了更高的实用性。从表2可知,3班学生有80.0%的人认为开展教学做一体化教学对未来的临床指导意义重大,而2班对课堂教学的临床指导意义仅有28.6%的学生认同,其中34.3%的学生认为理论与实践独立开来的教学模式无临床指导意义,组间比较差异具有统计学意义(P<0.05)。说明开展教学做一体化教学不仅可以在学习效果上有较大的改善作用,还可保障教学的实际价值以及临床指导意义,与时俱进地发展。

参考文献

[1]马隽.循证影像诊断学在影像实习课中的应用研究[J].中国实验诊断学,2010,14(11):1872-1873.

[2]唐曦,吴少平,黄丽,等.《医学影像诊断学》“理实一体化”教学实践与探索[J].中华医学教育探索杂志,2015,14(10):1002-1006.

[3]李小虎,张国兵,余永强,等.PBL教学模式在影像诊断学教学中的应用[J].安徽医学,2010,31(6):563-565.

[4]曾燕,赵建农,谢微波,等.医学影像诊断学消化系统教学体会[J].重庆医学,2006,35(16):1520,1526.

医学影像技术行业环境分析范文第2篇

【关键词】医学影像技术;医学影像诊断;关系

abstract: for the sake of the development of medical or medical research, medical image use non-intrusive manner to acquire the image of part of a person's body. The technique and processing procedure provide reference frame for clinical disease diagnosis. This article deeply analyze the relationship between medical imaging technology and medical image diagnosis, which point out the importance of medical imaging technology in clinic applications from the point of independence and complementarity. Moreover, I look far ahead into the future of medical imaging technology.

Key word: medical imaging technology; medical diagnostic image;relationship

引言

医学影像是涵盖X 线片、超声、CT、核磁共振、介入等多个不同门类的一门新兴医学技术,自1895年伦琴发现X 线片以来,医学影像技术得到迅速发展,在此之前,医生除解剖外,只能依靠触诊了解患者体内情况,但解剖与触诊均具有一定风险。因影像成像原理及采用的检查方法存在明显区别,检查范围也各不相同,且还突出了检查技术。因此,影像技术对于影像诊断具有较强的依赖性,逐渐从根据某一形态变化而诊断向功能、形态、代谢等改变的综合诊断体系方向演变。

一、医学影像技术与医学影像诊断的专业互补性

医学影像诊断离不开医学影像技术的支持,二者之间存在十分紧密的关心。医学影像技术水平的提升及工作层面的拓展需要影像诊断的科学指导,而医学影像诊断水平的提升同样需要高水平的医学影像技术作为保障。只有通过医学影像诊断及时将结果反馈出来,才能逐步提升医学影像技术水平。由于不同的医学影像技术的成像原理是存在差别的,并且不同的影像学技术的专业性较高,例如超声检查、CT、MRI 等方法各有特点,在临床应用过程中,对检查的结果进行分析与研究,能够发现不同的技术各有优势,但也存在一定的不足和缺陷。对于疾病的诊断,并非通过医学影像技术就能够得出最准确的结论,有时仅通过一种影像学技术就能进行诊断,而采用其他的检查方式则难以检出异常。即使不同的影像学技术都能对一些疾病进行检查,但应当出于对患者经济角度的考虑,选择最为经济且适合的检查方法。

医学影像技术和医学影像诊断在本质上是紧密联系的,并且二者之间相互依赖、相互渗透、相互制约,在相互促进的过程中促进各自的发展。随着当前医学影像技术的不断成熟与发展,医学影像诊断和医学影像及时之间的界限逐渐变得模糊。在整个医疗环境中,随着新业务、新技术、新材料以及性科学的出现及快速发展,使得医学影像诊断与医学影像技术之间实现了有效的融合,这在一定程度上缩短了患者的治疗周期,大大提升了医疗水平。

