首页 > 文章中心 > 化学工程原理

化学工程原理

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇化学工程原理范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

化学工程原理

化学工程原理范文第1篇

【关键词】化工原理课程教材教学研究

【中图分类号】G423.3 【文献标识码】A 【文章编号】2095-3089(2014)3-0206-02

"化工原理"课程的教学水平和质量一直被视为衡量化工高等教育水准的关键要素之一,因此它也成为各高校课程建设的一个重点。例如,在自2003年启动的国家精品课程评选中,先后有6所高校的6门"化工原理"课程被评选为国家精品课程,数量占全部化工与制药类专业国家精品课程的35%。

1."化工原理"课程教材发展现状

目前,我国化工类本科的《化工原理》教材约有20余种,多数以介绍化工过程中常见单元操作的基本原理、典型设备及其工艺计算为主要内容,少数结合"传递过程"和"分离工程"的相关内容,为改革类教材。

(1)天津大学主编的三套《化工原理》教材

由姚玉英主编的《化工原理》教材是国内最有影响力的"化工原理"课程教材之一,其第一版于1992年出版,于1999年和2004年分别进行了修订。由于该教材基本概念阐述严谨,理论联系实际,知识连贯性强,工程观点突出等优点,长期以来且直至目前一直被许多高校所选用。

为适应时代以及不同专业对于"化工原理"课程教学内容的所提出的新的需求,2005年天津大学化工原理教研室倾力打造了适合于化工、石油、生物、制药、环境、食品、材料等多专业使用的《化工原理》新教材。这套教材以化工传递过程的基本理论和工程方法论为两条主线,系统并简明地阐述了化工单元操作的基本原理、过程计算、典型设备和过程或设备的强化途径。它的最大特点是拓展了内容,增加了适合于不同专业的知识点和实例。现在,这本新教材正在被越来越多高校所了解和认可,使用学校逐年增多。

(2)陈敏恒(华东理工大学)主编《化工原理》教材

该教材于20世纪80年代问世,在内容上与以往教材相比,加强了传递内容,并以传递原理将单元操作分类,体现了单元操作的过程共性。该教材在当时全面改革了教学内容,具有明显的特色,因此获得了国家教委优秀教材奖。目前此书以进行了两次修订,其第三版于2006年出版。在多学时的《化工原理》教材中,这本教材有着较大的影响力,目前使用学校较多。

(3)王志魁(北京化工大学)主编《化工原理》教材

该教材自1987年问世,至今已出版第三版,主要适合于70-100学时的"化工原理"课程教学使用。作为少学时"化工原理"课程教材,该教材主要介绍了流体在管内的流动、流体输送机械、沉降、过滤、传热、吸收、蒸馏及干燥等单元操作,其章节体系、内容多少和深浅程度受到使用者的好评。同时,由于目前与化工专业相关的交叉专业、新型专业招生量的不断扩大,这本教材的目前市场销售情况和前景都比较好。

目前出版本科《化工原理》教材的出版社包括化学工业出版社、高等教育出版社、科学出版社及众多的高校出版社。可以看出,"化工原理"课程作为化工等专业的重要技术基础课程,其教材的建设和出版受到各高校和出版社的普遍重视,国内化工专业排名前十位的高校几乎都编写和出版过《化工原理》教材。但是从影响力和市场的调研结果来看,编写学校实力较强、编写历史悠久的经典教材以及适用面更广或者特色更加鲜明的新编教材更加受到用户的青睐。

2."化工原理"课程教学资源现状浅析

随着多媒体等数字化教学辅助技术手段在教学中日益广泛和深入的应用,越来越多的高校和教师开始关注教学资源的开发与使用。例如,前面列举的五套《化工原理》教材都配套有相应的电子教案或教学课件,为使用者提供必要的教学资源的支撑和服务。

除了与教材的配套资源之外,天津大学、大连理工大学、北京化工大学、南京工业大学、广东工业大学、北京东方仿真技术公司等很多单位都开发和研制了为"化工原理"课程服务教学多媒体课件。其中天津大学开发了多达八套的多媒体课件,可用于不同体系的"化工原理"全程授课使用。福州大学、南京工业大学、兰州石化职业技术学院等单位则开发了化工原理实验教学多媒体课件。同时也有多个高校开发了"化工原理课程设计"的CAD设计软件。在教育部新世纪网络课程建设工程项目中,天津大学、大连理工大学分别建设了"化工原理及实验"的网络课程,其中天津大学的网络课程被评为优秀网络课程,目前点击量已达到了十万余次。高等教育出版社联合全国高等学校教学研究中心、教指委和多所高校共同开发的"高等化学教学资源库"中的"化工基础子库"则是化工原理课程教学资源发展的另一重要成果。

不难看出,现有的"化工原理"课程的教材和多媒体课件等教学资源的建设已形成了相当的规模。开发教学适用性更强、使用更灵活、交互性能更好的教学资源以及教学资源的网络化将成为未来"化工原理"课程数字化教学资源建设的方向。

参考文献:

[1] 余国琮. 化工类专业创新人才培养模式、教学内容、教学方法和教学技术改革的研究与实施项目成果汇编[M]. 北京:化学工业出版社,2004

[2] 柴诚敬.化工原理[M].北京:高等教育出版社,2005

[3] 谭天恩,窦梅,周明华.化工原理[M].3版.北京:化学工业出版社,2006

化学工程原理范文第2篇

关键词:教学质量;实训环节;教学方法;教学效果

中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2012)04-0183-02

《化工原理》课程是化工专业极为重要的一门专业基础课,主要内容是以在化工生产中的物理加工过程为背景,根据操作原理的特点,分成若干单元操作过程,以研究各单元操作的原理、基本计算和典型设备为核心。综合运用基础知识对化工生产过程中存在的工程问题进行分析和解决,担负着培养化工技术人才,由理及工、由基础到专业的过渡,在培养学生运用工程观点分析解决化工实际问题方面起着重要的作用。

高职高专院校进行的《化工原理》课程项目化教学,必须转变教育思想,从根本上打破陈旧的教育模式,针对学生底子薄的特点,降低理论要求,实施以职业能力培养为根本的课程体系,加大实践教学比例,突出学生实践能力的培养。

一、课程内容改革

经过近百年的《化工原理》课程发展,形成了完整严密的一套理论体系,虽然在教学方面得到了很大方便,但这种理论体系不适合高职高专教育培养目标的要求,所以秉着“以应用为目标,学为所用,加强针对性实用性”的方针,必须对该课程的教学方法进行整合。《化工原理》就其内容来讲,具体分为两部分:基本理论知识和设备基础知识。其理论知识内容包括基本概念、定义、原理介绍、基本计算讲解。由于高职高专院校学生底子薄,所以对原来的理论内容进行合理的精简,能够做到精、深、突出基本概念与共性规律。在设备知识模块上,必须要求学生要牢牢的利用认识实习机会,使学生对设备结构及其原理有初步的了解,使学生具备实际操作技能的能力,参加工作后能做到理论联系实际,对所学的知识具有很强的实用性,同时也使学生的学习兴趣得到提高。

二、精心设计实践教学

1.化工单元操作实训。化工单元操作实训是根据每个单元操作过程特点而开设的,使学生能够对所学的定理、公式得到完全的应用。根据全国高校化工原理教学指导委员会的要求和规定,从实训目的、实训原理、装置流程、数据处理等方面,组织各单元操作的实训内容。通过实训可进一步学习、掌握和运用学过的基础理论,加深对化工单元操作的理解、巩固和深化所学的理论知识,培养学生基本的实训技能和科研能力。由于化工原理实训设备往往规模较大,接近工程实际,是多因子影响的综合实训,因此学生可以通过实训打下一定的基础,对以后的实际工作有很好的帮助。同时,培养学生严肃认真的科学作风,通过误差分析及数据处理,使学生严肃对待参数测量、取样等各个环节,注意观察实训中的各种现象,运用所学的理论去分析实训装置结构、操作等对测量结果的影响,严格遵守操作规程,集中精力进行观察、记录和思考。

2.《化工原理》课程设计综合训练。化工原理课程设计是化工基础课程教学中综合性和实践性较强的教学环节,也是培养提高学生独立工作能力的有益实践,更是理论联系实际的有效手段。其目的是使学生学会如何运用化工单元操作的基本原理、基本规律以及常用设备的结构和性能等知识去解决工程上的实际问题,培养学生正确树立工程观念和严谨的科学作风,使学生掌握查阅文献资料、搜集有关数据、运用计算公式等方法,从而使学生的工程设计能力得到提高,这也是学生完成从理论过渡到实践的重要环节。培养学生独立思考如何兼顾技术上先进性、可行性和经济上的合理性,综合分析设计的任务和要求,正确选定工艺流程、工艺设备型号,能够正确掌握过程计算以及工艺设备的设计计算方法等能力,同时也要学会用精炼的语言、简洁的文字、图表来表达自己的设计思想和结果。因此要提高学生的设计水平,必须从理论教学入手,通过课程设计加强理论教学,从而提高化工原理教学的质量。

3.化工单元仿真实训。采用的是北京东方仿真软件公司的DSC仿真系统,可以真实地把生产中的基本单元过程,通过仿真培训了解本专业所涉及到的化工单元操作的基本知识,熟悉本专业中常见设备、仪表的作用及其使用方法,掌握专业知识在客观实际中的应用方法和应用技能,将所学的专业知识与生产实际相结合,增强学生的实践动手能力。学生能运用所学知识观察、分析实际问题,培养勇于探索、积极进取的创新精神。要求学生掌握各基本单元的基础知识,了解设备的原理和结构,使实践动手能力得到提高,能够充分运用所学理论知识,具有解决出现简单工艺问题的能力,锻炼学生的工程素质和工程能力,提高学生的劳动观点和经济观念,提高学生的综合素质。

三、加强校外实训基地建设

我校地处内蒙古乌海,这里周围有许多大型化工企业以及新建的乌达化工园,他们是我们办学不可获缺的资源。通过建校至今的长期合作,我们与周边大型化工企业建立了“互惠双赢”的实习实训基地,实现资源共享,使学生在了解生产主要设备的类型、结构特点、尺寸、材料及保温防腐措施的基础上学习工厂和车间化工产品的生产工程原理、方法、工艺流程及成本核算概况。了解生产中原料消耗及产物量的简易估算方法,收集生产现场的数据,作必要的物料、能量衡算,对生产状况作一定探讨,对所发现的生产薄弱环节及存在的问题提出改进意见。通过在工厂车间的参观学习,使学生了解化工厂的必备生产环境,对化工生产概况有了初步的了解,同时获得化学工程、化学工艺的实际感性知识,扩大知识面,加深对化工企业的理解,树立为化工而奋斗的精神。学生还能运用所学知识观察分析实际问题,培养勇于探索、积极进取的创新精神,学习企业的管理人员和工人们的团队精神及创业精神,使学生的基本素质和工作的竞争能力得以提高。

