首页 > 文章中心 > 化学反应工程原理

化学反应工程原理

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇化学反应工程原理范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

化学反应工程原理

化学反应工程原理范文第1篇

关键词:化学反应工程;教学改革;实践

DOI:10.16640/ki.37-1222/t.2017.08.200

化学反应工程是化工类专业的一门核心课程。该课程以物理化学、化工原理、化工热力学等化工专业基础课为先修课程,其主要研究物料从进入反应器到离开为止的全过程,主要解决过程中的反应动力学和反应器分析与设计两个基本问题。化学反应工程内容涉及多学科,理论较抽象,数学模型多,计算复杂繁琐,有些方程只能通过数值计算求解。因此有不少学生把化学反应工程认为是大学中最难学的课程之一[1-3]。

重庆三峡学院是一所普通本科院校,学校人才培养目标是培养应用型技术人才。在化学反应工程的教学中,结合学生的实际情况,让学生能系统掌握本课程的内容,使教学内容达到较为合理的程度,力求把化学反应工程基本观点与相关基础知识紧密联系起来,着重培养宽口径、厚基础、应用型化工高级人才。为此,以培养学生综合运用基础知识分析、解决实际问题的能力为目标,把课程的理论研究与教学方法、手段等方面研究相结合,积极地进行教学改革探索与实践[4-6]。

1 教材的选择和教学内容的精选

优秀的教材是课程教学的基本保证。有关化学反应工程的教材版本很多,体系编排差别较大,所涉及到的内容大都符合教学大纲的规定,因此合理选择教材对于教学和学习非常重要。根据我校的实际情况,在研究多个版本教材的基础上,认为普通高等教育“十一五”国家级规划教材、由陈甘棠教授主编的《化学反应工程》(第三版)符合教学内容及授课体系,该书定为我校化学反应工程课程教材。该书内容经典系统,覆盖面大,循序渐进,篇幅较短,易于学生掌握。其它版本的教材当中,朱炳辰教授主编的《化学反应工程》更注重反应工程研究方法介绍,并在相应章节中论述了反应工程学科的新进展,便于读者深入钻研。两本教材各有特色,可互为补充。另外选取优秀的外文版教材译本作为学生的参考书,让学生涉猎到化学反应工程学科的前沿知识,开拓视野。

课程教学内容要力求体现本学科的科学性、先进性和适用性。教师只有掌握了该课程的知识结构特点,才能够抓住教学重、难点,精心选择教学内容。化学反应工程课程的基本内容包括反应动力学和反应器设计与分析两个方面,依据化工过程中的化学反应与反应过程中的动量、热量和质量传递关系来讲解,并对反应器进行设计与分析,阐明反应动力学基本原理。在实际的教学中,教师应清楚课程各部分知识的结构层次与相互关系,紧紧围绕反应工程学科的两个基本问题,把基本观点与基础知识联系起来,从工程分析的角度讨论化学反应工程中的重要概念。因此任课教师备课时必须认真钻研教材,了解本学科发展动态及前沿,精心组织讲课内容,合理安排,突出重难点,内容详实。重点讲授气-固相催化反应本征动力学与宏观动力学、理想流动反应器、反应器中的混合及对反应的影响等章节,突出工程意识,增强学生分析问题和解决问题的能力。对于气-液反应及反应器、气-液-固三相反应工程和多流体相的反应过程等内容,进行适当讲解。同时努力拓宽教学内容信息,把学科研究的最新工业化成果向学生介绍,激发他们的创新意识和工程意识。对于本课程与其他学科领域交叉形成的一些新的分支,如聚合反应过程、生物反应工程、电化学等,以学生自学为主,达到开拓学生的视野和培养学生创造力的目的。

2 采用灵活多样化的课堂教学模式

课堂教学是化学反应工程理论教学的主要环节。本课程涉及较多工程数学知识,且要求有一定的逻辑思维能力,由于学生的数学基础比较薄弱,专业基础知识面也不宽,课堂讲授的内容和方法必须适当,才能收到较好的教学效果。在化学反应工程课程的教学过程中,采用多种多样的n堂教学方法,改变完全以教师为中心的讲授式教学为多种教学方法并用, 以达到提高学生学习的主动性,提高课堂教学效果。下面介绍主要采用的几种教学方法。

2.1 讲授式教学

教师系统地向学生传授学科知识。教师在讲授每一章时都可先用几分钟的时间,采用图示的方法,概括本章主要内容和基本理论结构框架,让学生领会教学目标,明确教学思路和重、难点以及具体应用实例,特别要联系实际和知道如何应用到相应的具体计算当中。在每一堂课开始时,都应该有承上启下的对上一节课的内容相应的总结,使学生能够将知识有机地结合起来。教师在讲授过程中要详细讲解典型内容,并要突出重、难点。如气-固催化反应和气-液反应过程,可以根据反应物分子必须接触碰撞才能进行反应的共同特点入手,讲解其最基本的反应步骤。让学生了解其共性后,能够举一反三,推导出相应的液-液、液-固反应过程,既调动了学生学习的积极性,又能使学生牢固掌握基本理论。

