前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇物质的量在化学中的应用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
一、应充分认识到两种粒子物质的量换算关系的计算价值
大家都知道初中化学计算以质量为中心,高中应构建以物质的量为中心的计算体系。物质的量在高中化学计算中的中心地位体现在哪些方面呢?我认为主要体现在两个方面:首先体现在物质的量处于同一种粒子不同量换算关系网络的中心,这是大家所熟知的;其次体现在物质的量之比是两种粒子各种换算关系的中心。即两种粒子的换算关系无论是同种量之比,如质量之比、气体体积之比(同温同压下)以及溶质与对应离子的物质的量浓度之比(同一溶液中)等,还是不同种量之比,如物质的量与质量之比、质量与气体体积(标准状况)之比,等等,都可以在物质的量之比基础上推算得出。同时,由于物质的量之比在既定两种粒子的各种换算关系中数值最小、计算最便捷,导致物质的量之比成为换算关系运用的主流形式。高中化学计算究其本质主要是两种不同粒子之间的计算,正确构建两种粒子的量关系是进行两种不同粒子量之间换算的桥梁和关键。由此可见,正确构建两种粒子(或物质)之间物质的量换算关系在化学计算中起着至关重要的作用。
二、掌握构建两种粒子物质的量换算关系的基本方法
在人教版初中化学中,化学式和化学方程式的定量意义可用微观粒子个数和宏观质量两种量揭示。实际计算中,没有单纯利用粒子个数关系进行的计算,主要是依据化学式和化学方程式中蕴藏的两种粒子质量关系进行的计算。但提取出粒子个数关系是推算质量关系的基础和必经之路(事实上物质的量关系在其中起桥梁作用)。由此可见,有关化学式和化学方程式的计算虽然用到的是质量关系,但离不开粒子个数关系的奠基。
中学化学计算体系中,计量粒子数目多少的方式有两种:一种是以单个的方式来计量叫粒子个数,习惯上称为粒子数;另一种是以集合体的方式来计量叫物质的量,并且两者之间存在固定的换算关系即阿伏加德罗常数。由此可知,在一定情形下如化学式或化学方程式等一定时,只要同时采用相同的计量方式,其中任意两种不同粒子的数目关系就一定,即在一定情形下,任意两种不同粒子的粒子个数之比等于物质的量之比。而平时从定量的角度认识物质的构成及其发生的化学变化,往往从微观粒子之间的个数关系着手,并且在微粒之间的多种量关系中个数关系涉及的知识最基础、数据最简单、得出最方便。因此,首先从化学式或化学方程式等条件中提取出粒子个数关系,进而转化为物质的量关系,是构建两种粒子物质的量换算关系的基本方法和主要途径。
三、精心设计构建两种粒子物质的量换算关系的起始形成教学
1. 起始形成教学中存在的问题
无论是从人教版、苏教版和鲁教版这三种新教材的编排来看,还是从实际教学的安排来看,关于两种不同粒子的个数之比等于物质的量之比这一结论的起始形成与运用教学,基本上都安排在“阿伏加德罗常数”之后、“摩尔质量”之前,而且都是以化学式作为研究对象,即本质上把物质的量应用于化学式的计算教学作为粒子个数之比等于物质的量之比这一结论的起始教学。但从实际教学过程与效果来看,这部分教学内容的选择、组织以及安排等方面还存在不少问题,致使教学效果不够理想。那么现行物质的量应用于化学式的计算教学究竟存在哪些问题?经归纳后得出问题主要有:
(1)物质的量应用于化学式计算的教学隐性化