四、改进教学方法

《化工原理》课程以研究化工生产中物理加工为背景作为主要任务,掌握具有共同规律的各种单元操作的基本原理;典型设备的构造、性能与操作原理;研究“单元操作”及其典型设备的有关计算,通过对各种“单元操作”的分析,寻找适宜的操作条件,探索强化过程的方向及改进设备的途径。我们要打破以课堂教学为主的教学方法,重点放在以实践教学为主的教学模式。对本课程的学习,使学生牢固掌握“单元操作”的基础理论,初步掌握化工过程的开发、设计与操作的有关方法,同时还要培养学生学会从工程实际出发,运用工程观点从多种角度,尤其是经济角度考虑技术问题。

实践证明,《化工原理》项目化教学充分结合高职高专教育对象的特点,基于本课程的教学特点和学生底子薄的缺点,把教学重点放在培养学生的创新能力和实践动手能力上,使学生把所学的化工原理理论基础知识能够用于实际。于此同时,有利于调动学生学习的主动性、积极性,并且提高学生的观察能力、动手能力、创新能力和工作能力,进而推动学科的进一步发展。在此后的教学中,我们仍将继续努力对教学的创新与改革作进一步的探索,为以期我国现代化建设培养出更多、更好的优秀化工人才。

参考文献:

[1]邱运仁.化工原理课程教学改革与实践[J].化工高等教育,2005,(4).

化学工程原理范文第3篇

关键词:化工原理;教学内容;工程处理方法;能力培养

在高等工科教育中,完善的知识体系框架为基础科学知识、工程科学知识、工程技术与设备知识。从自然科学到工程技术之间,必须有一个中间知识层次,这一中间知识层次的教育就是通过技术基础课程来承担。可以看出,技术基础课程在学生的知识教育计划中起着承前启后、由理及工的“桥梁”作用,是从自然科学领域的基础课向工程科学的专业课过渡的入门课程。化工原理课程是化工类及相近专业的一门重要的技术基础课。该课程的主要内容是利用数学、物理和化学等自然科学的原理,研究实际化工物理过程中的客观规律,并利用这些规律进行化工过程设计、工艺计算、设备构造设计等。它承担着工程科学与工程技术的双重教育任务。科学是反映自然、社会和思维等的客观规律的分科的知识体系;科学从自然现象中被抽象出来,再应用到生产实践活动中去。技术是人类在利用自然和改造自然的过程中积累起来并在生产劳动中体现出来的经验和知识。可见,技术的根基是科学。笔者结合多年从事化工原理课程教学的体会,谈一下在该课程教学过程中,有意识彰显化工原理课程内容特点,对学生进行工程能力培养的做法及认识。

一、应用科学理论进行工程技术问题分析的能力培养

化工原理课程内容的研究对象就是实际化学工程中的问题。某些化工过程中的实际问题在做合理的简化处理的基础上,可以直接应用相关的基础科学理论进行分析描述。这种方法是基础理论课程中常用的方法,是培养学生由科学到技术、由理到工的基本能力和工程问题基本分析能力的重要环节。通过这种方法引导学生学会观察问题、描述问题,培养学生理性逻辑思维的能力,同时引导学生认识科学理论在工程实际中的应用,培养理论联系实际的工程能力。例如,应用相关的物理定律和数学手段,进行流体静力学方程式的导出、柏努利方程式的导出、圆管中流体定态流动时的剪应力分布式、圆管中牛顿型流体定态层流流动时流速分布式、沿程能量损失公式、一维定态温度场中热传导速率式、一维定常态浓度场中分子扩散传质速率式等都应用了这种数学解析方法。

二、应用实例分析进行工程观点的培养

化工原理课程各种单元操作的发展积累了丰富的材料。在讲授这些工程科学和工程技术知识时要突出工程观点。例如,以建立循环流动说明蒸发设备的沿革;以机械能平衡和动量平衡的观点观察管内流动和均布现象;结合吸收和传质设备的分析引入返混的工程概念。学者们非常重视在教学中突出对学生工程观点的培养教育[1-3]。

在授课过程中通过列举实例分析的思路中对学生工程观点的形成给予引导和强调。在基础理论课程中,从一个理论出发分析影响某一物理量的诸因素时,学生会不分实际与否、不分主次地找出各种影响因素和影响关系。但是,在分析实际工程问题时就不同了,在分析影响某一工程中物理量的各种因素时,首先要考虑实际可能性,分清因果关系,其次再要善于分清主次因素。例如,在通过传热实验测定换热器的传热总系数K时,由实验数据计算传热总系数是根据传热基本方程式 。如果要求学生指出在实验中影响K测定准确性的各主要因素的话,很多学生就围绕着传热基本方程式考虑问题,不分主次地罗列出T1、T2、t1、t2、qm1、qm2等因素。传热基本方程式是通过实验数据反映换热器的传热总系数的一个方法。如果分析实验中影响K测定准确性的各因素的话,应该从本质上来考虑问题,根据K的表达式 来考虑,该式是从根本上反映各影响因素的关系式。并非该式中的每个物理量都是工程中的变量因素,对于实验中某一确定的换热器来说,仅有对流给热系数out、in是变量因素,因此,影响out、in的变量因素就是影响K测定准确性的因素。再根据对流给热系数的表达式可知,流体的流速(即流量)是最敏感的影响因素。因此,对于上述问题,实验中的qm1、qm2是影响K测定准确性的关键因素。这样来分析问题,注重了问题的客观实际性,使学生认识到哪些是表面关系(或者纯数学关系)、哪些是本质关系,并且认识到同一台换热器的换热性能参数K是因流体流量不同、操作条件不同而变化的,从而建立起灵活的而非僵化的工程概念。

