首页 > 文章中心 > 化学在工程中的应用

化学在工程中的应用

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇化学在工程中的应用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

化学在工程中的应用

化学在工程中的应用范文第1篇

1 绿色科技能有效减少温室气体的排放

目前主要造成温室效应的气体是二氧化碳,从工业革命以前人们开始应用含碳类的能源物质开始,无论是科技生产还是工业生产,知道现代的科技,即便是已经开始了全球化的大生产,每年都会由于生产而产生数十万吨的co2,这些气体被爱芳到大气中,就是造成温室效应禅城的最根本的原因。而过去并未有相本文由收集整理应的法律法规对此类问题进行规范,因此很长的一个时期,工厂对大气的这种破坏是无需承担任何责任的。

目前针对这一问题,很多化工企业都开始积极的开展新的技术,通过利用新技术以改善高co2气体排放的现状,随着投入的加大,这种现象得到了有效的控制。甚至目前已经在某些生产环节可以达到利用二氧化碳作为原料进行生产,以此降低其排放量。比如,尿素的生产过程中,化工企业就可以再生产中将co2进行收集通过一些反应进行利用。这一工艺每年就可以减排数十万吨的二氧化碳。

2 海水淡化预处理中绿色科技的应用

水是生命源泉,无论是生活还是生产,最基础的生存都离不开水。水作为社会发展的基础资源,本身有具有着有限性,尤其是淡水资源。而随着社会以及经济的发展,淡水资源曾经的利用毫无章法和度,因此世界开始面临了淡水危机这又一环境问题。中国虽然地大物博,但是相对于整个世界而言,是淡水资源最缺乏的国家之一,因此就需要寻找到可以解决这一难题的有效途径,海水的淡化技术的产生和应用不得不说是成为了解决这一问题的有效途径。海水淡化技术在初期研发阶段的应用成本较高,只有少数发达国家才有技术以及资金使用,称得上是奢侈技术,但是随着科技的发展,海水淡化的应用成本随之降低,其开始作为一种普通技术为一些发展中国家引用并应用。

淡化海水本质上就是通过一些物理方法或者是化学方法将海水中的盐分以及水分进行相互分离的过程。在对海水进行淡化的过程中不会对环境造成任何不良的影响,并且获取海水对生态也没有造成结构上的破坏,这一点和目前我国提出的可持续发展的思想十分吻合,即满足了自身的需要,同时也给后代留下了能够发展的资源以及环境。这一点就符合了绿色科技的基础理念,所以海水的淡化中的一个重要环节就是绿色化学工艺的应用。而将这种绿色科学的理念同化工相互联系的过程实则就是现代化工发展的重要方向之一。氢氧化镁在海水的预处理淡化中产生,这种物质不但环保可靠,并且成本较为低廉,具有简单的操作工艺,同时不会造成换进的二次污染,在海水的淡化效果上又十分的明显,因此应用前景十分广阔。

3 传统香精香料生产中的绿色化工的应用

香精香料不仅仅是我国日常添加剂之一,同时在国际市场上也是我国进行进出口的贸易组成主要内容。作为日常化学产品之一,香精香料也受到了经济危机的影响,由于这种影响的逐步加深,经济萧条的状况开始蔓延整个世界,因此,随着这一影响的加深,我国在香料香精的出动中,由于订单的减少,受到了一定程度的打击。

在深入地调查我国香精香料产品出口订单锐减现象的原因之后,不难发现,产品中有害杂质含量超标,是其真正并且主要的原因。造成有害杂质含量超标的原因则在于生产工艺方面的缺陷。例如提取原料的成分在产品中有残留以及包装材料的使用不当等原因。其中,提取原料的成分在产品中的残留的问题,可以通过研究和开发新的提取技术来改变。包装材料使用不当的问题,则应通过加强企业和工厂的监管力度,督促生产商家和企业反复试验,选取符合有害杂质含量标准的外包装物等方法来改善。还要牢牢掌握我国香精香料产品的优势方面,不断加强新技术的研究和其在实际生产中的应用,才能够满足生产出高质量、低能耗的香精香料产品的要求。