很多教师把物质的量应用于化学式的计算教学,与物质的量与粒子个数的换算教学混杂在一起,并隐藏于其中,导致为形成物质的量与粒子个数换算公式所举的例证类型不单一,严重干扰了物质的量与粒子个数换算公式的自然生成。同时由于物质的量应用于化学式的计算教学环节没有在教学中单列凸显,导致学生对物质的量应用于化学式的计算内容认识模糊、肤浅。
(2)忽视结论的起始形成教学
有的教师把由物质的量与粒子个数换算公式推导出的粒子个数之比等于物质的量之比(同种粒子),直接用于化学式的计算(不同种粒子之间),学生感到非常突兀。缺失结论粒子个数之比等于物质的量之比的形成教学,必然致使学生对结论缺乏透彻全面的理解,运用难以灵活自如。事实上物质的量用于化学式的计算依据虽然表述与前者相同,但形成过程以及适用范围是不同的。
2. 立足教材解决问题的方法
那么立足教材现状如何解决实际教学存在的主要问题呢?笔者认为,应把物质的量应用于化学式的计算教学,与物质的量应用于化学方程式的计算教学同等对待,进行主题显性化教学。这样做不仅可有效解决问题,而且可促进相关计算整体教学效果的提升。具体做法如下。
(1)通过比较吃透教材
如果围绕研究主题对三种教材先逐一分析再进行比较将发现,尽管三种教材正文对物质的量应用于化学式的计算内容处理方式与编排内容各不相同,如苏教版凸显结论粒子个数比等于物质的量比在化学式计算中的应用,鲁教版凸显结论粒子个数比等于物质的量比的形成过程,人教版保持了老教材原有省略的做法;但共同点是正文末尾的习题中都安排了相关习题。这些事实充分说明了三种教材都一致认为物质的量应用于化学式计算教学的必要性和重要性。事实上,物质的量应用于化学式的计算与物质的量应用于化学方程式的计算同等重要,两者是高中化学计算中的两种重要的基础性计算类型。
(2)运用整合设计教学
如何进行物质的量应用于化学式计算的起始教学呢?由于单一粒子物质的量与粒子个数的换算与物质的量应用于化学式的计算是两类不同的计算,宜应采用先分类后综合的教学策略。分类教学显然先单一粒子物质的量与粒子个数换算后物质的量应用于化学式的计算。下面就围绕物质的量应用于化学式计算的起始教学设计这一主题将自己实践与思考介绍如下。
①从物质的量的视角认识化学式结论的形成教学
从三种教材的编排来看,只有鲁教版呈现了引导学生从物质的量视角认识化学式获取新认识的过程。鲁教版旨在用“图”引导学生运用刚学的物质的量与粒子个数的换算关系,以及初三所学化学式的微观定量意义,通过自主、探究和合作的学习方式解决问题。但“图”中由于采用了3个可逆符号,导致推导线路思路不明确、难分辨。为此,实际教学时,笔者将“图”中可逆符号换成单向箭头符号,并将水分子个数由已知还原为未知。改进后的“图”为:
不难看出,改进后的“图”较原图问题指向明确,解决问题线路清晰。然而实际教学中如何用“图”效果好呢?教学实践表明,教学中可先不提供“图”,而让学生充分思考:1molH2O中有多少mol的H,多少mol的O?当独立想到上“图”思路的学生介绍后,再投影改进后的“图”。这样做能有效激活学生的思维,更好地落实新课程理念。同时教师逐步板书:
H2O——2H——O
粒子个数之比 1 ∶ 2 ∶ 1
物质的量之比 1mol ∶ 2mol ∶1mol
引导学生得出结论:对于任意两种粒子,粒子个数之比等于物质的量之比。
②结论的应用教学
化学式主要包含共价分子的分子式,离子化合物的化学式以及复杂离子的离子符号等。物质的量应用于化学式计算的基本类型,从已知与未知粒子的大小差异来细分,主要包括由大粒子(整体)求小粒子(部分)和由小粒子(部分)反求大粒子(整体)两种涉及物质的量计算的类型。为了提高结论应用教学的有效性,必须加强练习选择的针对性和组织的层次性。具体习题分层安排如下:
题组I(运用化学式中任意两种粒子个数比等于物质的量比的计算)
⒈5mol CO2含有 mol C, mol O。
⒉把1mol Al2(SO4)3溶解于水后,溶液中有
mol Al3+,有 mol ■。
⒊ mol Fe3O4中含有1mol O,含有 mol Fe。
题组II(运用同种粒子物质的量与粒子个数换算关系以及化学式中任意两种粒子个数比等于物质的量比的综合计算)
⒈1mol NaCl中的氯离子数 。
⒉1mol H2SO4中的氧原子数 。
⒊0.1mol ■中含有 N,含有 个H。
⒋ mol Al2O3中含有6.02×1023个Al原子。
题组III(依据粒子个数比等于物质的量比运用化归方法的计算)
⒈3mol O2和2mol O3中分子个数比是 ,原子个数比是 。
⒉5mol O2、1mol N2、2mol H2中含分子数由大到小的顺序是 。
⒊ mol CO2中含有的氧原子数跟1.806×1024个H2O分子中含有的氧原子数相同。
这里只是物质的量应用于化学式计算的起始教学,事实上物质的量应用于化学式的计算以及结论粒子个数之比等于物质的量之比应用范围都很广,为提高计算教学的整体效果,应采用整体规划统筹安排分步实施的策略。
四、充分重视两种粒子物质的量换算关系构建方法的训练环节
关键词:认知价值 情意价值 应用价值 物质的量
中图分类号:G64 文献标识码:A 文章编号:1007-3973(2010)09-148-02
在应试教育中我们对于知识的教育教学价值是非常忽略的,导致老师更多的停留在纯粹知识的教学上。例如我们学习了物质的量一节,学生只知道物质的量的定义、摩尔是物质的量的基本单位以及与物质的量相关的几个公式,在计算题中会应用。然而我们却很少思考为什么要学习这个概念,学习了这个概念对学生的认识会有什么发展。实际上,建构主义认为,知识不是独立于认知主体而存在的各种规则、定律和理论的集合,它是人类永无止境的探索和研究过程,其中蕴涵着特定的科学过程和科学精神。因此任何知识都具有不同角度和不同层面的教育教学价值。这种多重价值具体表现为知识具有认知价值、情意价值和应用价值。
物质的量是化学教学中的一个十分重要的概念,它贯穿于高中阶段(包括普通高中和中等职业教育)化学学习的始终,在化学计算中处于核心地位。本文拟以物质的量为例,分别从知识的认知价值、情意价值和应用价值三个方面来探讨知识的教学在发展学生的科学认识方面具有的重要价值。
1、知识的认知价值
1.1 认知价值的涵义
心理学认为,一般地,人根据自己对事物的认识或已有的知识来做事,而人在做事的过程中又不断地形成(积累)新的认识(知识),因此我们认为知识具有认知价值。从某种意义上说,学生的学习过程是一个认知加工过程,是学生认知结构和情意品质不断丰富和完善的过程。科学知识的认知价值主要是指科学知识在个体的认知结构的完善和认知过程的发展过程中所起的促进作用。科学知识在认知过程上的价值并不只是在知识本身,而是指学生在主动接受知识过程的中,在已有知识经验和未知世界之间架起一座桥梁,不断丰富、拓展和改组自己的认知结构。
1.2 物质的量教学中的认知价值分析
作为国际单位制中七个基本单位之一,“物质的量”起着联系微观与宏观物质世界的重要作用。