2.2 互动式教学

即授课过程中教学双方经常进行交流互动。教师可以选出教材中较为典型的章节或例题,首先提出问题,由学生自行阅读课本,让学生带着问题自主学习,以学习课程知识为重点,让学生自行讨论阅读的内容后,全班讨论或小组讨论,最后教师强调并总结该部分内容中的关键概念和原理等。每次课程结束时,教师可以给学生布置总结本次课程内容的任务,下次课上随机抽出几位学生对前一次课的内容进行提纲挈领式的回顾,由此达到督促学生课后自主复习,及时消化,保证知识的连贯性,达到温故而知新的目的。互动式教学方法能够促使学生自主学习,新问题的提出,又能刺激学生主动想法获取问题答案,学生上课的积极性很快提高,取得了良好的教学效果。

2.3 归纳对比法教学

化学反应工程教材中的概念抽象,公式繁多,教学推导过程复杂。归纳对比法在化学反应工程的教学过程和指导学生复习巩固知识过程中起着重要的作用,可以把零散的、不成系统的基本概念知识系统化、理论化。例如,将理想反应器和非理想反应器,连续反应器和间歇反应器,平推流反应器和全混流反应器,等温恒容反应与等温变容反应,流化床反应器和固定床反应器等基本概念进行对比。通过比较,找出概念的相同点和不同点,把相近的概念区别开来,从而达到简化、概括和记忆的目的。除了本学科之内的概念比较外,也可以不同学科进行比较。如把反应器中三传问题与化工原理中的单元操作相比较,把宏观动力学与物理化学课程的本征动力学相比较,有意将化学反应工程和已经学过的课程进行联系,以加深学生对该课程学习的兴趣。将复杂的概念用列表、提纲等简单明了的形式表达出来,使学生在“识同辨异”中增进学习兴趣,在“归纳”中渗透,在“对比”中巩固,最终达到提高学习效率的目的。

2.4 案例教学法[7]

化学反应工程教材中的很多化工案例,内容过于简略,学生很难从中真正领会到案例的作用。对于教学过程中选用的一些能够反映技术发展前沿和创新科研的工业实例,可采用案例教学法。从化工实践中选取合适的案例,进行专题讨论,充分调动学生学习的积极性,发挥学生在学习中的主体作用,使他们通过积极的思维后主动获取知识。在案例教学的讨论中要注意教材中前后章节内容的连贯性,不孤立分割每一章节内容,要让同学意识到,所学的知识不是独力的而是共同为解决实际问题服务的。例如在讲授固定床气-固相催化反应时,选择学校实习基地宜化化工集团公司合成氨多段绝热固定床反应器的案例,结合生产实习认识,对固体催化剂的装载具体要求,反应器的具体实际类型和操作条件、操作方式等进行详细讲解和讨论,让学生深刻体会气-固相反应的过程、固定床催化器的特点、使用情况和选型原则等,初步掌握化工生产过程分析问题和解决问题的方法,培养学生理论联系实际能力。案例教学可以给学生留下深刻的印象,从而激发他们的创造欲,使他们成为推动学科发展与技术进步的新生力量。

3 理论教学与实践教学充分融合

在教学过程中,化学反应工程课程组教师充分认识到理论教学与化工专业实验和化工设计的统一性,理论知识能指导实践,科学实践又能帮助将感性认识上升为理性认识后,再应用到实践中去。抓住各实践教学环节的机会,将本课程中的理论融入实践教学之中。

由于校院两级投入的加大,实验条件和实践教学条件有了较大的发展。针对本课程所设置的教学实验有多釜串联反应器停留时间分布测定实验、管式反应器烃类裂解反应实验、苯酐合成实验、固定床与流化床的流动特性测定实验和乙苯脱氢制苯乙烯实验。现在开设的化工专业实验中,有很多实验是和理论课程紧密相连的,只要科学合理安排理论教学和实验教学,就能使二者有机结合,为本课程的实践教学提供良好的支撑。进行相关实验能够进一步强化学生所学的理论知识,让学生在实验过程中认识真正的反应器,并将所学理论知识运用到反应器的操控和数据的处理。改变那种老师“抱着走”的单一教学方法,提高学生学习的积极性和主观能动性。

课程设计是完成课程教学后对该课程基本知识和技能进行综合应用的一个教学环节,通过课程设计培养学生解决生产实际问题的能力和知识的综合应用能力。为了进一步深化学生对化工反应器的认识,建成了仿真计算实验室,仿真实验室安装有化工设计模拟软件,为学生化工设计实践提供了良好条件。化学反应工程课程的主讲教师也是化工设计指导老师,学生以小组为单位,教师提出设计课题,学生查阅工程手册等资料,采用CAD 绘制设计图纸,并通过答辩完成课题设计。通过反应工程的课程设计,初步培养学生的工程理念。

化学工程与工艺专业的学生都必须要经历认识实习和生产实习等实践环节。化学反应工程课程组教师充分利用这些实践教学环节,引导学生把课程理论知识与现场生产实践相结合。例如在实习中,给学生下达任务,了解相关工业反应器的形式和特点,其中所发生反应的类型和特点,记录反应器进出物料组成和流量等数据,利用该数据进行物料衡算,计算主产物的收率、选择性等,使学生利用所学知识,体会到所学知识在实际工作中的作用,激发学生学习兴趣,实现理论与工程实际的紧密结合。