4 绿色化学使可持续发展战略任务逐步向前推进

传统的化工生产,给我们的生活创造了非常丰富的物质基础和能源。其在对人类历史的发展进步的工程中所做的贡献是不不忽略的。但是呢,又由于化工产品生产的原材料和生产过后的残余物中,存在着大量的有毒有害物质,这些物质又造成了很多环境污染问题以及生态平衡的失调。这样,就又阻碍了社会经济的继续发展。新世纪,面对严峻的环境污染所提出的挑战,可持续发展战略这种道路的选择,成为了历史的必然。

化学在工程中的应用范文第2篇

关键词:裂解原理;化学工程;概念;应用

1.前言

近年来,裂解原理在化学工程中的应用范围正在逐渐扩大,究其原因离不开裂解原理本身的一些特点,这些特点决定了它在化学工程中的独特作用,使其能够在工业生产中占据一席之地,并为我国国民生产总值的提高做出贡献。对此,我们有必要针对裂解原理在化学工程过程中的应用进行积极的研究和探讨。

2.“裂解”的概念及内涵

在化学工程的概念中,裂解指的是在热能的作用下将某种高分子的化合物转变为其他低分子的化合物,该化学过程又叫做热解或热裂解[1]。这一工艺往往应用于石油化工的生产过程,它的发生温度较高,一般在七百至八百摄氏度之间,有些特殊的裂解反应甚至需要提供一千摄氏度的高温才能进行,也正是因为超出裂化的高温使得裂解反应可以不同于裂化反应达到更好的效果,比如它可以通过断裂长链烃的过程将石油或石油气的分馏产物转变为丙烯或乙烯等链烃较短的物质。可以说,高温是裂解反应的必要条件。

依照反应条件,裂解反应大致包括以下几种类型:首先是含水裂解。顾名思义,含水裂解就是指反应过程中有水存在的裂解过程,一般包括对石油进行蒸汽裂化或是从有机废料中提取出轻质的原油,这些过程都需要或不排斥水分子的存在;其次是无水裂解。不像有水裂解需要或容许水分子的存在,无水裂解恰恰是不需要水分子才能发生反应的化学过程。无水裂解的历史由来已久,古代的时候,古人将木材变成木炭的过程就属于无水裂解的过程。目前看来,这种裂解方式还可以用于塑料及生物质能中液体燃料的制取;第三种类型是真空裂解。真空裂解控制的是化学反应中的空气含量,某些物质在没有空气的情况下才能进行裂解。

3.裂解原理的工业用途

裂解原理在目前的化学工程中的应用相对来说是比较广泛的,起初的化学工程中,裂解反应的原料主要包括柴油、煤油及石脑油等,不过随着化学工业的发展和化学理念的变更,重油逐渐成为人们更为倚重的裂解反应原料。裂解的过程往往还会伴随着环化、缩合以及脱氢等不同类型的化学反应。

一般来说,我们可以将整个反应过程分成两个不同的阶段。在第一阶段的时候,裂解原料发生了初步的化学变化,会形成我们需要的目的产物,比如丙烯及乙烯等,这是一次反应过程。第二阶段的时候,是一次反应的产物作为反应物发生的二次变化,所以也叫做二次反应,亦即丙烯及乙烯转变成了二烯烃、环烷烃、芳烃及炔烃等的过程,甚至还有反应更为彻底的,直接变成了焦炭和氢气。经过了一次反应和二次反应以后,人们获得的裂解产物就比较复杂了,可以说是不同物质组成的混合物。一般来说,裂解反应受到温度、原料及反应时间的影响比较大,这三项因素的变化会导致不同的反应产物出现。一般来说,化工生产中比较常见的反应容器是蓄热炉或管式炉,在这两种反应容器中,石油烃会变成芳香烃、炔烃及烯烃等小分子物质,比如丙烯、乙烯、乙炔、丁二烯、甲苯及苯等。