物质的量、物质的量单位“摩尔”、摩尔质量、气体摩尔体积、物质的量浓度、阿伏加德罗常数等化学量概念构成了联系密切的完整的概念体系,我们称之为“物质的量”概念系统。该概念系统是一套全新的量度物质量多少的系统。学生明确“物质的量”是国际单位制七个基本物理量之一,是新接触的一种物理量,可以利用它来度量物质,这在学生的认知上是一个发展。“物质的量”在宏观物质和物质微粒数之间搭建起了一架桥梁,使学生能够运用宏观和微观相结合的思维方法思考化学问题,使化学与实际结合得更紧密。物质的量与质量、气体体积、微粒数、物质的量浓度建立起的联系,我们可用下图表示出来:
从上图可以看出宏观的质量、气体体积、物质的量浓度均可通过“物质的量”这一“桥梁”与微观的微粒数建立起联系。物质的量及其相关概念的教育教学价值在知识的观念取向方面扩展了学生度量物质的新视角,定量认识化学物质的微观组成的新视角。学习了物质的量浓度使学生对于溶液的浓度表示方法的认识上升到一个新的高度。
另外物质的量的学习完善了学生认识化学反应的视角,之前学生已经可以从质量和微粒数的角度来认识化学反应,现在又可以从物质的量的角度来认识化学反应。例如,对于化学反应2H2+02=2H20的认识:在初中阶段学生可以从质量和微粒数的角度来认识化学反应,知道4g氢气和32克氧气反应生成36克水,2个氢气分子和1个氧气分子反应可生成2个水分子。但很难将分子个数与质量之间建立起联系。学习了物质的量之后,学生可以从物质的量的角度来认识该反应:2mol氢气和1mol氧气反应生成2mol水。利用公式n=N/NA(n表示物质的量,N表示微粒数,NA为阿伏伽德罗常数)将物质的量与微粒数建立起联系,通过n=m/M(m表示物质质量,M表示物质的摩尔质量),n=V/Vm(V表示气体体积,Vm表示气体摩尔体积)与宏观的质量、体积之间建立起联系。这样就使宏观、微观和化学符号三重表征有机融合起来,是学生更进一步的认识化学反应和化学学科。
2、知识的情意价值
2.1 情意价值的涵义
学习既是一种认知的过程,也是一种情感熏陶的过程。知识对人的作用一方面它能启迪人的智慧,另一方面它也可以熏陶人的情感。当然,有些科学知识本身就具有启迪智慧、熏陶情感的作用。而有些知识虽然本身不具有启迪或熏陶作用,但是个体在习得这些知识的过程中会受到极大的启迪和熏陶。我们将知识本身或知识习得过程中所具有的这种能够启迪人、熏陶人的作用界定为知识的情意价值。
知识之所以具有情意价值,可以从两个方面来考察。一方面,从静态的角度来看,每一种理论、观点都体现了科学家的智慧、思想和观点,也展示了他们的情感和态度,对学生具有良好的教育意义。另一方面,从动态的角度来看,学习者能够在学习的过程中获得丰富的情感体验,成功的喜悦,这样会带给他们更强烈的学习动机和积极的学习态度。所以,知识的学习有助于培养学生正确的学习态度、高尚的道德情操和健康的审美情趣正确的价值观和积极的人生态度等情意内容。
2.2 物质的量教学中的情意价值分析
物质的量的单位“摩尔”一词来源于拉丁文moles,原意为大量和堆集。早在本世纪40至50年代,就曾在欧美的化学教科书中作为克分子量的符号。1961年,化学家E.A.guggen-helm将摩尔称为“化学家的物质的量”,并阐述了它的涵义。同年,在美国《化学教育》杂志上展开了热烈的讨论,大多数化学家发表文章表示赞同使用摩尔。直到1971年,在由41个国家参加的第14届国际计量大会上,正式宣布了国际纯粹和应用化学联合会、国际纯粹和应用物理联合会和国际标准化组织关于必须定义一个物质的量的单位的提议,并作出了决议。从此,“物质的量”就成为了国际单位制中的一个基本物理量。