从化工原理的教学内容中多提炼出此类问题进行课堂分析,对于引导学生建立工程概念、树立工程经济意识起着非常重要的教育作用。

三、工程处理方法应用能力的培养

在化工原理各单元操作的分析和描述中,体现了研究工程问题的共性和方法论。对于所研究问题(对象)进行受力分析、物料衡算、能量衡算、相平衡关系描述、传递速率描述等以及经济性基本分析,是研究工程问题的最基本而有效的处理方法[4]。在研究复杂的工程问题时,根据复杂工程问题的特性,灵活采用的系数校正法、参数归并法、过程分解组合法、实验研究法、数学模型法和极限处理法等,更体现出工程技术研究者的智慧和工程处理方法的策略性。

1.系数校正法

对于所研究问题分清共存的主要矛盾和次要矛盾,首先抓住主要矛盾忽略次要矛盾,利用理论分析描述问题,得到反映问题规律的数学关系式。然后再考虑次要矛盾的影响,根据实践经验在数学关系式中加上合理的系数给予校正。在研究孔板流量计流量计算式、毕托管流量计算式、重力射流流量计算式、压力射流流量计算式等问题时都运用了这样的工程处理方法。

2.参数归并法

参数归并法又可以称集总参数法。很多化工实际问题通过数学描述后所得到的数学关系式的形式特别复杂。为了将这种数学关系式的形式进行简化并且使得公式变得更为简捷实用,此时就要根据实际生产中的情况做分析,哪些物理量是在生产过程中需要不断调整的工程参数,哪些是在一般情况下不易发生变化的、或者不需要作调整的,尤其是对某些工程因素,尽管从理论上做出了定义,但是其数值必须通过实验获得。这种情况下,可以将不易发生变化的、一般不需要作调整的以及必须通过实验获得数值的多个工程因素进行归并,定义为一新的参数来表示这多个工程因素的组合式,便得到在通常情况下方便应用的简捷的数学关系式,这个组合式的值一般通过实验确定之。如果是某种生产参数作了调整,所定义的多个工程因素组合式中的某种因素数值发生了变化,我们便可以根据所定义的组合式的数学形式有目的地将组合式值给予校正得到新生产状况下的值。这样,无需重新通过实验测定组合式的值了,使得实际生产变得更为经济。过滤速率表达式以及恒压过滤方程式的表示法即是一典型的例子。实际上,表示流体对流传热速率的牛顿冷却定律和流体对流传质速率的方程式的提出,将诸多复杂的工程因素全归并到传热系数及传质系数中,然后通过实验研究方法再研究之,就是工程上集总参数法的处理方法。

3.过程分解组合法

将一个复杂的过程(或系统)分解为联系较少或相对独立的若干个子过程(或子系统),分别研究各子过程(或子系统)的特有规律,然后再将各子过程(或子系统)联系起来,探求各子过程(或子系统)之间的相互影响及总体效应。在研究带泵管路时首先分别研究管路的特性方程和泵的特性方程,然后将问题综合起来分析泵的工作点。在研究填料层高度时分别分析影响传质单元高度的因素和影响传质单元数的因素。在研究板式塔高度时分别研究理论塔板数、塔板效率和板间距。此类问题都是过程分解与组合法基本工程思想的体现。

4.实验研究法

工程技术的发展过程恰好反映了人类认识的发展过程。化学工程中的某些问题,矛盾错综复杂,难以利用单一的物理概念和数学方法进行描述。解决复杂工程问题存在着两种典型的思维方式,即实验研究方法和数学模型方法。

管内流体湍流流动时的机械能损失和管内流体湍流流动时的对流传热系数的研究就是采用的这种方法。该方法是在量纲理论的科学指导下分析问题的。如果实验工作必须遍及各种尺寸的设备和各种不同的物料的话,那么这样的实验将不胜其烦,而且失去了实验的指导意义。因此,必须建立实验研究的方法论,使实验结果在物料品种方面能“由此及彼”,在几何尺寸上能“由小见大”。在实验研究方法中,量纲理论和π定理对于科学地设计实验,减少试验次数,起到了非常有益的指导作用。实验研究方法是在对于所研究的问题具有一定的经验基础之上,能够比较全面而准确地寻找出影响工程问题的诸多因素的条件下开始的,该方法不去剖析问题的本质,将问题视作一“黑箱”,只关注其各输入变量及输出量,研究的目的是获得输出量与各种输入变量的函数关系。将所要研究的未知函数首先设成幂函数的形式,利用量纲理论和π定理的理论指导,经过分析演绎,得到无因次(量纲)准数的关联式。在此基础之上,再通过实验使得所研究的函数关系具体化。