4 改革考核方式

考试具有测评教师教学水平和学生学习效果的功能,还有引导学生积极学习的“无形指挥棒”作用。考试制度的改革可以同时有效促进教学内容、方法和手段的改革。考试通常有开卷和闭卷两种,各有特点。本课程采用平时成绩(占20 %)和期末考试成绩(占80 %)相结合的考核方法。化学反应工程课程试题多年来一直坚持教考分离,每次考试试卷由其他教师按基本要求从试题库出70%的考题,主讲教师根据各自的讲课特点出30%的考题组合而成。这种命题方式既考虑了课程的基本要求,实施教考分离,又能充分发挥各主讲教师自己的讲课特色,要求学生体会课堂教学的内容。

平时成绩按照学生平时出勤、作业、课堂回答问题及课堂练习考核、写小论文、写专题报告等情况综合评定给出。平时学生可以上学校化学反应工程精品课程网站,自主学习,使学生的综合素质得以提高。

期末笔试考核学生必须掌握和熟记的基本理论、数学模型与计算方法等,按照期末笔试答题情况给出期末成绩。这种综合评定成绩方式督促学生注重综合素质的提高,对学生良好的学风建设起到了促进作用。任课教师在每次考试后,要求必须对试卷进行详细分析和课程总结,找出试卷中学生存在的共性问题和薄弱环节,为下一轮教学起到借鉴和促进作用,并注意在教学过程中不断改进和完善,实现教与学两方面共同提高。

5 结束语

在当今实施素质教育、培养创新型人才的社会大背景下,化学反应工程作为一门工程学科,要求学生系统掌握反应工程课程的内容,能够把反应工程基本观点与工程知识紧密联系起来,从工程应用分析的角度来讨论重要的工程概念。通过课堂教学与专业实验、生产实习相结合以及创建课外实践教学活动平台和考试形式等多方面的教学改革,并比较了改进前后的教学方法对教学效果的影响进行,发现不同的内容采取相应的教学方法,学生更便于理解掌握教学内容,收到了良好的教学效果。化学反应工程的教学改革还只做了初步的改革探索与实践,每个学校具体情况都不一样,应根据自己的专业方向和办学特色做进一步的探讨。

参考文献:

[1]范明霞,袁颂东.化学反应工程重点课程建设探索与实践[J].广州化工,2009,36(2):111-112,115.

[2]丁刚,吴元欣,程健等.化学反应工程课程体系与实践教学模式的探讨[J].化工高等教育,2008,103(5):49-52,79.

[3]傅杨武,祁俊生,梁克中.论《化学反应工程》教学改革与实践-从“3T”人才培养模式视角[J].重庆三峡学院学报,2011,27(3):131-134.

[4]李望,朱晓波.《化学反应工程》课程教学方法初探[J].教育教学论坛,2015,43(10):156-157.

[5]王琳琳,陈小鹏,梁杰珍等.改革地方院校课程教学模式和内容,培养学生工程与创新能力-以广西大学化学反应工程教学为例 [J].实验技术与管理,2012,29(8):10-14.

化学反应工程原理范文第2篇

    化学反应器中的肥料制造过程中往往是不能够达到反应温度,因为反应不充分,往往产生较多的废物和气体。这样的生产方式不能满足生产和生活的需要,化学反应是不充分的,引起最大的化学产品的生产问题,以及较低的化学反应产率。因为反应不完全严重使化学品的生产效率降低,造成能源和资源的巨大浪费。化学工程在化工生产过程中,整个项目的连续性较差,因此,可能会影响处理正在进行化学反应进展,所以化学工程生产链的整体,是一个很大的整体生产工程。

    目前的化学品制造工序中,不适合的化学品的制造过程,其中有一些生产的主要问题是非常明显的。化学制造过程中,有必要对这些问题采取合理的解决措施,以改善化工生产。最新生产的化学品,需要有效提高化学生产过程的完全反应率,以减少生产过程中所造成的污染。首先,化学品的制造方法中,可提高反应的环境和反应条件进行。为了减少废物的产生,提高了生产效率,实现高效率的生产,化学反应的条件是最重要的生产条件。因此,提高化学品生产的效率,在制造过程中要满足化学反应条件。必须有足够的催化剂和反应条件下,要达到化学反应的标准,以确保生产化学品的制造进一步的提高生产效率,并减少化工生产中产出的废物。化学废物包括废水,废渣和废气。确保这些废物直接排入环境不形成污染,可以选择相对绿色安全的化学品。其次,化学品制造过程中,尽可能的改善生产环境,并提供一个管理系统和废物的处理程序。

    目前,化学工业生产中形成的废物直接排放到自然环境绝对含有重金属和有毒物质。此外,在许多情况下,包含应被视为需要进行适当的废气处理。废水排放,是一般使用化学合成的化学过程所形成的。减轻其废水的有害影响,主要是通过使用沉淀这一种化学反应,最基本的原则,原理是用沉淀的方法在废水中得到重金属。此外,废气处理装置的一个装置,例如,为了确保释放到空气中的安全,废气通过除尘过滤器和有毒气体,进行废气处理中,应严格按照国家规定的标准实施。最后,对化学生产过程中的反应机理与反应条件进行了分析,化学工程实践中,在化学制造工艺技术方面的技术进行讨论,是一种有效的方式。化学制造是最简单的环节,因为它更适合于化学品生产。当然,在不同的环境中,化学反应是随机变化的,化学生产方法与制造原料不同会导致化学反应的不同。采用好的化学原料与好的化学反应方法能够有效的提高生产效率,实现绿色的生产。总之,对化工生产技术进行改进,能够进一步的开发出非常积极的化学生产,完善当前化学生产链。