根据摩尔的定义,12g12C中所含的碳原子数目就是lmol,即摩尔这个单位是以12g12C中所含原子的个数为标准,来衡量其他物质中所含基本单元数目的多少。摩尔跟其他的基本计量单位一样,也有它的倍数单位。1Mmol=1000kmol,1kmol=1000mol,1mol=1000mmol。
这样通过“摩尔”一词的来历介绍将我们今天看来理所当然的化学概念还原到当初产生它的社会文化背景中,使学生意识到知识是在怎样的理论水平和技术条件下发展起来的,在理解知识的同时学会用历史的观点辩证地看待科学的发展帮助
学生建立科学发展观。同时让学生获得了理性的、情感的深层次的发展,激发学生的化学学习的热情,培养其科学精神品质。
通过物质的量这一联系微观与宏观的物理量的学习,引导学生以化学的眼光、从微观的角度认识丰富多彩的物质世界,认识到宏观和微观的相互转化是研究化学的科学方法之一。在教学过程中,可以通过模拟科学家解决实际问题的探究活动,让学生感受科学家在面对实际问题时,如何分析、联想、类比、迁移、概括和总结,如何建立数学模型,培养学生解决实际问题的能力。例如,引入“物质的量”概念时,很多教师都采用了非常巧妙的方法,例如,从“曹冲称象”到“数一篓一元硬币的个数”;从“化整为零”思想,到“聚零为整”的思想。让学生思考如何建立“模具”来度量“一大堆”微小的原子、分子、离子等。这样做的意义就在于把人类已经建好的模型进行还原,让孩子们自己去建立模型。通过模拟科学家解决实际问题的探究活动,激发学生探索未知世界的兴趣,让他们享受到探究未知世界的乐趣。
另外,通过配制一定物质的量浓度溶液的实践活动,培养学生严谨认真的科学态度和精神。
总之,“物质的量”概念教学,不仅为其它化学知识的教学奠定基础,同时还为培养学生的辩证唯物主义观点、观察能力、思维能力、分析能力和自学能力等起着积极的作用。
3、知识的应用价值
3.1 应用价值的涵义
知识不是独立于认知主体而存在的,知识具有重要的实践应用价值。从科学知识的基本属性而言,任何知识总是为人所用,总必然地具有某种效用性,正是由于这种效用性,人们才试图通过接受和掌握知识去提高社会行为或个体行为的质量,并在知识的运用过程中不断超越知识本身的目标,追求更高的价值。知识的应用价值是与指导个体的具体行为相联系的一种价值,指知识的的学习对学生分析和解决实际问题的能力所产生的影响。
3.2 物质的量教学中的应用价值分析
物质的量是学习化学的重要工具。物质的量的引入,将一定数目的原子、分子、离子等微观粒子与可称量的物质联系起来,实现了化学的微观研究到宏观应用的飞跃。对学生而言。从最初的对分子、原子等微粒的定性认识上升为借助物质的量这一工具,从量的层次上理解、分析宏观与微观概念并加以运用,既是学生认识不断深化的必然路径,也是学生思维方式从以感性认识为主向以逻辑思维为主转向的具体表现,更是学生将来学习其他相关概念、进行化学计算以及相关实验的基础。
我们可以来做一个简单的关于化学方程式的计算,如CI2+2NaOH=NaCI+NaCIO+H2O,实验室里有配制好的NaOH溶液,一瓶所贴标签为4.0mol・L-1,另一瓶所贴标签为14%(密度为1.14g・mL-1),问这两种溶液各多少升才能分别2.24L(STP)的氯气恰好完全反应?(计算过程略)其实这两种溶液的浓度一样大,但是用物质的量浓度表示却给计算带来了很大的方便。这样更凸显了将“物质的量”作为一种学习化学的基本工具的应用价值。
学生在掌握配制一定物质的量浓度的溶液的实验方法的基础上理解引入物质的量浓度的重要意义,实现了学习与生活实践的有机衔接,体会化学理论知识在实际生活生产中的应用。