二、医学影像技术与医学影像诊断的专业独立性

在当前医学影像技术临床应用中,对于专业医师的要求较高,主要包括:第一,要求了解与掌握CT、核磁共振、超声医学及常规放射学等方面的专业操作技能与相关理论知识;第二,了解并掌握有关电子学、基础医学及临床医学等方面的理论知识;第三,在疾病诊断过程中,对各类影像学诊断技术的应用情况及主要作用有一定的了解;第四,了解医学影像等不同专业分支的发展趋势及主要的技术。

在当前医学影像诊断应用方面,对于专业医师的要求主要有以下几个方面:第一,熟练掌握现代医学影像学、基础医学及临床医学等方面的专业性知识;第二,在对临床疾病患者的诊断过程中,对多种影像诊断技术熟练应用;第三,能够深入了解并熟悉与医学影像方面相关的临床技术及知识;第四,了解医学影像等不同专业分支的发展趋势及主要的技术。

医学影像技术主要是为临床疾病的影像学诊断提供科学的参考依据,并且能帮助专业医师获得准确可靠的影像学信息与知识,从而为疾病的诊断及治疗提供极为关键的依据。医学影像诊断工作则主要是为了对医学影像技术中提供的各方面信息作出观察与分析,并对这些信息进行归纳与总结,从而得出最为客观、公正的影像学诊断结论。

三、结束语

综上所述,医学影像技术与医学影像诊断互为一个整体,前者离不开后者的支持,而后者在临床中的应用效果则依赖于后者。医学影像诊断技术在临床应用过程中与医学影像诊断相互促进、相互制约。因此,医学影像技术工作人员和影像诊断人员应当严格依据相关标准执行质量控制及质量管理,逐步提升临床医疗诊断效率及水平,在进一步减轻患者就诊痛苦的同时,将医学影像学的临床应用价值充分发挥出来。

【参考文献】

医学影像技术行业环境分析范文第3篇

关键词: Matlab;GUI界面;医学图像处理;虚拟实验平台

医学图像处理是图像处理技术应用到医学领域所产生的交叉学科,具有很强的理论性和实践性,也具有知识面广、理论难度大、实验内容深的特点[1]。在医学院校开设医学图像处理课程,不仅教授医学生医学图像处理的基本原理、方法及编程技术等,更重要的是培养医学生应用所学知识的能力。

医学图像处理教学需要课堂教授,更需要加强实践性教学环节[2-3],但由于课时和实验条件的限制,传统授课有时难以达到教学要求,而虚拟实验则可弥补这方面的局限[4]:通过将Matlab仿真技术与GUI界面设计引入到教学中,开发可视化的医学图像处理虚拟实验平台,既取得理想的教学效果,也可培养医学生的自主学习能力、独立思考能力和综合应用能力[5]。医学生通过图像处理仿真熟悉各种医学图像处理方法的原理,并通过调整参数,了解参数变化对医学图像处理效果的影响。

1 实验平台的结构

医学图像处理虚拟实验平台的设计思想是结合医学图像处理的基本理论,通过虚拟实验的方法强化医学图像处理的基本思想与核心概念,为医学生的理解和应用提供帮助[6]。

通过GUI界面,医学生可选择任意感兴趣的项目或教师指定的项目进行仿真实验[7]。实验平台还提供医学图像处理相关课件、图像处理Matlab编程的教学视频、仿真实验指导书、拓展实验题等资料,医学生可利用GUI界面随时调入进行自学。

同时,实验平台还提供脑肿瘤fmri处理示例,此示例选取于临床影像三维显示的实际应用,帮助医学生了解如何将自己所学的图像处理知识应用到工作实践中,从而提高医学生的综合素质。

根据教学计划的要求,医学图像处理虚拟实验平台包含医学图像处理教学内容中所有典型的实验项目,具体内容如下:

(1)图像插值实验。主要分析最近邻插值(Nearest Interpolation)、双线性插值(Bilinear Interpolation)和双三次插值(Bicubic Interpolation)的原理[8]和Matlab编码。