    上述分析是化学化工生产率提高的探索问题,化学工程和化学品制造过程。注重环境保护和节能减排的要求下,必须增加化学生产过程中,生产的化学品生产效率。不能够以牺牲的自然环境为代价,进行大量的化学品生产。化农是中国的主导产业,环境是农业发展和人类生存的基础,化工环保在化工整体行业的发展起到非常重要的作用,目前已经产生了较为合理的绿色生产,进一步实现化工生产的产业化发展。在化工生产过程中,旨在改善生产效率,提高生产技术得到高产率的化学物质,符合要求的节能环保理念在化学品的制造过程中得到充分的重视。优化化工生产技术,以真实的达到保护环境和能源节约目标的,开发一种化学品后处理的绿色工艺。从根本上解决了合理的化工产品的生产问题,以最大限度地提高化学品的制造过程中的生产效率。

化学反应工程原理范文第3篇

关键词 化工反应工程实验;教学改革;实验技能

中图分类号:G642.423 文献标识码:B 文章编号:1671-489X(2012)12-0117-03

Reform and Practice in Teaching Chemical Reaction Engineering Experiment//Yang Yaping1, Chen Ruijie1, Lu Chun’e2

Abstract By means of the course status analysis, this article describes specific practices of reform on equipment development and improvement, teaching content, teaching methods, assessment methods of Chemical Reaction Engineering experiment in Southeast University Chengxian College. Practice shows that the reform will help improve the skills in organic synthesis experiments and overall quality of students, ensure the improvement of teaching quality.

Key words chemical reaction engineering experiment; teaching reform; skills in experiment

Author’s address

1 Department of Chemical and Pharmaceutical Engineering of Southeast University, Chengxian College,

Nanjing, China 210088

2 School of Chemistry and Chemical Engineering of Southeast University, Nanjing, China 211189

化学反应工程是化学工程的一个分支,简称反应工程,于20世纪50年代才开始逐渐形成。化学反应工程课程是一门综合性、工程性和理论性都很强的课程,既有工程问题的共性特点,又有工艺过程的个性特征。本课程要求学生有较为扎实的物理化学、化工原理、化工热力学、工程数学和计算机基础。化学反应工程课程教学内容覆盖基本理论、实验教学两个教学环节,与化学反应工程理论课程相配套的实验课程化工反应工程实验,是一门化学工程与工艺专业高年级化工类专业实验的必修课[1-3]。本实验课程根据化学工业的生产特点,以动力学为基础,通过定量计算、实验技能和设计能力的训练,培养学生牢固的工程观点,使学生对化工生产中常用的反应器有一个深层次的了解。通过该课程的学习,培养了学生运用基础理论分析解决各种实际工程问题的能力,为化工行业培养具有科研、设计和生产实践等方面需要的专业人才。

1 化工反应工程实验课程的现状与分析

东南大学成贤学院是一所以培养应用型人才为目标的独立学院,化工与制药工程系自2007年建系以来,化工反应工程实验一直作为化学工程与工艺专业高年级学生的必修课,是有机化学、无机化学、物理化学和化工原理四大化学课程的一个延伸与拓展。目前,化工与制药工程系化工反应工程实验引进6套实验装置,主要开设了与设备相对应的6个实验,分别是乙苯脱氢制苯乙烯、甲苯氧化制苯甲酸、变压吸附制富氧、非稳态导热系数的测定、单多釜提留时间分布及萃取精馏实验。所有的实验设备和仪器全部采购于某高校,每台实验设备对应一个固定的实验内容,受仪器设备台数条件的限制,同时设备中存在部分设计的局限性,使得反应工程实验始终停留在原有的实验教学模式和教学内容上,在实验大纲和内容上基本沿用了该高校的教学大纲和教学管理模式,没有任何突破和改进。

考虑到学校人才培养模式和定位与该高校有较大的差异,化工与制药工程系专业设置和学生生源质量等诸多方面与该高校也有相当大的差异,如果完全照搬该高校实验课程的设备和教学内容,就会缺乏该系化学反应工程实验自己的课程特色,缺乏实验内容的创新性,在人才培养上就会显得定位不明确,不能完全体现学院自己的办学特色。

2 优化和扩展实验内容

考虑到以上因素,结合目前化工反应工程在化工行业的发展要求,针对原有实验教学内容上的缺点和不足,化工与制药工程系先后进行一系列的教学改革和实践,主要从以下几个方面进行优化和扩展。

2.1 开发和改进实验设备

目前,化工行业发展迅猛,尤其是新工艺新设备更新换代迅速,原有的很多化工操作单元已经不能完全适应化工行业的发展需求。例如,化工产品的分离提纯是化工行业最普遍操作单元,主要包括减压蒸馏、萃取精馏、加压精馏和加盐精馏等。而该系化学反应工程实验中只有一套精馏萃取装置,而在减压精馏、加压精馏、加盐精馏等提纯分离方面,学生只是停留在课堂理论的基础上,缺乏对这些化工分离操作的实践认知和操作过程训练。