5.数学模型法

数学模型方法又称为半理论半经验方法,流体穿流过固定颗粒床层时的机械能损失问题的研究就是采用的这种方法。化工技术问题的研究成果发展到一定程度的基础上,人们遇到新技术问题时总善于同相关的问题联系起来考虑,并尽量引用已有的基础理论和研究成果。数学模型方法是在对所研究问题深刻剖析的基础上,在保持所研究目标函数值等效(即不失真)的前提下,将复杂的真实模型转化成一个足够简单并且可以进行数学描述的物理模型,将复杂的真实问题转变为可以利用已有数学公式进行描述的简单问题,这是数学模型方法中创新性思维的关键。要保证所研究目标函数值等效,关键是在复杂问题简化的过程中,一定要保持影响目标函数值的诸因素值相等,即保持所研究问题的本质不变。显然,要做到这一点,必须对于所研究问题的内在规律,特别是对于决定所研究目标函数值的本质因素有着深刻的理解。

6.极限处理方法

在传质单元操作中需要确定某些重要的工程参数,例如气体吸收操作中的吸收剂用量、液体解吸操作中解吸气用量、液体连续精馏中的塔顶液相回流比以及多级逆流萃取中的溶剂比等。处于工程的角度总是希望尽量降低这些工程参数值,但是,根据单元操作的原理来分析,这些工程参数存在着最小值和最佳值(经济性最好)的问题。工程上如何确定这些参数呢?采用了极限处理方法,即首先在工程中达到极限的条件下确定工程参数的最小值,然后根据最小值乘以一个合适的倍数扩大到实际值,并且尽量达到最佳值。要特别注意,在工程中达到极限的条件下正对应于工程参数的最小值,如:气体吸收操作中当填料层高度为无限大时所需的吸收剂用量为最小;液体连续精馏中当塔内的理论塔为无限多时所需的塔顶液相回流比为最小;多级逆流萃取中当萃取的理论级数为无限多时所需的溶剂比为最小等。因此,尽管工程上的极限处理方法确实找到了一种解决问题的巧妙途径,但是一定要意识到这是一种极端的工程状态,在实际工程中是不可能存在的。在教学中要提醒学生特别注意。

四、应用工程问题考察方法的能力培养

化工原理课程中所研究的问题是发生于化工生产设备或管路中化工物料中的传递过程规律,例如,动量传递、热量传递、质量传递等过程。在化工原理这门工程学科发展的过程中,在研究工程问题上形成了一套独具特色且行之有效的方法。化工过程通常是多因素、多变量的复杂工程问题。在着手分析这类问题时,应首先建立起科学而又实用的考察方法。典型的考察方法有如下几种。

(1)定常态与非定常态。为了首先分清所研究的工程过程问题中是否涉及时间变量,将所研究的工程过程分为两大类。如果没有时间这个变量,所研究的过程称为定常态过程;如果研究过程中的某些或某个参数随着时间发生变化,则这个过程是非定常态。在分析描述过程时,要重视时间这个变量。

(2)拟定常态考察法。对于非定常态的工程过程问题,过程中的某些参数随着时间发生变化。但是,在某一瞬时,参数为某一值。当经历一微元时间段时,某些参数可以认为不变,从而可以在一微元时间段内进行问题的分析与描述,或者在经历一微元时间段前后进行问题的分析与描述。

(3)流体质点考察法。大多化工生产物料呈现流体状态,如果要考察物料的流动形态,从流体的分子尺度上去考察会将问题变得非常复杂,并且根据工程上的研究目的也无此必要。因此,在工程研究上提出了流体质点的概念。流体质点是由其大量分子所组成,质点的体积比分子自由程长度大得多,但比容纳流体的设备尺寸小得多。流体的质点之间无任何间隙(无需考虑质点的形状)从而形成了连续的流体,这样连续的流体在一般生产条件下的运动过程中是连续的,从而可以利用连续的数学函数、微分及积分等数学手段进行描述。

(4)微元体考察法。如果所研究的工程过程在空间一定范围内某些参数发生着变化,为了研究参数的变化规律,首先引用数学微分积分为指导思想,在空间中的某一代表性部位,取一微元体作为重点考察对象,利用相关基础理论进行数学描述。微元体的取法有很多技巧,具体问题应具体分析,通常与分析问题时坐标系的灵活取法有直接关系。例如平壁热传导时取直角坐标系,圆筒壁热传导时取柱坐标系,而球壁热传导时取球坐标系。

(5)整体考察法。如果对于所研究的工程过程,仅关注输入物理量与输出物理量之间的关系,则取整体作为考察对象,进行分析及描述。例如整台换热器的热量平衡、吸收塔的物料平衡、精馏塔的物料平衡和热量平衡等。

五、教师在教学过程中认真做好实践智慧者

化工原理课程内容中蕴涵着人类基于科学走向技术的丰富实例材料,教师希望学生们都能够真正理解掌握到脑子里。但是,毕竟因学生思维较为幼稚,且在学习化工原理课程时刚刚转入工程类课程的学习,理解能力有限。这就要求教师在这门课程一开始讲好课程绪论,使得学生首先全面了解这门课程的内容性质特点及其在育人中的地位和作用。教师在课程内容讲授过程中,在彰显内容性质特点和重要性的基础上,认真做好一名实践智慧者[5]。首先贯彻一切为了学生学习好的意向,其次在教学意向中理解学生的具体需求,进而在理解学生的基础之上采取为了学生学习好的机智行动。教师在教学过程中使得学生受益的机智行动有待于做专门的理论研究与教学实践。但是,某些基本的做法,例如善于进行多种复杂问题的归纳总结,或许就可以使得学生受益不少。