(2)图像锐化实验。主要分析Roberts算子、Prewitt算子和Sobel算子的原理和Matlab编码,并且比较每种边缘检测算法对应的6个结果,包括原图、直接梯度输出图像、门槛判断图像、边缘规定图像、背景规定图像和二值图像。

(3)图像去噪实验。主要分析均值滤波、中值滤波、维纳滤波等图像平滑处理算法[9]的原理和Matlab编码。

(4)图像融合实验。主要分析像素灰度值极大/极小融合法、加权平均融合法、傅里叶变换法的原理[10]和Matlab编码。

(5)图像分割实验。主要分析全局阈值法、大津阈值法、迭代法、最大熵分割法和局部阈值法等图像分割方法[11]的原理和Matlab编码。

(6)头动校正实验。主要研究投影法[12]配准技术的原理与Matlab编码,并且展示投影法头动校正后的效果。

(7)三维可视化实验。主要研究基于体绘制的三维重建算法[13]原理与Matlab编码。

例如,在图像去噪实验中,加入噪声的参数可由用户自己输入。针对噪声图像,医学生可以选用不同的平滑算法,自行设置模板参数,进行图像去噪处理。通过观察加噪效果及比较各种平滑处理算法处理后的结果,医学生对平滑算法处理的针对性、参数取值范围和实验结果都会比较熟悉,从而达到教学目的(具体操作过程见第3部分)。

2 实验平台的设计

使用Matlab图形用户界面开发环境(Matlab Graphical User Interface Development Environment,GUIDE)创建GUI图形界面是常用创建Matlab GUI的方法,该方法简单易学,能方便实现图形控件的各种功能。医学图像处理虚拟实验平台的GUI界面主要包括虚拟实验平台主界面、课件界面、实验名称界面、各实验项目界面、教学视频界面、脑肿瘤fmri处理示例界面等。

医学图像处理虚拟实验平台主界面的主要控件为7个按钮(Push Button)。按钮有多个功能,如函数的调入、界面之间的跳转等。将所需控件移入GUI界面,再对各控件按照程序要求进行属性编辑,修改完成后,点击GUI界面工具栏中的运行按钮,即可运行设计完成的GUI界面,Matlab系统会自动生成相应的M文件。

设计实验平台时,考虑到医学图像处理的理论知识较多,同时考虑到医学生自学的要求,将课件与教学视频按照由易到难的顺序排列。按照教学要求,设置7项医学图像处理实验,而每个实验都有实验目的、实验原理、实验内容、实验结果与分析等项目,因此设置成实验目的、实验原理、实验内容、实验结果与分析和返回5个按钮,以图像去噪实验为例。

通过“实验结果与分析”按钮就可进入仿真界面,进行仿真分析,如图1所示。选取相应的文件,输入相应的参数,点击对应按钮,即可对图片进行加噪去噪处理,并能直接观察比较处理结果。

为培养医学生应用所学图像处理知识的能力,实验平台设计脑肿瘤fmri处理示例板块。其内容是对脑部fmri原始数据进行预处理、放大、图像分割、体重建等操作,对脑部进行三维可视化[14]。脑部MRI图像的三维显示就是指利用一系列的二维脑部MRI图像重建三维图像模型并进行定性定量分析的技术。通过三维重建可以科学、准确地重建出被检物体,避免传统方法中临床医生通过自己大X想象的不确定因素[15]。医学生只有亲自对脑部fmri原始数据进行读入、预处理、分割、重建等操作才能得到如图2所示的脑部轮廓三维图,从而初步认识自己所学图像处理技能的组合应用,明确医学图像处理对临床诊断与治疗规划的意义,达到学以致用的效果。