目前的化学工程中,裂解原理一般用在化工产品的合成上,比如将二氯乙烯进行裂解以后,人们可以得到PVC,即聚氯乙烯。而聚氯乙烯是人们日常生活用品中比较常用的一种原材料,比如门窗、管材、板材、鞋底、玩具、文具、电线外皮及包装盒等物品,都是由聚氯乙烯制成[2],虽然除了化学工程领域的工作者及相关的研究者以外多数人并不了这些日常生活用品的合成过程。另外,在化学工程中,难免要出现一些化工废料,对这些化工废料的处理同样离不开裂解反应,因为它可以通过不同类型的裂解过程将这些化工废料转变成一些低害物质以避免对自然环境的污染,甚至有些化工废料还能够在裂解反应的作用下变成能够被人们二次利用的新的化工原料,这样就实现了资源的可持续利用,是低碳环保理念所提倡的一种化工生产方式。比如“合成气”,经过裂解反应将部分化工废料转变为合成气后,合成气又可以成为氨及甲醇的制造原料,而氨又是尿素及各类复合肥、硝酸等的重要合成材料。

4.结语

裂解反应是目前化学工程中应用比较广泛的一类化学反应类型,它与人们的日常生活息息相关,为推动我国国民经济的发展及方便人们的日常生活做出着巨大的贡献。作为化学反应的类型之一,裂解反应不可避免地受到一定反应条件的制约并且也会有部分能耗的浪费,在未来的发展过程中,更新裂解反应的技术工艺,创造低碳、节能、环保的裂解方式必然会成为化学工程发展的方向和目标。■

参考文献

化学在工程中的应用范文第3篇

关键词:化学灌浆;防水

序言

伴随着我国城市化进程的进一步加快,城市地下空间的开发利用已经成为当今各城市发展趋势,并成为衡量城市现代化的重要标志。伴随着城市地铁修建的热潮,人行地道、地下车库等配套设施的修建,地下工程防水问题日益突出。

在地下工程砼施工中,伸缩缝、施工缝的渗水及温度应力裂缝的处理一直是一个世界性难题。为了最大可能减少砼施工过程中各种裂缝的发生,在砼施工过程中,我们不断在原材料的选用、工艺流程方面大做文章,并且不断制定、优化质量保证体系和控制措施,以确保施工各环节完全受控,但往往不能达到我们的预期目标,在砼施工中还是不同程度的发现有各种缺陷产生。

化学灌浆就是砼缺陷处理的一种非常有效的补救方法,它能有效解决地下工程中因混凝土结构缺陷包括接缝、施工缝、变形缝、蜂窝麻面及混凝土收缩等引发的渗漏水问题,止水防水效果显著。由于化学灌浆技术有着其他防水技术方法所无法代替的优点:应用灵活、简便、高效、快速并能够迅速控制渗水,因此它在城市地下工程中被日益广泛应用。作为地下工程防水、堵漏的一项主要手段,化学灌浆防水技术正日益受到越来越多的关注和重视。

1 化学灌浆技术简述

化学灌浆一般是指将由化学材料配制的浆液,通过钻孔埋设灌浆嘴,使用压力将其注入结构裂缝中,使其扩散、凝固,达到防水、堵漏、补强、加固的目的。常用于修补较深的砼结构裂缝。根据灌浆的压力和速度,可分为高压快速灌浆法和低压慢速灌浆法。

2 作用机理

(1)对裂缝形成化学链结。

(2)对表面的孔隙形成高强度锚栓。

(3)高压力的推挤下填充所有裂缝。

3 材料选择

聚氨酯化学灌浆材料:它遇水后立即反应,体积迅速膨胀,生成一种不溶于水、有较高强度和弹性的凝胶体。

聚氨酯灌浆材料分水溶性(亲水性)和油溶性(疏水性)两种。

水溶性、油溶性聚氨酯灌浆材料共异性分析:

(1)共性:二者都能用于防水、堵漏。

(2)异性:水溶性聚氨酯灌浆材料包水量大,渗透半径大,固结体弹性好,最适合混凝土动缝的防渗堵漏;油溶性聚氨酯固结体强度大,防渗透性好,固结体弹性小,最适合混凝土静缝的防渗堵漏及加固。

城市地下空间工程渗水属于动态防水,故采用水溶性聚氨酯化学灌浆材料。

水溶性聚氨酯灌浆材料物理性能:

(1)水溶性聚氨酯灌浆材料亲水性好,包水量大,适用于潮湿裂缝的灌浆堵漏、动水地层的堵涌水、潮湿土质表面层的防护等;