化工原理中所涉及的实际工程问题表面看上去种类繁多,但是,根据问题的已知条件和待求物理量的性质来分析。实际工程中的多种问题都可以归纳为两大类,设计型问题和操作型问题。设计型问题是指定了生产任务,在给定的某些生产条件下,计算所需设备的主要工艺尺寸或者性能参数。操作型问题是在已有的设备中,在给定的某些生产条件下操作,计算所能够达到的生产操作结果。这两类问题都很重要,从思维方式上来说这两类工程问题正好一是正向思维,一是反向思维。对于工科学生来说,既要能够进行工程与设备设计,又要能够进行生产技术管理和生产调节,这是现代工业的基本要求。课程教学中将各单元操作中的工程问题给予分类,有利于培养学生善于剖析问题、抓住问题的本质,从根本上找出解决问题的思路、方法和步骤的能力。课程中各种单元操作工程理论的研究基本上都是沿着设计型问题的思路展开的,因此,教学中应突出工程设计的意识和思维过程,即强化设计型问题,这既突出了各单元操作学习的主要目的性,真正弄清各单元操作工程理论的来龙去脉、培养学生的工程设计能力,又奠定了学生分析解决工程操作型问题的能力,可谓是一箭双雕。解决设计型问题的训练可通过单元操作综合性设计课题来进行。学生分析解决操作型问题的能力主要通过教师多列举实例或者设置问题,使学生学会分析思路和方法,得到能力的培养。

综之,化工原理课程的教学内容是进行理论联系实际教育和进行实际工程能力培养的极好载体。深刻分析认识化工原理课程教学内容的工程观点、工程处理方法以及工程问题分类方法等,强化研究工程问题的科学性、思想性及方法论教育,对于培养学生的工程能力和素质,能够起到很好的效果。

参考文献:

[1]归凤铁,刘立新,余自明.化工原理教学中工程观点的培养[J].化工高等教育,2000(2).

[2]刘庆林,邓旭,叶李艺.化工基础教学中学生工程观念的培养初探[J].化工高等教育,2000(4).

[3]刘丽英,苏海佳,翁南梅.在化工原理教学中注重工程观点的培养[J].化工高等教育,2001(1).

化学工程原理范文第4篇

论文摘要:文章结合化工原理课程的特点,通过合理安排认识实习、实验、课程设计等实训环节,促进理论教学。采用类比法、多媒体辅助等多种灵活多样的教学方法和手段,以提高课堂教学效果,使化工原理教学质量整体得以提高。

化工原理是化学工程与工艺及相关专业开设的一门专业基础课,主要讲授化工单元操作的过程和设备[f}),是学习后续专业课程的基础。课程内容既包含了较深的基础理论,又有很强的实践性,历来被认为是一门难学又难教的课程。笔者根据多年来的教学实践,现就提高化工原理课程教学质量的方法浅谈如下。

1.合理安排认识实习,提高学生对设备的感性认识

化工原理包括许多单元操作过程,但就其内容来讲,可将它分为两部分:操作原理和设备介绍。对设备的类型、结构、特点,通过实物了解既直观,效果又好。因此笔者对培养方案进行了修订,在开课前和课程设计前分别进行一次认识实习。经验是必须抓好开课后的第一次认识实习,利用这次机会,使学生获取了解设备的第一手资料。此次认识实习应做到以下两点:第一,由化工原理主讲教师制订实习计划。使学生了解化工产品的生产过程,以及此次实习对化工原理及其后续课程学习的作用,对化工原理中所涉及的重要设备,如塔、换热器、泵等,对其结构要做详细介绍,使学生对常见设备有一个初步了解。第二,实习期间,要求学生结合教材对重要设备,结合实物图认真分析,熟悉结构,为以后的学习打下基础。实践证明,在了解设备的基础上讲授操作原理,有助于理论知识的学习和掌握。

2精心设计实验教学,加深对理论知识的理解和掌握

化工原理实验教学不同于其他课程实验,它是针对每个单元操作过程开设的,主要是帮助学生理解和验证所学的定理、公式。每个实验都是对某一个知识点的综合应用。如圆形直管气体传热膜系数的测定。主要测定空气在圆形直管内强制湍流的传热膜系数,并用准数方程整理经验公式。学生在学习对流传热系数这一节时,由于公式特别多,学生往往不知从何下手,但实际生产中常遇到的是圆形直管内强制湍流,因此在众多的公式中,学生重点掌握的也是圆形直管内强制湍流给热系数的计算,而传热实验恰恰强化的就是这个知识点。学生处理完实验数据后,可以熟练掌握相关的公式和使用条件。再如离心泵性能测定、填料塔中液相传质系数的测定等都是为某个单元操作和某个知识点的综合应用。如何通过化工原理实验教学来促进理论教学的学习,笔者认为在学习每章理论课的同时,把实验课程穿去,并要求学生做好实验前的预习和准备工作。高质量的完成化原理实验不仅能够加深所学的理论知识,同时也培养了学生在实验技能和综用知识方面解决间题的能力。