为了适应这一化工行业的发展需求,学院特别针对化工反应工程实验进行了教学改革,方案中专门对化工反应工程实验的装置进行了设计和改造,在院大学生实践创新活动中,组织专门的教师和学生进行实验装置的设计与改造。学生在此次创新活动中,对化工原理、化工热力学、机械制图等方面的知识进行了系统的巩固和综合提高。经过一年的努力,利用实验室现有的场地,自行设计了精馏实验装置和气液反应实验装置等两套设备装置,设计的装置在材质和仪表控制上都做了改进,改变了以往玻璃材质耐压和耐高温性能差、仪表和输液泵不够精确的特点。新设计的精馏实验装置能够实现萃取精馏、加压精馏、加盐精馏等多种分离提纯操作,新设计的气液反应实验装置能够对很多典型的气液反应实验进行操作。

另外,还改进了化工反应工程实验现有设备中的一些设计缺陷和不足。如在甲苯氧化实验中冷凝效果不佳,于是增加二级空气冷凝管使冷却效果大大改善;在乙苯脱氢制苯乙烯实验中,原料必须先校正流量配比后方可输入反应釜中,但由于反应位置与校正位置高度相差较大,导致原料进料配比与校正进料配比相差,于是通过改变输液泵类型、液位槽位置等手段,使得反应配比更加准确,使反应收到很好的效果。

2.2 丰富实验教学大纲的内容

为了丰富和扩展化工反应过程实验教学大纲的内容,提高教学质量,不仅利用现有的设备开发出了新的实验内容,提高了现有设备的利用率,同时利用自行设计的实验装置,增加了新的实验内容。如新增了化工产品分离提纯实验和气液分离实验的内容,主要包括减压精馏、加压精馏、加盐精馏、气液反应等实验操作内容,如丙醛脱水实验属于加压精馏实验,对二异丙苯氧化反应实验属于气液反应实验。另外,利用现有的设备开发出更多的实验内容。例如,利用乙苯脱氢的实验装置,增加了化工反应过程中典型的流化床反应器的操作内容。通过增设这些化工反应过程中典型的操作单元实验内容,丰富了化工反应工程教学大纲[4],使化工反应工程实验操作过程和方法紧跟化工行业发展的脚步,体现了学院对应用型人才培养的特点。

2.3 建立化工反应工程实验工作站和仿真实验平台

为了模拟和优化化学反应工程实验的实验条件、工艺参数,同时克服现有实验设备数量的局限性,对现有的几个化工反应工程实验建立了的工作站和仿真实验平台。通过工作站处理软件对实验数据的现场采集,可以快速地进行数据处理和分析,及时有效直观地对实验结果进行评价,同时减少人为因素处理数据的误差和繁琐,提高了实验教学效率[5]。另外,通过建立仿真实验平台,可以模拟不同条件下化工反应的控制过程,特别是一些受设备条件限制(如高温高压条件)的实验过程,对实验操作过程具有一定的理论依据和指导意义。

2.4 实验内容中增加产物表征操作

化学反应工程实验中,在数据分析与处理中有的设备配备有专门的数据处理软件,直接对实验数据进行分析处理,学生实际动手操作的机会就相对较少。为了改变这种状况,在实验内容中加强实验反应过程的监测、实验结果表征方面的实验内容。如利用气相色谱仪监测反应过程中反应液的含量来判断反应进程,通过热导检测器来分析精馏萃取液中水分的含量来确定最佳工艺条件,利用碘量法测定过氧化物的含量,等等。学生不仅在整个实验过程中操作技能得到锻炼和提高,同时对数据的处理分析、产物的表征、谱图的解析等方面都得到了学习和提高。

3 加强过程管理,改进实验教学方法

实验过程管理是实验教学内容的重要组成部分,是保障实验教学质量的重要环节。化学反应工程实验属于大型设备实验,是一门操作少而理论性相对较强的实验教学,加强过程管理,形成化工反应工程实验教学的学科特色,提高实验教学质量和水平十分重要。

3.1 加强实验过程控制

化工反应工程实验学时数相对较长,学生等待和空闲的时间较多。为了充分利用实验过程中的等待时间,使实验学时数更加饱满,实验过程中加强巡视,强调实验过程中实验现象的观察、数据的采集整理和分析。在整个实验过程中,学生的实验操作能力、数据分析、谱图解析、结果的分析与讨论等各方面的能力都得到全面的锻炼和提高。

3.2 合理分配循环实验时间

化学反应工程实验由于受到实验特点和台件数的限制,目前大都采用循环方式安排实验,这就存在多个学生操作同一台仪器设备的情况,使得有些学生得不到操作和锻炼的机会。为了改善这种状况,采用分组细化的方法,即同一台仪器操作过程中,按照实验学生数量来改变工艺条件参数进行分组实验,尽可能地让每个学生都有动手操作的机会。同时,由于工艺条件参数的不一样,使得学生实验操作过程、实验数据处理及结论也不完全一致。这样既让更多的学生得到了训练和提高,也改善了大量实验数据重复,同组间学生实验报告抄袭雷同的现象。