(2)水溶性聚氨酯具有良好的亲水性,浆液遇水后自行分散、乳化、发泡,立即进行化学反应,形成不透水的弹性胶状固结体,有良好的止水性能。它能与水以某种比例混合(最高达1:40),在注浆过程中使用是经济的。

(3)水溶性聚氨酯预聚体可加入20~40%的稀释剂,而油溶性聚氨酯预聚体可加入10~20%的稀释剂,前者的粘度为后者的1/4~1/6。

(4)水溶性聚氨酯对水质适应性强。不论海水、矿水、酸性或碱性水质对浆液性能影响不大。

(5)水溶性聚氨酯与水混合后粘度小,可灌性好,固结体在水中浸泡对人体无害、无毒、无污染。

(6)水溶性聚氨酯对水的溶解度及亲和力比其它化学浆材高,在流动水中,浆液不易被流动水冲散,固结体的固结面积反而扩大,且随着动水流速的增加,其堵水面积而相应扩大。

(7)水溶性聚氨酯反应后形成的弹性胶状固结体有良好的延伸性、弹性及抗渗性、耐低温性,在水中永久保持原形。

(8)水溶性聚氨酯浆液遇水反应形成弹性固结体物质的同时,释放c02气体,借助气体压力,浆液可进一步压进结构的空隙,使多孔性结构或地层能完全充填密实。具有二次渗透的特点。

4 施工机具

主要施工机具有:注浆泵、止水针头、电锤。5施工工艺

 

(1)定位:详细检查、分析渗漏情况,确定灌浆孔位置及数量。

(2)钻孔:使用电锤等钻孔工具沿裂缝两侧进行钻孔,钻头直径与注浆嘴(止水针头)直径一致,钻孔角度宜≤45。,钻孔深度≤结构厚度的2/3,钻孔必须穿过裂缝。但不得将结构打穿(壁后灌浆除外)钻孔与裂缝间距≤1/2结构厚度。

(3)埋嘴:在钻好的孔内安装灌浆嘴(又称之为止水针头),并用专用内六角扳手拧紧,使灌浆嘴周围与钻孔之间无空隙,不漏水。

(4)封缝:将洗缝时出现渗水的裂缝表面用水泥基防水材料(抗渗1号堵漏型)进行封闭处理,目的是在灌化学浆时不跑浆。

(5)灌浆:使用高压灌浆机向灌浆孔内灌注化学灌浆料。当相邻孔开始出浆后,保持压力3~5分钟,即可停止本孔灌浆,改注相邻灌浆孔。

(6)拆嘴:灌浆完毕,确认不漏即可去掉或敲掉外露的灌浆嘴。清理干净已固化的溢漏出的灌浆液。

(7)封口:用水泥基防水材料(抗渗1号防水型)进行灌浆口的修补、封口处理。

(8)防水:用单组份pa防水胶将已灌部位涂三遍(底涂、中涂、面涂)宽度10~20cm,两端各长出20~30cm。

6 应用实例

杭州市天日山路益乐路口/紫金港路口过街地道工程设计采用全封闭防水,在基坑回填结束后,地下水位不断上升,加上当时正值雨季,整个主体结构完全被水浸泡,很快,主体结构就出现了不同程度渗水,主要集中在明暗挖结合处、设备用房与主通道结合处、拱顶、楼梯地板等部位,出水点多达几十处。为此,施工单位在广泛调研论证后,决定采用水溶性聚氨酯注浆堵漏技术,对出水点全面堵漏。施工过程中,因旧的出水点已封闭,在混凝土薄弱处,新的出水点还不断出现,然后再次进行注浆防水堵漏。在洞内装饰开始施工前,主通道内的出水点已基本消失,取得了良好的效果。