任何科学知识都具有多重教育教学价值。物质的量知识如此,其它知识也是如此。只要我们去认真思考、深入挖掘,设计有效的教学方案,就可以实现知识的多重价值,从而提升学生的科学素养,促进学生的全面发展。
参考文献:
[1]毕华林,亓英丽,化学课程编制中的知识价值观[J],化学教育,2002。(7)20-22
[2]孟献华,新课程背景下化学说课的理论视角与实践[J],化学教学,2008(1)49-52
创新能力是一种非常重要的能力,不论是对于学生的化学学习,还是以后的工作生活,都有很重要的意义。在高中化学教学教学中,教师应该培养学生的创新思维。可以通过以下几点加强创新思维的培养:
1)传统的教学方式比较保守,对于课堂教学太过重视,导致教师一味的进行“填鸭式”知识灌输,学生的学习兴趣索然,再加上教师的主体地位,让学生在学习中处在比较被动的地位,学习动力和思维都受到了一定限制。所以说,教师应该紧跟“新课改”和“素质教育”的步伐,改变教学方式,让学生的思维得到解放。
2)进行课堂教学时,不能将时间都用在知识传授上,而应该留出一定量时间,让学生进行自主学习和思考,一开始,可以由教师引导学生的思维发展方向,然后逐渐让学生进行自主思维的建立。这种方式能够增加学生学习化学的兴趣,如果通过自主思考,得到了比较好的方法、见解,还会因此受到鼓舞,提高自己在学习中的自信心,这种方式能够极大的增加学生自主学习的动力。
3)轻松活泼的课堂教学能够让学生保持学习热情,高中生的求知欲和好奇心仍然很强,可以针对他们的这个特点,进行情境课堂的建设。化学知识丰富多彩,趣味性较强,各种各样有趣的化学反映,能够让学生轻松的了解到各种化学原理。例如在“化学族”的学习中,因为同一族的化学元素,性质上都有相似性,在学生学习时,可以根据这个特点进行记忆和理解,通过一种物质的化学反应,推断出同一族中另一种物质的化学反应现象,这种方式能够很好的培养学生的创新思维。按照传统的学习方法,虽然同一族元素有相似性,但是进行推断的时候,难免发生偏差,创新思维能够让学生的化学思维得到延伸,清楚的认识到同一族元素虽然相似但是也有不同。
2建模思维在化学教学中的应用
在工业生产、农业生产中,有很多用到化学的地方。所以,要培养学生的“化学建模”思维,什么是建模思维,就是通过建立一个模型,对抽象化学反映的具体过程进行分析,达到解决问题的目的。距离来说,“差量法”是应用很多的一种思维方法,在化学问题中,找到“理论差值”,可以是质量茶、体积差或者压强差等等,通过这个差值,作为问题的解决入口,借助差值和其他量之间的比例关系,进行解题,能够将繁琐的化学问题变得容易解决。“差量法”的原理,就是数学中经常用到的比例式,在化学问题中,一般一种物质的量发生变化,另一种物质的量也会呈比例的变化,用数学比例式表达就是:x1/x2=y1/y2=(x1-y1)(/x2-y2),应该注意这几个变量的单位应该保持一致。
同样的建模方法还有“守恒法”,这是化学解题中经常用到的方法,主要原理是利用化学变化中一种物质量不变作为解题突破点,能够减少化学解题的繁琐步骤,绕开题目中给出的繁杂条件,直接找到各种物质的守恒关系,列出等式进行解题。在化学反应中,有很多的守恒关系,例如“物质的量”“、元素化合价升降”等守恒。在化学学习中有几种常见守恒,其中“电荷守恒”是在混合物、化合物中,负电荷数目和正电荷数目是相同的,代数和为零。还有“元素守恒”,化学反应遵循“物质守恒定律”,即化学反应前后,物质的总质量。总的物质的量。原子、离子数目等,都是不变的,在解题时,只需要找到守恒的物质或者离子,列出关系式,就能够很容易的解决问题。