3.3 树立牢固工程观念,培养工程分析能力

化工生产过程错综复杂,为了让学生更好地掌握化工反应实验过程理论知识和实践水平,透过现象看本质。在实验教学过程中,教师应从分析工程因素的本质及反应特征入手,突出强调过程速率及其变化规律、传递规律及其对化学反应的影响。如通过实验中工艺条件及参数的变化来分析实验结果的影响,让学生通过实验来分析化工反应过程的基本规律,引导学生掌握化工反应工程研究的基本方法,使学生树立牢固的工程观念,培养学生采用工程分析方法来分析和解决工程实际问题的能力。

4 改革实验考核方法,综合评定学生成绩

综合评定学生的实验成绩是考察实验教学效果的一个重要途径,化工反应工程实验以往主要从预习报告和实验报告等方面进行考评。由于化工反应工程实验主要是以工业反应过程为主要研究对象,研究过程速率及其变化规律、传递规律及其对化学反应的影响,因此,考虑到化工反应工程实验课程的特殊性,在学生成绩评定中,应适当增加学生实验操作技能、实验数据处理、实验结果分析与讨论等方面的评分比例,同时对学生的出勤、预习报告、实验报告完成情况、实验态度及卫生等划分不同的权重进行考评,多方面综合评定学生的实验成绩,而不再把实验结果的好坏作为衡量实验成绩的唯一标准。即便学生的实验结果不理想,但在实验报告中能做好实验数据的处理、实验结果的分析与讨论,从而找到失败的原因,就可以获得较好的实验成绩。通过这些考核制度的改革,培养了学生实事求是的科学态度,同时,学生的实验技能、数据处理和分析能力等综合能力都得到很大的提高。

5 结束语

虽然实施化学反应工程实验教学改革与实践时间不长,但已经收到了较好的成效。例如,化工与制药工程系在金陵石化、扬子石化认识实习和下场实习过程中,学生表现出比较强的动手操作能力和工程实践能力;在毕业设计阶段,学生表现出较强的操作技能、独立工作能力和综合实验能力;另外,有相当一部分学生在扬子总控工和高级工的培训中顺利通过考试,取得了总控工和高级工的资格证书。然而也清醒地看到,实验教学改革与实践是一个持续的过程,

化工与制药工程系应顺应化工行业变化的形势和发展要求,不断深化教学改革,充分发挥学生的主体作用,不断优化和完善教学模式和管理水平,突出专业内涵建设,不断提高教学水平,加强实验室建设,着力提高实验教学水平。尤其在化学反应工程实验中增设创新性、开放性实验内容,还有待进一步的探索和研究。

参考文献

[1]王承学,胡永琪,郭锴.化学反应工程[M].北京:化学工业出版社出版,2008.

[2]张雅明,谷和平,丁健.化学工程与工艺实验[M].南京:南京大学出版,2006.

[3]房鼎业,乐清华,李福清.化学工程与工艺专业实验[M].北京:化学工业出版社出版,2000.

化学反应工程原理范文第4篇

【关键词】压力容器;腐蚀分类;意义;原因;防护措施

中图分类号:C35文献标识码: A

一、压力容器腐蚀的特点及分类

在压力容器的使用过程中,金属腐蚀是最常见的腐蚀形式,但是金属腐蚀的原理和腐蚀状况极为复杂,这也是困扰压力容器安全生产的一项重大难题。目前,我们根据金属腐蚀现象主要从金属腐蚀的过程、温度和破坏形式三方面将其分类,值得注意的是,这几种分类方式存在共通点和重叠点。下面具体介绍这几种分类方式:

1、根据金属腐蚀的过程分类。根据金属腐蚀的大致过程,我们将其分为化学腐蚀和电化学腐蚀两个过程。(1)化学腐蚀。化学腐蚀是金属与离子溶液发生化学反应的一种腐蚀,腐蚀过程是一种置换反应过程,没有电流的产生,只有元素化合价的变化。化学腐蚀还可以分为气体腐蚀和溶液腐蚀,气体腐蚀是指的是金属表面在高温气体下的腐蚀,而溶液腐蚀指的是金属在不导电的非电解质溶液中发生化学腐蚀。(2)电化学腐蚀。电化学腐蚀与化学腐蚀相比,最重要的不同在于它存在电子的转移和电流的产生,这种原理与原电池的工作原理类似,是化工生产中一种最常见的化学腐蚀形式。金属在通电的电解质溶液的反应都属于电化学腐蚀。

2、根据反应的温度分类。影响化学反应的重要的因素除了反应物的浓度和催化剂等,最不可忽略的就是温度的变化对于化学反应速率的影响。温度升高对于任何化学反应都会产生加快反应的效果。根据反应的温度可以将腐蚀分为常温腐蚀和高温腐蚀。(1)常温腐蚀。常温腐蚀就是在常温条件下发生的金属腐蚀现象的化学反应。我们常见的常温腐蚀现象包括铁制品在大气中的生锈腐蚀,建筑物在水中发生腐蚀等。金属制品在酸碱溶液中发生的腐蚀既属于常温腐蚀也属于电化学腐蚀。(2)高温腐蚀。顾名思义,高温腐蚀指的就是化学反应发生在温度较高的条件下的腐蚀,当然其中也包含化学腐蚀和电化学腐蚀。为了更好地区分常温腐蚀和高温腐蚀,我们将温度在100摄氏度以上的反应归为高温腐蚀。高温腐蚀常见于工业生产中,尤其是电镀行业。例如电镀过程中的高温熔锌溶液与镀锌容器壁间的反应就是高温腐蚀的一个典型代表。