3通过课程设计综合训练,增强学生工程意识

综合考虑操作费和设备费是贯穿于化工原理每个章节中的一个重要内容,不断增强学生工程意识,为解决实际问题打下基础。化工原理课程设计是为培养学生工程设计能力而设置的一个教学实践环节,也是学生完成从理论到实践过渡的重要一环。通过课程设计的综合训练强化学生工程观念,从而提高化工原理教学质量。在精馏塔设计中,回流比R的确定是设计中很关键的一步,应引导学生从技术、经济、安全操作方面考虑,把课堂上反复强调回流比R对操作费和设备费的影响应用到实际设计中,实现精馏过程的优化设计。在塔顶冷凝器设计中,若以水为冷却介质,提示学生尽管出口温度升高可以减少用水量,降低操作费,但出口温度过高管子容易结垢导致传热效率降低,甚至堵塞管路无法使用。在泵设计中,有的学生喜欢选用型号大一些的泵,总认为这样做保险,很少注意从技术、经济、生产周期等方面进行综合考虑。因此要想提高设计质量,必须从课堂教学抓起,同时通过课程设计促进课堂教学,提高化工原理教学质量。

4采用灵活多样的教学方法和手段,提高课堂教学质量

4.1引入类比教学法,使复杂问题简单化

类比法是寻找研究对象的貌异质同的思维方式,它是一种比较重要的逻辑推理方法,由于化工原理中的动量传递、质量传递、热量传递三种过程中存在着类似的规律和内在的联系,可将相对简单且较成熟的热量传递的研究成果,推广到较复杂的质量传递过程中去。在讲授传质过程中,将传质与传热进行对照讲解,可使复杂问题简单化,帮助学生理解记忆。如传质中的分子扩散、对流扩散与传热中的传导、对流传热类似。在讲解对流扩散的传质机理和传质速率时,可以仿照对流传热,引入虚拟传热膜厚,流体侧的温差、热阻都完全集中于此,而传热方式主要是分子热传导,传热速率仿照傅立叶定律计算,从而引出牛顿冷却定律。传质中引出虚拟传质膜厚,流体侧的浓度差和阻力全部集于此,而传质方式主要是分子扩散,传质速率可仿照菲克定律求出。很难理解的对流传质过程,利用类比法,用较短时间就能被学生所接受,加深了学生对传质过程的理解。吸收中的最小液气比与精馏中的最小回流比,传热中的对数平均温差与吸收中的对数平均推动力,牛顿粘性定律、傅里叶定律、菲克定律等,在讲授过程中都可以通过类比的方法进行讲解,通过类比把复杂问题简单化。

4.2采用多媒体等辅助手段,提高课堂教学效果

化工原理是一门实践性很强的工程学科,单元操作的研究内容包括“过程”和“设备“两个方面[[3]。而学生没有工程概念和感性认识,如果单纯的用“黑板加粉笔”的教学模式,一些操作过程很难表达清楚,学生会感到枯燥乏味,无法满足现代教学要求。为此,在教学过程中需通过合理安排实习、实验来增加学生感性认识,同时还需要借助多媒体教学、设备模型等手段,把教学信息转化为可视信号,从而提高教学效果。如列管换热器的结构表述,什么是多管程、多壳程,热、冷流体如何进行换热,如果只在黑板上用画图来表示,很难把这一个动态过程表达清楚。

现在借助多媒体教学,通过三维动画,很容易的把这一过程清晰生动地显示出来,使学生更易理解。在讲解浮阀塔的操作性能时,用透明有机玻璃模型,形象清晰地展示了塔设备的内部结构和整体特征,加深了学生对设备的基本结构和工作原理的理解。化工原理的另一特点是计算性强,计算内容从基本概念到实际问题,内涵非常丰富,特别是那些在分析过程机理的基础上建立的数学模型,往往是非线性的、多变量的,计算过程絮杂。如确定板式塔塔板需要逐板计算,重复利用操作线和平衡线方程。如果笔算工作量大,耗时较多。若采用计算机辅助教学,进行简单编程,这些问题便能很容易解决,在编程过程中还能巩固和深化教学内容。通过这些辅助的教学方式,帮助学生深人理解单元操作过程的原理、形象直观地了解和掌握设备原理与结构,既培养了学生的学习兴趣,又加深了学生的理解和记忆。

4.3通过课堂讨论的形式组织教学,加深学生对概念的理解和记忆

通过课堂讨论形式来理解某个概念、公式,比单纯的讲解效果要好得多。这种教学方法,一般多用于传热、传质过程,由于公式多,难记忆,易于混淆。教师可以针对某些内容首先让学生在课下准备,然后组织一堂讨论课。如传热过程中,傅里叶定律、牛顿冷却定律、斯蒂芬一波尔滋曼定律、传热基本方程,这几个方程表示不同币毫热方式的传热速率,都与温差成正比,但温差不同,可以通过讨论形式帮助学生加深概念的理解和记忆。

化学工程原理范文第5篇

关键词:物理化学 教学改革

物理化学是以物理学的原理和技术研究化学问题的学科,是化工类各专业中最重要的的四大基础课程之一[1]。它在数学、物理学及无机化学、有机化学、分析化学的基础上,进一步系统阐述化学的理论,为后续的专业课程学习、知识应用和科学研究提供更全面、更直接的基础,是链接基础学科和应用学科、科学研究的桥梁。[1]

由于该课程内容逻辑性强、概念抽象难懂、公式较多,导致学生常常不易理解接受,难以学好。加上我校学生多来自西部民族地区,原有理论基础较为薄弱,因此结合我校实际情况,对物理化学课程的教学思想、教学方法等进行了一系列的实践与探索。