3 仿真实例分析

每个实验项目都提供仿真演示示例。以图像去噪实验为例,如图3所示。首先加入方差为0.02的高斯噪声,修改完参数后,点击加入噪声按钮就能得到噪声图像,如果均值参数修改为除0以外的任何数,则不会显示任何图像。然后针对生成的噪声图像,对其进行中值滤波处理、均值滤波处理和维纳滤波处理。每次进行处理前,都需要输入模板尺寸,模板尺寸越大,去噪效果越明显,但是图像丢失信息也会更加严重。医学生可通过反复修改模板尺寸,比对每次处理结果,选出最佳的模板参数。进行三种滤波处理后,医学生可根据三种滤波处理后的结果来总结每种滤波处理的特点与效果。最后,医学生如果有学习或者校验代码的需要,可以点开对应的主要代码查看按钮进行代码查看。

4 虚拟实验平台的使用与评价

医学图像处理虚拟实验平台的Matlab文件编译完毕后,生成的可执行文件需要Matlab运行环境的支持,如果要将此软件到其他没有Matlab运行环境的机器,还需要进行一项工作,即打包Matlab组件运行环境(Matlab Component Runtime,MCR)[16]。建议采用专业的安装包制作软件Setup Factory将MCR与软件一起打包,设置代码使得安装包解压完毕后,自动安装MCR。安装完成后,点击编译的Matlab可执行程序,即可运行医学图像处理虚拟实验平台。

经过医学图像处理选修课投入使用后,医学生的学习积极性显著提高。除课堂授课外,大多数医学生在课后通过虚拟实验平台进行理论自学和题目自测,使得总体考核成绩明显上升,教学质量显著提高。

5 结 语

医学生可通过观察平台实验在不同方法不同参数下的实验结果并进行分析,验证图像处理的基本理论。由于医学图像处理虚拟实验平台软件的可移植性强,所以医学生可以不受时间和地点的限制,在课程学习阶段、复习阶段均可充分利用虚拟实验平台提供的功能,不断巩固所学的图像处理知识,提高自主学习能力与思维能力。

参考文献:

[1] 张兰凤, 肖学文. 医学图像处理的研究现状[J]. 智富时代, 2015(10): 242.

[2] 赵洁, 蒋世忠, 黄展鹏, 等. 《医学图像处理》教学改革探索[J]. 中华医学教育探索杂志, 2015(5): 477-480.

[3] 林卉, 胡召玲, w长胜, 等. 高校开放实验室的建设与管理[J]. 实验技术与管理, 2010, 27(3): 152-155.

[4] Kubicek J P. Inquiry-based learning, the nature of science, and computer technology: New possibilities in science education[EB/OL].[2016-10-01]. http://files.eric.ed.gov/fulltext/EJ1073682.pdf.

[5] 王峰, 丁金林. 基于MATLAB/GUI的数字通信系统虚拟实验平台的设计[J]. 南通职业大学学报, 2013, 27(1): 96-100.

[6] 张绍荣. 论虚拟实验平台构建的必要性[J]. 教育教学论坛, 2015(31):259-260.

[7] 谢丽蓉. 基于Matlab/GUI异步电动机人机界面设计[J]. 实验技术与管理, 2014, 31(8): 50-53.

[8] 符祥, 郭宝龙. 图像插值技术综述[J]. 计算机工程与设计, 2009, 30(1): 141-144.

[9] 胡蕾, 张伟, 覃庆炎. 几种图像去噪算法的应用分析[J]. 信息技术, 2007, 31(7): 81-83.

[10] 阳方林, 郭红阳, 杨风暴. 像素级图像融合效果的评价方法研究[J]. 测试技术学报, 2002, 16(4): 276-279.

[11] 罗希平, 田捷. 图像分割方法综述[J]. 模式识别与人工智能, 1999(3): 300-312.

[12] 罗. 医学图象的配准及融合技术研究[D]. 电子科技大学, 2003.

[13] 董育宁. 一种非规则三维实体重建算法及其在医学骨图像分析中的应用[J]. 中国生物医学工程学报, 2004, 23(5): 385-391.

[14] 印志鸿, 张季. 医学图像三维重建系统的关键技术研究与设计[J]. 中国组织工程研究与临床康复, 2010, 14(43): 8036-8039.