3、根据腐蚀的破坏形式分类。根据腐蚀的破坏形式一般都为金属腐蚀。根据腐蚀破坏情况又将金属腐蚀分为全面腐蚀、局部腐蚀和结构环境腐蚀三类。金属腐蚀一般从压力容器的表面开始反应,逐渐向容器壁的内部深入腐蚀,最终引起容器的外部或内部结构的破坏,这是金属腐蚀的一大特点。全面腐蚀是金属腐蚀发生在压力容器的整个金属表面,腐蚀时破坏连成一片。这种腐蚀一般情况下是不均匀腐蚀,当然,也存在各种细微条件的相同出现的均匀腐蚀现象。与全面腐蚀相比,局部腐蚀是仅限于容器壁的一小部分发生严重的腐蚀而表面其他地方基本没有损坏或者没有损坏的现象。从安全角度考虑,局部腐蚀往往比全面腐蚀更加危险。这是因为全面腐蚀的特征明显,并且由于腐蚀的速度相差不大,我们可以很容易的推算腐蚀的速度,进而估算破坏所带来的损失和更换设备的时间,达到设备利用的最大化。相反的,局部腐蚀是设备的局部发生破坏,这种破坏往往是隐秘的,不容易发现,极易造成突发爆炸,造成重大的人员伤亡。此外,局部腐蚀的反应机理和反应条件更加复杂,所以无法确定其反应速率,这样就会容易出现设备的突然损坏和事故的发生。

二、腐蚀的危害和防护的意义

腐蚀具有突发性和灾难性等特点,极易造成重大的经济损失,造成重大的人员伤亡。此外,腐蚀会影响设备的外观,还可能会造成生产出的产品不合格,影响产品的声誉和销路,更可能会造成环境污染,破坏生态环境。还有可能造成其他贵重产品的损坏。

腐蚀产生破坏时高度集中,并且蚀孔的破坏很不均匀,由于应力结构等的影响,蚀孔是向重力方向发展,蚀孔口径很小,并且表面往往覆盖有固体沉积物,因此极其不容易被发现,隐藏危害巨大,蚀孔的出现是没有任何预见性的,时间或长或短,这就使得腐蚀变得更加难以治理。所以,防止压力容器的腐蚀能够避免重大事发生、避免经济损失和人员伤亡。

三、影响腐蚀的主要原因

腐蚀是化学反应和电化学反应的集合,所以影响化学反应的主要因素就是影响腐蚀的主要因素,包括金属材料、温度、PH值、电解质溶液的流动状态等。能够发生钝化的金属更容易发生腐蚀,所以,与碳钢相比,不锈钢更加敏感。所以,腐蚀更容易发生在钝态不稳定的金属表面,钝态越稳定的金属,发生腐蚀的几率就越低。温度是影响腐蚀的另一个重要的因素,温度越高,化学反应越快,腐蚀的速度就越快,设备破损就越快。PH值是影响腐蚀的另一个重要的原因,一般情况下,酸性溶液比碱性溶液更加容易腐蚀金属,而中性溶液对于金属设备来说无疑使最理想的。电解质溶液的流动速度也会影响腐蚀的速度,越是稳定的条件就越容易发生化学反应,这是因为在不稳定的介质流动可以消除溶液间的差别,消除溶液间的不均匀性,减缓腐蚀的速率,避免腐蚀的发生。

四、防止压力容器腐蚀的措施

1、涂层保护。涂层保护是避免腐蚀的一项最简单易行的方法,原理是用有机涂料或者无机物的陶瓷将发生反应的金属和溶液分隔开,成本较低,工艺简单,适应性广,见效明显。但是这种方法要在设备投入使用前进行,并且维护时间短,所以后期二次维护和劳动量大。

2、电化学保护。电化学保护是非常适应于水下保护的一种防腐蚀方法,其原理是利用电化学反应的原理,用一种金属保护压力容器壁金属和溶液进行反应,达到保护容器壁的效果。这种防护方法周期适中,但要耗费一定的电能,成本较高。电化学保护包括金属镀层、阳极保护、阴极保护和缓蚀剂保护四种。金属镀层就是在压力容器金属表面镀一层别的金属作为保护层,这种方法的保护周期较长,维护工作量小,但是施工工艺较为复杂,并且成本极高,所以,这种方法适用于面积较小并且环境恶劣的设备保护。阳极保护是应用很广的一类保护方法,是利用微弱电流使得作为阳极反应的金属钝化,减缓反应的进行和金属的消耗。阴极保护就是使得金属达到阴极极化,当阴极电势足够负的时候,金属就可以避免氧化溶解,从而得到完全保护。主要包括外加电流法和牺牲阳极法。缓蚀剂保护就是在溶液中加入一定的能够明显减少金属和溶液反应的一种物质,缓蚀剂可以有效地减缓金属的腐蚀,并且操作简便,可以避免产品污染,防止脆裂事故的发生,但是现在的技术还不够纯熟,不能够保证保护的实效性。

3、合理的管理保护。除了采用以上叙述的方法避免金属的腐蚀之外,在设备的管理上还要进行加强,避免事故的发生,防患于未然。

结束语

在化工生产中,压力容器是一种不可替代的重要的设备。在压力容器的运行和使用过程中,长期处于高温和高压的条件下,使得压力容器极易发生腐蚀和破损,进而影响压力容器的正常使用,甚至出现重大工业事故,造成人员伤亡。因此,研究压力容器的腐蚀和防护对于工业生产安全的意义十分重大。

【参考文献】

[1]施利炳.金属的腐蚀与防护[J].物理测试,2003(03).