化学在工程中的应用范文第4篇

1、教学内容的选择

为适应我院“培养高素质应用型人才,服务地方经济社会发展”的要求,首先应从培养应用型人才角度出发,对《化工制图》的教学体系进行研究,针对教材、教学课件等多个环节,探索并形成一种适用于应用型人才培养的教学体系;其次要注意结合生产实践,选择实际生产中具有代表性的设计题目,组织学生去安庆石化现场参观,实现理论与实践相结合的目标,能够极大的激发学生的学习兴趣,从而能更好的培养其工程意识和空间想象能力;最后更注重实践性教学,突出对学生空间想象能力和创新能力的培养。了解AutoCAD在化工制图中的应用,利用现代化的教学手段来提高学生的绘图技能。结合安徽大学化学化工学院培养目标和用人单位的需求,推进本课程的改革,提高其教学质量,首先要合理规划教学内容,进行优化设计。突出化工制图的特点,将机器零部件、连接件和装配图以及化工设备图、工艺流程图和管道布置图的表达特点重点讲解;将国家和行业标准规范贯穿教学的始终;在注重理论教学的同时,还要加大实践教学的力度,合理安排理论和实践的教学比例。另外,AutoCAD是现代工程设计的一个主要内容,以培养学生较为扎实的制图基础,具有空间思维能力、处理化工制图能力,为后续课程设计服务为目的。

2、教学方法的改进

(1)板书、化工制图多媒体课件和AutoCAD计算机辅助设计制图三者结合的教学模式在教学模式上,根据内容选择不同的教学模式,如:首先从工程实践中抽象出具有代表性的任务,使学生明确课堂的教学目标,引发学生积极动脑思考和激发学生的求知欲望;然后对给定的任务进行分析,启发学生尝试运用已掌握的知识解决新问题,引发学生深入思考和创造思维;接着再阐述相关知识,指出教学内容的重点和难点以及相应的解决方法;下一步进行课堂练习,让学生举一反三的运用所学知识解决问题,培养和训练学生创造性思维,让学生既动脑又动手,增强实践能力和独立解决问题的能力;最后进行课堂小结,总结要点和解决问题的方法途径、注意事项,加深学生对教学内容的理解。教师用黑板亲自示范作图步骤、作图的思路以及规范等,可以引导和示范学生手工绘图,例如,在画六棱柱时应该先画定位轴线,再画出上下两个底面的三视图,最后补全棱线。这样有利于老师与学生互动,提高学生的动手能力。采用多媒体讲授作图,可以做到图文并貌,并可以呈现二维图形和三维模型之间的相互转化,例如学生都感觉到换面法和截交线、相贯线很难理解,通过多媒体可以非常直观,形象的表现出来,帮助学生建立空间的概念,提高空间想象力。采用AutoCAD计算机辅助作图是现代工程设计中的一门基础技能,在化工企业中得到了广泛的应用,它可以培养学生的空间想象能力和快速处理工程图样的能力,从而进一步提高学生的实践能力。

(2)化工制图与课程设计相结合

《化工制图与AutoCAD》是一门理论性很强的课程,如果只注重基础理论教学,而忽视实践教学环节,则往往会造成实践与理论的脱节,同时课堂教学的效果也不理想。充分利用各种实物模型,有机结合生产实际,走进工厂,加强实践教学环节。在学习化工制图的过程中,将课程设计中用到的绘图知识贯穿始终,可以让学生阶段性的练习国标及行业规范的应用,如何绘制工艺流程图、零件图及装配图等。对于复杂的塔器或热交换器等化工设备,很难通过语言表达或文字叙述来表达模型演示的效果,这是可以充分利用多媒体工具,AutoCAD能迅速准确的绘制所需的各种化工制图图样,而且具有强大的编辑功能,提高学生绘制各种化工工程图样的能力。这样学生在后续的课程设计中就会对化工制图的知识灵活运用。通过化工制图与课程设计的结合,充分培养学生的形象思维能力和空间想象能力,通过启发和诱导,对学生进行有效的培养和训练,为学生提供一个生动、形象的立体化教学环境,充分培养学生的空间思维和动手能力。

二、结语

化学在工程中的应用范文第5篇

1.引言

化工原理课是高校化学工程与工艺、应用化学、环境工程、制药工程、生物技术等专业的一门理论性、实践性很强的专业技术课。课程以工业工程应用为背景;以单元操作过程为对象;以三传一反为原理框架。它主要讲授化工单元操作过程的基本原理、典型过程设备结构,进行过程工艺设计计算、设备设计或选型及单元过程的操作分析,是理论与实践密切结合的技术基础课。化工原理是门实践性较强的学科,而学生在学习过程中缺乏生产实践及经验知识,缺少对单元过程、设备的认识和了解。因此,学生普遍感觉此门学科的理论知识和计算方法抽象,不易理解;学生普遍反映课程学习起来较困难[1]。究其原因:首先,该课程的很多知识点是工程实践直接经验化而来,其次,该课程综合了物理化学、高等数学、化工热力学、传递过程和反应工程等众多学科。再次,目前很多高校迫于政策调整,对这门课程的课时进行压缩减少,使得这门课程的理论课时减少了10%左右[1]。因此,对于化工原理这门学科,尤其是学时少,学生学习起来更加困难。故针对少学时的专业,设计一套更为符合本门专业学生实际情况的教学计划显得尤为重要。