医学影像技术行业环境分析范文第4篇

【关键词】医学影像技术;医学影像诊断;临床应用

医学影像包含了超声、介入、MRI、CT及X线等多种不同门类的新兴医学技术,自X线在1895年被发现以来,临床医学影像技术经历了快速的发展时期。而在此之前,医疗人员进行诊断时除了解剖之外,就是依靠视、触、叩、听诊对病情进行了解。由于不同的影像检查技术在应用方面的差异,使得每种检查技术具备自身的特点,因而医学影像诊断对于医学影像技术的依赖性也不断增加。本文对医学影像技术和医学影像诊断之间存在的关系进行了分析,并且从专业的互补性和独立性两个方面对医学影像诊断中影像技术的临床应用进行了探究。

1医学影像技术与医学影像诊断的专业互补性

医学影像诊断离不开医学影像技术的支持,二者之间存在十分紧密的关系。医学影像技术水平的提升及工作层面的拓展需要影像诊断的科学指导,而医学影像诊断水平的提升同样需要高水平的医学影像技术作为保障。只有通过医学影像诊断及时将结果反馈出来,才能逐步提升医学影像技术水平。由于不同的医学影像技术的成像原理是存在差别的,并且不同的影像学技术的专业性较高,例如超声检查、CT、MRI等方法各有特点,在临床应用过程中,对检查的结果进行分析与研究,能够发现不同的技术各有优势,但也存在一定的不足和缺陷[1]。对于疾病的诊断,并非通过医学影像技术就能够得出最准确的结论,有时仅通过一种影像学技术就能进行诊断,而采用其他的检查方式则难以检出异常。即使不同的影像学技术都能对一些疾病进行检查,但也应当出于对患者经济角度的考虑,选择最为经济且适合的检查方法。

医学影像技术和医学影像诊断在本质上是紧密联系的,并且二者之间相互依赖、相互渗透、相互制约,在相互促进的过程中促进各自的发展。随着当前医学影像技术的不断成熟与发展,医学影像诊断和医学影像及时之间的界限逐渐变得模糊[3]。在整个医疗环境中,随着新业务、新技术、新材料以及性科学的出现及快速发展,使得医学影像诊断与医学影像技术之间实现了有效的融合,这在一定程度上缩短了患者的治疗周期,大大提升了医疗水平。

2医学影像的专业独立性

在医学影像技术工作中,主要涵盖以下4个方面;(1)是具有常规放射学,超声医学核磁共振及CT等系统理论知识与操作技能;(2)是具有临床医学、基础医学和电子学等有关理论知识;(3)是在疾病诊断中比较熟悉各种影像诊断技术的应用;(4)是比较熟悉医学影像学各专业分支技术和发展趋势。

在医学影像诊断工作中,主要涵盖以下4个方面:(1)是比较熟悉临床医学、基础医学及现代医学有关知识;(2)是在临床疾病诊断中具有应用多种影像技术诊断的能力;(3)是对医学影像领域的各种技术具有深入的认识了了解;(4)是对医学影像学分支的有关前沿技术和发展趋势比较熟悉。

影像技术工作主要是为临床影像诊断提供多角度、多方位准确可靠的医学影像信息,为影像诊断提供重要依据。影像诊断工作主要是详细观察、分析影像技术工作中所能提供的信息,对其进行综合归纳,以获得比较客观的医学诊断结论。

3医学影像技术的发展及展望

医学影像技术行业环境分析范文第5篇

关键词:机器视觉;应用;图像处理

中图分类号:TP391 文献标识码:A文章编号:1009-3044(2007)18-31701-02

Machine Vision Technology and Application Profiles

CHEN Fa-dong,ZHANG Xiao-fang,ZHAO Huan-yu,ZHANG Tao,YU Guo-ying

(Hebei Jinniu Energy Co.,Xingtai 054001,China)

Abstract:The paper introduced the machine vision system structure and working principle and the superiorities compared to human vision, the applications of machine vision are expounded in our industry, agriculture, medical, robotics, navigation, satellite remote sensing fields, the future direction of machine vision is stated.