3化学教学中其他思维的培养
除了上面说到的化学思维,教师在教学过程中,应该引导学生结合生活实际进行学习。可以看到,许多化学知识,在我们的日常生活中都有体现,学生学习的最终目标就是“学以致用”,在“有机化合物”的学习中,有关乙醇的知识,学生们在生活中就很常见,例如医用酒精、无水酒精等,都是乙醇为主要原料制作的,在学习的时候,学生也可以自己动手,找到乙醇这种物质,进行观察和实验,在生活中获取化学知识。
关键词:示意图法;滴定分析教学;应用
在滴定分析教学中,常常需要判断滴定方式和明确待测物的物质的量与滴定剂物质的量的关系。一般情况下,这些问题是通过文字叙述以及写出相应的化学反应方程式来解决的(以下简称反应式法)。这种方法在滴定反应比较简单时,应用效果较好;但如果滴定反应比较复杂时,则显得十分繁琐,且容易出错。因此在教学当中,反应式法的实际效果不是很好。而用示意图法来处理上述问题时,由于其直观、简洁的描述方式,有利于获得良好的教学效果。在本文中,示意图法指的是根据文字叙述,将滴定反应中各反应物之间的关系用方框表示出来,以确定待测物与滴定剂之间物质的量的关系的一种方法。需要注意的是,为了简化计算,在方框中的反应物是以适当的基本单元的形式来确定其物质的量的,且对于参加不同反应的同一种物质,其基本单元要一致。以下通过反应式法和示意图法的比较,来说明示意图法的一些具体应用及优点。
滴定方式主要有四种,即:直接滴定法、返滴定法、置换滴定法和间接滴定法。
以上两个例子和表1中四种经典滴定方式在形式上是不同的,可以认为是经过组合式处理的滴定分析方式。因此在确定待测物与滴定剂之间物质的量的关系时,会比较困难。但是如果使用示意图法来处理,就会显得很简单而明确。
综上所述,示意图法在判断滴定方式和确定待测物与滴定剂之间物质的量的关系方面比反应式法更简单和有效,便于教与学,是十分有用的教学手段。
参考文献:
一、解题模型1――关系式法
在实际化工生产中或化学工作者进行科学研究时,往往涉及到多步反应,从原料到产品可能要经过若干步反应。测定某一物质的含量可能要经过若干步中间过程。对于多步反应体系,依据若干化学反应方程式,找出起始物质与最终物质的量的关系,并据此列比例式进行计算求解的方法,称为“关系式”法。
关系式法常常应用于多步进行的连续反应。在多步反应中,第一步反应的产物,即是下一步反应的反应物。根据化学方程式,每一步反应的反应物和生成物之间有一定的量的关系,即物质的量之比是一定的。所以,可以利用某中间物质作为“中介”,找出已知物质和所求物质之间的量的关系。它是化学计算中的基本解题方法之一,利用关系式法可以将多步计算转化为一步计算,免去逐步计算中的麻烦,简化解题步骤,减少运算量,且计算结果不易出错,准确率高。
用关系式法解题的关键是建立关系式,而建立关系式一般途径是:(1) 利用化学方程式之间的化学计量数间的关系建立关系式;(2) 利用化学方程式的加合建立关系式;(3) 利用微粒守恒建立关系式。
点评 对于多步反应,可根据各种的关系(主要是化学方程式、守恒等),列出对应的关系式,快速地在要求的物质的数量与题目给出物质的数量之间建立定量关系,从而免除了涉及中间过程的大量运算,不但节约了运算时间,还避免了运算出错对计算结果的影响,是最经常使用的计算方法之一。
二、解题模型2――差量法