化学反应工程原理范文第5篇

现代有机合成工业不断的发展,其化工产品制造过程中的催化剂种类也不断增多。其中非金属有机催化剂是有机化学反应中十分重要的一种催化剂,其工艺的成熟引起了有机化学的一场重要的变革。由于非金属有机催化剂的催化性能比较好,逐渐取代了其他的催化剂,成为有机化学反应中催化剂的主流。随着科学技术的不断发展,不同种类的非金属有机催化剂也不断被研发出来,不断地革新有机化学反应的催化剂使用,成为了现代有机化学的前沿研究领域。

一、非金属有机催化剂

非金属有机催化剂指的是具有催化剂的基本性能,但元素中不含有金属离子的有机化合物。其催化的原理是通过分子中含有的氮、磷等元素与被反应物的化学键结合从而形成活化的中间体,随后利用自身的结构来控制形成不同产物。目前非金属有机催化剂主要有三大类,一类是有机胺类、一类是有机磷类、一类是手性醇类质子催化剂。相比较于金属有机催化剂,非金属有机催化剂有更好的催化性,在尤其是当应用与不对称合成的时候,经其催化的反应大都有很好的收率和对映选择性。另一方面,非金属有机催化剂具有成本比较低廉、更容易制造、更容易保存等优势,使得其不断替代金属有机催化剂,成为有机催化剂的主流。目前,我国对于非金属有机催化剂的利用还是刚刚起步阶段,对于非金属有机催化剂的理论研究比较多,但在实际应用中仍然不多,许多化学反应还仍然未找到合适的非金属有机催化剂,只能够使用金属有机催化剂,因此,对于非金属有机催化剂的各个方面的研究实验还是十分必要的。本文就目前已经有的非金属有机催化剂的利用原理做一个简单的汇总,对于一些新的非金属有机催化剂的利用做一个简单的展望。

二、非金属有机催化剂在有机化学反应中的应用

1、重新排列分子结构反应

重新排列分子结构指的是对于分子中的碳骨架进行重新排列,从而发生结构的异化,其模式是一个取代基从一个原子转移到另一个原子中,在非金属有机催化剂的催化过程中,使用的是类似的原理,使用有机叔磷作为催化剂,在化学反应过程中使得叔磷和三建发生加成反应,三苯基膦脱除后又与三苯基膦进行加成,从而生成共轭二烯酮。一个催化反应就完成了,这样一个反应的效率比较高,而且比较简单,在大生产中能够直接用于生成中间体。

2、环加成反应

环加成反应指的是两个共轭体系的分子结合成一个环状分子的反应,是使得两个小分子结合形成一个比较大的环状分子的过程。像是利用丁二烯酸酯和贫电子烯烃在非金属有机催化剂的催化作用下发生环加成反应,形成了环戊烯,或者是通过非金属有机催化剂的催化作用,使得丁二烯酸甲酯和芳环发生环加成反应生成相应的环加成产物,两种反应都是通过原有物质中的烯的结构,在非金属有机催化剂的催化作用下,生成偶极子,再通过加成的方式形成了大型环状分子;另外一种环加成的方式是利用反应的过程中生成的中间体,利用非金属有机催化剂的催化作用使得醛逐渐加成形成环加成的产物,像是乙烯酮和三氯乙醛的加成反应;此外,环加成的原理还包括不对称的环加成反应,Diels-Alder反应等等不同的方式。

3、缩合反应

缩合反应是指一个以上的有机分子在催化剂的作用下形成一个大分子的反应,在这一过程中往往会失去比较小的分子像是水分子或者是一些结构比较简单的分子。在有机化学反应中,缩合反应包括羟醛缩合反应即烯胺上的氮原子与羧基上的氧原子以及醛羰基上的氧原子共享同一个氢原子从而发生缩合反应,也包括米希尔加成、罗宾森环化反应等等。

4、共轭加成

共轭加成是指共轭体系的两侧或者是中间的原子发生加成从而形成共轭加成反应体。共轭加成包括硫醇的共轭加成、多氮化合物的共轭加成。其原理都是在非金属有机催化剂的作用下,共轭体系中的两个原子发生了加成反应形成新的物质,其反应的对映选择性比较高,因此反应的效果比较好。5、氢氰化反应氢氰化反应通过醛和氰化氢在非金属有机催化剂的催化作用下生成手性氰醇,作为一种十分重要的反应中间体。原本手性氰醇的生成比较复杂需要使用氰酶进行催化,但由于非金属有机催化剂的使用,同样能实现反应过程中的高转化率和高对映性,因此极大的提高了手性氰醇的生产效率。另外一种是亚胺的氢氰化,其原理与手性氰醇生成的原理是类似的。

6、烷基化反应

烷基化反应是指有机化合物中的碳氮氧中的氢原子被烷基替代,从而形成新的烷基化产物。其包括了不饱和双键烯丙基化等不同种类的烷基化反应。

三、结语