Key words:Machine vision; Application; Image Procession

1 引言

机器视觉技术是20世纪70年代在遥感图像处理和医学图像处理技术成功应用的基础上逐渐兴起的,并应用于多种领域。在我国,机器视觉仍属新兴行业,但是随着产业化的发展对机器视觉技术的需求必将呈上升趋势。

2 机器视觉技术

机器视觉是研究用计算机来模拟生物外显或宏观视觉功能的科学和技术,用图像来创建和恢复现实世界模型, 最终用于实际检测、测量和控制,是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理及模式识别等多个领域的交叉学科[1]。

机器视觉系统一般由摄像机、图像采集卡、计算机、光源、光照箱、载物台等组成,如图1所示。

图1 机器视觉系统结构示意图

工作原理是:在一定光照条件下, 用摄像机把三维场景的被摄取目标图像采集到计算机内部形成原始图像;然后,运用图像处理技术对原始图像进行预处理以改善图像质量,分割图像,提取特征要素,构成对图像的描述;最后,采用模式识别技术进行特征分类,并根据预设条件输出结果。

机器视觉具有与被观测的对象无接触,对被摄物体无损伤,观测过程客观,判别结果可靠性高的特点;同时机器视觉也拓宽了人类视觉范围,在许多人类视觉无法感知的场合,如工业环境下高危险场景的感知、不可见物体感知等等,机器视觉更具优势;而且机器视觉可以快速获取大量信息,而且易于自动处理,也易于实现信息集成,是实现计算机集成制造的基础技术。

2 机器视觉技术应用

随着电子技术、计算机软硬件技术、图像处理及与人类视觉相关技术的迅速发展,机器视觉技术在理论和实践上都取得了重大的发展,在我国工业、农业、医学、机器人导航、卫星遥感等领域的应用越来越广泛,下面就机器视觉技术在这些领域的应用概况进行阐述。

2.1 工业

在大批量工业生产过程中,生产过程的高度自动化和产品质量的日益提高,要求有更有效、更精确和高速度的检测手段,机器视觉技术能够保证工业现场环境下的可靠性,提高生产自动化程度,大大提高生产效率。因此,在现代自动化生产过程中,机器视觉系统被广泛地用于产品测量、检验、质量控制等领域。

机器视觉在工业中的具体应用主要有:汽车整车尺寸测量,零件边缘及平面尺寸检测,螺纹几何参数检测,带钢表面缺陷检测,电机换向片偏移检测,玻璃制品裂纹检测,烟包包装检测,饮料行业的容器质量检测,半导体集成块封装质量检测,印刷电路板疵病检查,弹性力学照片的应力分析、流体力学图片的阻力和升力分析,邮政信件的自动分拣等。机器视觉可以在一些有毒、放射性环境内识别工件及物体的形状和排列状态[2]。在制药生产线上,机器视觉技术还可以对药品包装进行检测,以确定是否装入正确数量的药粒。

2.2 农业

机器视觉技术在农业机械上的研究与应用始于20世纪70年代末期,主要集中于农产品品质检测与分级的自动检测机械的研究[3]。

农产品的生产过程受到自然和人为等复杂因素的影响,产品品质差异很大,机器视觉技术可以检测农产品的大小、形状、颜色、表面裂纹和表面缺陷及损伤。它的优点是:速度快,信息量大,可一次完成多个品质指标的综合检测,还可完成定量指标的测量,精确度高,能够克服人眼的差异和视觉疲劳,实现无损检测。能够检测的农产品有蔬菜、水果、谷物、烟草、茶叶、禽蛋等,其中部分研究已从理论走向实际应用,并取得了较大的经济效益。其中,计算机图像处理技术发挥了主力军作用。此外,人工神经网络等高新技术也开始引入到机器视觉识别与分级中,应用该技术有利于设计制造自动分级流水线,大大提高工作效率。