1 重新设计教学方案,体现分层教学思想

我校化工学院和生命科学与工程学院均开设物理化学课程,共涉及7个专业,在教学方案设计上,分为3个层次:第一层次为化学工程与工艺专业、高分子材料与工程专业、应用化学专业;第二层次为环境工程专业,制药工程专业;第三层次为食品工程专业,生物工程专业。针对不同专业的培养方案和要求,在实际教学中需要在各个层次上体现出教学学时,教学目的,教学内容上的差别,通过设计教学的各个环节使各专业学生达到专业培养方案中所提到的要求,因此我们制定分层次的教学大纲,制定分层次的教学进度表,在教学中除了讲授物理化学基础理论知识之外,还要整理不同专业方向的前沿知识,注重理论联系实际,体现分级教学的思想。[2]

2 大胆探索和尝试,提出3大教学法

以著名教育学家奥苏贝尔的同化理论为依据,结合物理化学课程的自身特点,充分考虑学习者的心里特征,通过教学方法的创新,使学生对知识本身和形成过程产生兴趣,从而达到良好的教学效果。

2.1框架式教学方法

物理化学分为热力学、动力学、电化学、界面化学、胶体化学五大部分,在教学中要让学生掌握每一个部分要解决的核心问题,比如热力学解决能量、方向和限度问题;动力学解决速率和机理问题;电化学解决电解质溶液理论问题,可逆电化学问题和不可逆电化学问题。对物理化学理论知识体系有一个全面的认识。

在具体到每一章每一节的学习,在教学中会把事先准备好的教学提纲材料印发给学生,提纲中包含了章节学习重点、难点;知识结构主线;要预习的内容、进度;讨论的问题;达到的学习要求等信息。

在每一个章节学习结束后,都加一个框架总结的环节,例如在物理化学热力学的教学中,要求学生做到以下几点:

① 掌握热力学中 U H F G S函数间的联系

②掌握五个函数及重要公式间的联系

③掌握重要公式间的联系

④提倡由一个公式出发推导其他公式。

2.2 科学研究辅助式教学法

科研和教学本身就是相辅相成的,以科研来带动教学,激发学生的兴趣, 拓展学生的能力,提升学生的科学素养[2],在实际教学中我们会安排二类研究性题目,一是学生感兴趣的题目;二是教师的科研题目。从实验题目的选择、实验方案的设计到实验数据的处理, 都由学生独立完成, 这既能让学生在分析问题,解决问题的过程中巩固和提高理论知识,又为学生将来的科学研究打下了良好的基础。通过这种教学方式的实施,取得了良好的教学效果,并多次在学校“挑战杯”大学生课外学术科技作品竞赛中取得优异成绩。

2.3 互动式教学法

教学是以学生为中心的双边活动,教师在主持,设计,调整教学的过程中,应该把学生的学习主体地位摆在首位,使学生在学习过程中有着积极的兴趣和饱满的精神状态,积极主动的思考。在实际教学中,我们发现互动式学习是一个很好的教学模式。例如, “ 偏摩尔量”和“化学势” 一节的教学中, 可以采用课堂讨论方式,课前教师给学生拟定如下几个讨论题目: (1)偏摩尔量和摩尔量的区别是什么?为什么在多组分体系热力学中必须要学习偏摩尔量? (2)从化学势的定义中能够看出化学势是一个表示什么含义的物理量?(3)学完偏摩尔量、化学势和偏摩尔量集合公式,我们能从理论上解决什么问题?在交流互动中,认真听取每一个学生的发言,对独特的见解或新颖的观点, 进行鼓励。在交流互动中,对学生的观点进行归纳和总结[3],取得了良好教学效果。[3]

3 教学改革的实践效果

物理化学教学改革实施多年,在化工学院和生命科学与工程学院近40个左右的专业班级上实践,取得了良好的教学效果,主要表现为以下几个方面:

1)实现了分级教学,教学内容更加合理。

2)借鉴和吸收先进教育理论,由传统的“老师为中心”的模式转变为“学生为中心”的模式,注重了学生的学习心理。

3)在教学方法上实现转变,由传统的“教师讲学生记记笔记做习题”转变为框架式教学法、科学研究辅助式教学法、互动式教学法相结合。

总之, 物理化学课程作为化工类各专业的一门基础理论课程, 需要我们结合化工类各专业的特点和培养要求,合理选取和不断更新教学内容,大胆尝试教学内容改革;不断学习和借鉴新的教育学,心理学的最新成果和理论,大胆尝试教学方法改革。最终培养出基础知识深厚,创新意识和创新能力强的实用型专业人才。

参考文献:

[1] 苏育志 宋健华关于物理化学课程教学改革的实践和探索[J]广州师院学报.1998(4).19:14-18.

[2]高盘亮 与时俱进,实现物理化学教学的创新[J]临沂师范学院学报2004(6).26:76-78.

[3] 赵东江 高师院校物理化学教学的改革与实践[J]吉林省教育学院学报2005(2).21:54-56.

Research and Exploration on the teaching of physical chemistry curriculum reform in Ethnic Universities and colleges of Engineering Physics

PengCheng1 TianHUA1

(1 Chemical Engineering institute of Northwest University For Nationalities Gansu Lanzhou 730030)