2.案例互动教学

化工原理是一门实践性较强的课程,它和工业领域的实际操作过程有着紧密的联系。由于化工原理中每个单元操作都面临着复杂的实际问题。因此,使得学生学好这门课,建立起学习的兴趣是必要的。为此,笔者在教学过程中摸索出了一种因材施教的新方法,即案例引导式教学。简单概括为,在每一章内容之前,介绍一个和本章关系较大的工业或者日常生活案例,案例需要具备一定的科学性以及需要用到本章原理去解释[2]。在介绍过程中(展示形式多样,可以口述,也可以以多媒体形式展示),适当的留一些问题,让学生带着问题去听课,之后和学生就案例中的问题进行互动讨论。以下笔者给出化工原理教学中可以用到的一些经典案例,这些案例将有意于激发学生的学习兴趣,让学生从易于理解的案例中获得一些科学原理,从而建立起探索科学问题的兴趣[3]。

3.传热案例

以家庭暖气片为例:从房间内暖气片的换热现象开始,以提问的方式引导学生。首先,介绍换热片的传热原理,引出传热的第一种方式:热传导;接着,假设房间内有空气流动,如:风扇强制空气对流,这将使得传热速率加快、使得房间里远处的人很受到温度的升高,这就是“热对流”。以上热对流和热传导的定义已经给出。再次,引出热辐射。在自然生活中,热辐射存在于很多地方,如:太阳对地球的热传递,人能感受到热量,这是由于太阳以热辐射的方式向地球传递热量。综上,三大传热方式的简单原理已经解释的较清晰了。传热的形式包括:热传导,热对流,热辐射[4]。本文将详细讲解传热案例。

热传导:热量为什么会传递?换热片温度高,导致和换热片接近的空气温度升高,高温空气分子能量较高,通过在无规则的碰撞分子之间发生能量传递,高温的分子使得相邻的低温分子温度升高,从而实现热量传递。在密闭房间内,假设无空气流动,仅仅靠无规则的分子碰撞发生热量传递,这样的热传递就是热传导。

热传导速率的影响因素:热传导是热量传递的一种方式。热传导的速率有快有慢,这跟一些因素有关。传热介质的性质对热传导的速率影响很大,也可以用案例的方式来引导学生去思考,让学生自己思考自己得出结论。这里给出一个日常生活的传热介质案例来引导学生。不少学生都有游泳的爱好,可是为什么在水中明显感觉较冷呢?为什么下雨天里,衣服被淋湿了,人体就明显感觉冷呢?在学生的互动中可以得到很到答案,但是基本都会以非科学术语的方式回答。教师在解释的时候需要注意学生对专业术语的理解能力。水和空气都是一种传热介质,气体和液体的本质区别体现在分子原子之间的距离上。液体分子之间的距离较近,而液体分子之间的距离要高于气体分子多个数量级,因此在热传导时,气体的热传导的阻力要远高于液体。即气体的热导率要远低于液体。由此,大体可以得到热导率的对比:气体