差量法是根据化学变化前后物质的量发生的变化,找出所谓的“理论差值”。这个差值可以是质量、气体物质的体积、压强、物质的量、反应过程中热量的变化等。该差值的大小与参与反应的有关量成正比。差量法就是借助于这种比例关系,解决一定量变的计算题。用差量法进行化学计算的优点是化难为易、化繁为简。
解此类题的关键是根据题意确定“理论差值”,再根据题目提供的“实际差值”,列出比例式,求出答案。
1。原理:
2。注意:
点评 只与反应前后相应的差量有关,不必追究各成分在反应前和后具体的量,能更深刻地抓住本质,提高思维能力。
三、解题模型3――守恒法
守恒法是一种中学化学典型的解题方法,它利用物质变化过程中某一特定的量固定不变来列式求解,可以免去一些复杂的数学计算,大大简化解题过程,提高解题速度和正确率。它的优点是用宏观的统揽全局的方式列式,不去探求某些细微末节,直接抓住其中的特有守恒关系,快速建立计算式,巧妙地解答题目。物质在参加反应时,化合价升降的总数,反应物和生成物的元素,各种微粒所带的电荷总和等等,都必须守恒。所以守恒是解计算题时建立等量关系的依据,守恒法往往穿插在其它方法中同时使用,是各种解题方法的基础。利用守恒法可以很快建立等量关系。在高中化学计算题中,常考的守恒有:
1。元素守恒:
即化学反应前后各元素的种类不变,各元素的原子个数不变,其物质的量、质量也不变。元素守恒包括原子守恒和离子守恒: 原子守恒法是依据反应前后原子的种类及个数都不变的原理,进行推导或计算的方法。离子守恒是根据反应(非氧化还原反应)前后离子数目不变的原理进行推导和计算。用这种方法计算不需要化学反应式,只需要找到起始和终止反应时离子的对应关系,即可通过简单的守恒关系,计算出所需结果。
2。电荷守恒:
即对任一电中性的体系,如化合物、混合物、浊液等,电荷的代数和为0,即正电荷总数和负电荷总数相等。电荷守恒是利用反应前后离子所带电荷总量不变的原理,进行推导或计算。常用于溶液中离子浓度关系的推断,也可用此原理列等式进行有关反应中某些量的计算。
3。电子得失守恒:
是指在氧化还原反应中,氧化剂得到的电子数一定等于还原剂失去的电子数。它广泛应用于氧化还原反应中的各种计算,甚至还包括电解产物的计算。
例3 铜和镁的混合物4。6 g完全溶于一定量浓硝酸中,反应后只生成NO2 0。2 mol和N2O4 0。015 mol,往与硝酸反应后的溶液中加入足量的NaOH溶液,求生成沉淀的质量。
四、解题模型4――极值法
极值法是一种重要的数学思想和分析方法。化学上所谓“极值法”就是对数据不足而感到无从下手的计算或混合物组成判断的题目,采用极端假设(即为某一成分或者为恰好完全反应)的方法以确定混合体系中各物质的名称、质量分数、体积分数,这样使一些抽象的复杂问题具体化、简单化,可达到事半功倍之效果。
例4 向300 mL KOH溶液中缓慢通入2。24 L CO2气体(标准状况),充分反应后,在减压低温下蒸发溶液,得到11。9 g白色固体。请通过计算确定此白色固体的组成及其质量各为多少克?所用KOH溶液的物质的量浓度是多少?
五、其他解题模型
化学计算的方法很多,除了上述4种方法外,还有估算法、讨论法、平均值法、十字交叉法、终态法、等效平衡法等。此外在近几年的上海高考中,还多次出现了借助数学工具解决化学问题的计算题,测试学生将化学问题抽象成数学问题,利用数学工具,通过计算和推理,解决化学问题的能力。主要包括数轴的应用、函数的思想、讨论的方法、空间想象的能力以及不等式的迁移等方面的知识。此类题目的解题模型是:运用所掌握的数学知识,通过分析化学变量之间的相互关系,建立一定的数学关系(等式、函数、图像关系、不等式、数列等)来解题。