随着计算机技术及数字图像处理分析理论的成熟,机器视觉技术也逐渐渗透到农作物长势监测、病虫及草害的监测与防治、自动化收获,以及农产品加工、储粮害虫检测等领域。

2.3 医学

在医学领域,机器视觉的应用也越来越广泛,主要用于医学辅助诊断。首先采集核磁共振、超声波、激光、X射线、γ射线等对人体检查记录的图像,再利用数字图像处理技术、信息融合技术对这些医学图像进行分析、描述和识别,最后得出相关信息,对辅助医生诊断人体病源大小、形状和异常,并进行有效治疗发挥了重要的作用。

利用机器视觉技术还可对其它医学影像数据进行统计和分析,如利用数字图像的边缘提取与分割技术,自动统计细胞个数,不仅节省人力,还大大提高了准确率和效率。另外,基于CT图像的内部器官的重建,DSA(数字减影)技术等也是机器视觉技术在医学领域的应用实例。

2.4 机器人导航

机器人导航包含道路规划、避免碰撞、自适应位置控制和机器人相对于特定目标在三维空间中精确方位定位。在制造业,机器人被广泛地应用于零件的装配和检验,机器视觉应用于机器人使其柔性大大增加,使大批量使用装配、检验机器人成为可能。工业机器人系统是一种基于视觉测量并进行制导和控制的系统,例如机械手在一定范围内抓取和移动工件,摄像机利用动态图像识别与跟踪算法,跟踪被移动工件,始终保持其处于视野的正中位置。相对于室内的工业机器人而言, 农业机械的机器视觉导航的工作环境和工作对象更加复杂。

农业机械的自动导航是现代智能农业机械的一个重要组成部分,有着广阔的发展前景,在自动喷洒农药肥料、收割作业、中耕除草、插秧耕作等许多方面有着广泛的用途。在农业机械自动导航系统中,采用机器视觉导航除具有灵活、实时性和导航精度高等优点外,在采集导航信息的同时还能采集有关农作物、病虫害以及农田状况的图像,随着以信息化技术为核心的精细农业的兴起,机器视觉导航必然会有更大的发展空间。

2.5 卫星遥感

卫星遥感图像信息量大,数据存在多种干扰和误差,处理和分析的工作量、难度都很大。在卫星遥感系统中,机器视觉技术被用于分析各种遥感图像,进行环境监测、地理测量,根据地形、地貌的图像和图形特征,对地面目标进行自动识别、理解和分类等。具体来说有自动制图,卫星图像与地形图对准,自动测绘地图;对国土资源管理,如森林、水面、土壤的管理等;还可以对环境、火警自动监测。

2.6 其它方面

在交通管理系统中,机器视觉技术被用于车辆识别、调度,向交通管理与指挥系统提供相关信息;在闭路电视监控系统中,机器视觉技术被用于增强图像质量,捕捉突发事件,监控复杂场景,鉴别身份,跟踪可疑目标等,它能大幅度地提高监控效率,减少危险事件发生的概率;在航天及军事方面,机器视觉技术被用于卫星照片的自动分析与判读,景物识别,目标检测,识别和定位,目标跟踪,成像精确制导等。

3 结束语

综上所述,机器视觉在工业、农业、医学等领域的应用研究得到了广泛开展,但我们应当看到,机器视觉从诞生到今天这短短三十多年时间中,其相关研究、发展和应用还远没有达到成熟的程度。在未来的几年内,随着中国加工制造业的发展,对于机器视觉的需求必将逐渐增多,随着机器视觉产品的增多,技术的提高,国内机器视觉的应用状况也将由初期的低端转向高端。实现实时在线、智能化、高精度检测与控制必将成为我国机器视觉的发展趋势。

参考文献:

[1]刘曙光,刘明远.机器视觉及其应用[J]. 河北科技大学学报,2000,21(4):11-15.

[2]席斌,王振雷,钱锋. 机器视觉工业检测系统的应用与发展[J]. 控制工程,2006,5(13):220-222.

[3]刘中合等.计算机视觉技术在农业机械中的应用[J]. 农业装备与车辆工程,2005,12(4):37-39.