热对流:一个比较简单的例子,倒一杯开水放在桌子上,由于杯子里的水和周围空气的流动,使得水温逐渐变得和周围环境的温度一样了,这是热的对流。如果在杯子上加个盖,就把对流的道路挡住了。可是这杯水依然会变凉,只是时间长些。这是因为杯子有传热的性质,这就是上面讨论的热传导。在房间内,起初无空气流动,仅仅是热传导。若将电扇打开,增强空气流动,空气分子发生对流,此时可以和学生互动,让学生来解答在有空气流动和无空气流动的时候哪种方式传热更快,即哪种方式更利于暖气片散热。学生的回答是前者,即有空气流动的情况下更易于传热。此时让学生阐述为何有空气流动下更易于传热。从学生的阐述中可以了解学生对传热过程的兴趣。接着教师点评学生的观点。从学生的观点里可以提取一些比较能容易让学生接受的热对流原理。将这些原理加入科学术语,学生会有较深的映像,因为这是从学生自己的思维理解里总结出的“为什么?”最后总结热对流的基本概念。在有介质对流的存在下,冷热的介质将热量从高温处传递到低温处的现象称为热对流。在案例中,暖气片周围温度较高,有空气对流时,空气的流动使得暖气片周围的热空气和远处的冷空气发生位移从而混合,导致冷热流体发生传热,最后导致的结果是房间内对流程度越大,房间平均温度升温越快。由此可以得出结论,同样条件下,相比无空气对流的情况,有空气对流的传热效率更高传热更快[5]。

热辐射:高温的物体激发产生电磁波,向空间传播,称为热辐射。太阳就是个很好的例子。阳光明媚户外里人体为什么能感受到热?这样的问题看起来很简单,学生的答案较多。热辐射这个名词听起来较深奥,但是学生们知道太阳就是热辐射的一个典型例子,就会对热辐射不陌生。热辐射有的地方需要加强有的地方需要减弱。可以适当例举一些例子加以深化说明。减弱热辐射的例子:很多工业管道上都有一层银色的保温层,这是为了减少热辐射,防止管道内热量以热辐射的方式向外传热。这是因为银色物质对热辐射有反射作用,能将辐射出的热量反射回去。在银色的保温层内都有一层海绵层,这是为了减少热传导。增强热辐射的例子:太阳能热水器的受热部位都涂有一层黑色的吸热物质。

热传导、热对流和热辐射是传热的三种方式。在自然界和工业界里很多过程都是这三种传热方式同时发生的。为了将这三种传热方式结合起来让学生理解,可以引出一个三种传热同时发生的例子。暖水壶是日常生活必需品,细心的同学会从暖水瓶的结构发现暖水瓶保温的原理。教师可以以互动的方式开始暖水瓶保温原理的讨论,让学生组成小组,以小组形式讨论最后得出结论。学生的结论可能较多样,且不科学。教师此时将学生的结论综合起来,写在黑板上,以待对比。教师以口述和多媒体的方式讲解暖水壶内胆的结构,从结构图上讲解原理。

暖水壶的内胆是两层的玻璃,两层玻璃都镀上了硝酸银,玻璃中间是真空的。玻璃内层镀硝酸银的目的是为了降低热辐射,使得热水的热辐射被反射回去。玻璃中间抽真空的目的是为了减少热传导,这是因为真空的热导率最低。而水壶塞的作用就是将水壶内外隔开,防止热对流。而软木是较好的绝热材料,热导率较低,故一般瓶塞都用软木材料。接着提出问题,暖水壶能保热,能否保冷?热水瓶的功能是保持瓶内热水的温度,断绝瓶内与瓶外的热交换,使瓶内的“热”出不去,瓶外的“冷”进不来。如果在热水瓶里放上冰棍儿,外面的“热”同样不容易跑到瓶子里,冰棍也不容易化。所以把热水瓶叫做保温瓶是科学的,因为它既能保“热”,也能保“冷”。

4.案例互动教学的总结

在化工原理的教学中,笔者发现案例引导教学法特别适用于少学时的专业,因为这些学生不属于化学化工专业,在化工的基本过程了解较少,教师需要较多的精力去引导学生,让学生对化工原理感兴趣。本教学方法尤其适用于理科功底较浅,高考调剂的学生,在非211的省属高校里这样的专业有很多,这些学生理科功底较差,学生无法在较短的时间里很快对化工原理产生兴趣并跟上教学节奏。

参考文献:

[1] 杨宗政. 化工原理教学方法探讨[ J] . 中国轻工教育, 2008 (4): 59-61.

[2] 曾明荣, 曾庆友, 赵鹏. 化工原理实验开放教学的研究与探索[J] . 实验技术与管理. 2008 (10): 128~ 129.

[3] 曾永林,雷存喜,王锋.化工原理实验教学过程中的思考[J].化学工程与装备,2009 (11): 189-193.