前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇生物技术进展范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
【关键词】生物技术 粮油食品工业
生物技术又可称之为生物工程,主要包括分子生物学、微生物学、细胞生物学、生理学、免疫学、系统生物学等多种学科,并和计算机、化学等学科内容相互渗透成为一个比较综合的学科,主要包括基因工程、细胞工程、酶工程等技术,其中基因工程是其主要的核心技术,该种技术主要应用在农业、植物、医学、食品、动物等领域。应用现代生物技术可以按照人们的意愿创造出人们想要的物种,或者是具有全新的功能,或者是改造原有的功能使其更好的满足人们的需求。
一、生物技术在粮食生产中的应用
生物技术在粮食生产中的应用主要有以下几个方面:可以利用转基因技术获得产量更高,并有一定的抵御虫害的作物品种,获得营养价值更高的作物品种,此外,还可以利用细胞工程技术对植物进行无性繁殖,从而获得高产量的作物,利用生物技术可以制造出无毒生物农药从生产出更多的绿色产品。生物技术培育出的作物主要有三代,第一代是通过培育转基因作物可以提高农作物抗虫害的能力,目前种植面积比较多的是抗除草剂的农作物。第二代是通过转基因来提高农作物的营养价值为主要特征。第三代是通过转基因作物提高食品的免疫功能,即可以利用转基因的作物来生产一些具有新功能的食品以及药物。
二、生物技术在粮油加工中的应用
我国的粮油加工产品主要以初级产品为主,而在食品的精深加工方面比较落后,资源的深层次利用率比较低,而利用生物技术可以将产品原料加工成产品并实现产业化,通过对农产品的二次开发以此形成新的产品。利用生物技术可以快速的提高粮油加工的能力并提升水平,使我国的粮油加工生产能力能够得到跨越式的发展。
三、生物技术在食品加工中的应用
生物技术已经渗透到了食品加工的各个方面,利用基因工程可以有效的改良发酵工业中的微生物菌种,对食品加工原料进行改造,提高氨基酸在食品加工中的含量,此外,利用基因工程还可以改进其生产工艺,进一步提高食品的营养价值。利用蛋白质工程可以创造出人类需求的不同功能的蛋白质新产品,可以更改酶的特性。在食品工程中酶技术的应用比较成熟,在粮油食品加工中应用比较广泛的是酶制剂的应用,主要有酿造酶、蛋白酶、果品酶等。这些酶主要应用在果蔬加工,乳制品加工等方面。
四、生物技术与食品安全
生物技术在食品安全中的应用主要是转基因食品安全问题。任何物种在进化过程中都会经历自然选择或者是人工选择,他们能够幸存的物种都是这两种选择的结果,不过是自然选择还是人工选择其实质都是遗传变异选择,在物种进化中遗传是基础,变异一定会存在。任何物种都是在遗传的基础上经过进化发展而来的,对遗传变异进行人工选择就是常规育种,而转基因育种在本质上和常规育种并没有本质的区别,转基因的食品安全问题和其它新出现的技术一样,只是在人类科学进步进程中新出现的科学问题而已,应该对以抱有正确的态度,深入的对其进行研究和探讨。转基因技术作为发展最快的新技术,正对人们生活的各个方面产生巨大的影响。
五、生物技术与食品安全检测
食品安全越来越受到人们的关注,日常食品安全已成为人们生活的焦点,为了让人们吃到更为安全的食品,对食品安全检测技术的研究已经提上日程,而生物技术在食品安全检测中的应用,发挥了较大的推动作用,并取得了不错的效果。在当前的食品安全检测中比较广泛应用的生物技术有生物芯片、免疫技术等生物技术,通过这些生物技术的应用使得食品安全的检测更加方便快捷而且灵敏度也比较高,人们对食品安全也更加放心。
六、粮油深加工生物技术的进展
在粮油深加工方面,美国主要利用酶以及发酵工程来进行粮油资源的开发,同时还利用基因工程等生物技术来改良农作物的性能,改善农作物所含的营养价值。生物技术在粮油加工中的应用主要有以下几个方面,首先是利用生物技术进一步提高农作物的产量,并为农作物的生产寻找更好地的农业技术。通过新的生物技术的应用进一步改良农作物的品种,另外,还有利用农作物、农业废弃物和加工副产物生产工业制品,包括生物能源、生物材料等。
七、结语
生物技术在食品粮油领域,在食品生产、粮油食品加工以及副产品利用等方面都有重要的应用,随着基因组技术在农作物的成功实施以及深入开展,新一轮的农业技术革命将会展开。为此,要认识在粮油食品安全领域生物技术应用的重要性,并不断在粮油食品加工中引入生物技术,以更好的促进粮油食品加工行业的发展。
参考文献:
【关键词】含油废水;生物技术;过程;深度处理
一、生物处理技术的概况介绍与应用实例
(一)概述
生物处理技术处理含油废水指的是利用在微生物代谢作用下,将分散到水中的原油、有机污染物进行降解处理,使有机污染物质转化为稳定的无害物质,最终完全无机化。近来较普遍应用且相对成熟的生物处理工艺包括好氧生物处理技术和厌氧生物处理技术两大类。顾名思义,所谓好氧生物处理技术,是指利用好氧微生物代谢作用处理含油废水的技术,按所选材料,分为活性污泥法、SBR法、生物膜法、氧化塘法、AB处理法等形式;而厌氧生物处理技术,则是利用厌氧微生物作用进行含油废水处理的技术,按处理设备,分为厌氧接触法、厌氧生物滤池、升流式厌氧污泥床(UASB)、厌氧生物转盘等处理方法。这两类生物处理技术在有机物负荷、污泥产率,能耗、营养物需要量、应用范围,对水温适应性、启动时间以及处理效果各方面作用不同,相对来说,好氧生物技术在处理效果上较厌氧处理技术好,但两者各有其优缺点,单纯采用一种技术难以达到理想效果。因此,结合使用两种处理技术进行含有废水处理变得较为普遍,遵照分级处理程序,先采用厌氧技术进行初步处理,利用好氧工艺进行处理检验和再处理,以确定合理的技术过程。
(二)实例
学者对含油废水处理技术的综合研究表明,油田污水的处理方法很多,如物理法、化学法等,这两种方法都能够获得一定的处理效果,但存在较多劣势,前者成本高,后者由于投入了化学药剂极易产生二次污染。相比之下,生物处理技术的经济性、适用性最强,对于大规模污水处理收到较好效果。在国内许多油田得到应用,以下对应用该技术的油田及其废水处理工艺作基本介绍:1.胜利油田王家岗废水处理站,该站点建成投产于2002年,利用美国公司菌种,由油田自行设计完成占废水总量约为70%的含油废水处理工程。其技术处理过程为:含油废水—接收罐—两级大罐沉降—溶气浮选—混合池—接触氧化池—沉淀池—计量排放。该站经过生物处理技术的废水指标满足国家废水排放标准。2.大港油田东二废水处理站,该站用美国公司RBC菌种,借助容积为2700m3的接触氧化池每天处理上万立方的废水。其废水处理技术过程为:两级沉降—过滤—隔油—接触氧化池—缓冲池—氧化塘—排放。经处理后的废水符合国家要求排放标准。3.冀东油田高一联废水处理站;该站同样建成并投产于2002年,该工程采用石油大学技术每天实际处理的废水量约3600m3,仅小于设计处理能力400m3,其废水处理技术过程为:两级大罐沉降—过滤—缓冲罐—泵提升—冷却塔—均质池—厌氧池—中沉池—接触氧化池—二沉池—缓冲池—提升—排放。对外排水质的验收报告平均数据进行处理,表明废水排放符合国家标准。
二、含油废水生物处理技术方法
随着油田开采力度加大,采油技术也在不断发展,前后经历了天然能量动力、人工注水方式、改变注入水特性这三次采油变化。目前较普遍采用以人工注水方式保持地层压力,以及通过改变注入水的特性提高采油率的后两种采油方式。由于经电脱水、分离出来的“油田污水”成分复杂,除含原油以外,还溶有各种有害杂质,因此,选取生物处理技术对废水进行处理,方法有:1.曝气生物滤池组合工艺法,该方法是在微生物氧化分解作用,填料及生物膜的吸附阻留作用和食物链分级捕食作用以及反硝化作用下共同完成的。相比传统的活性污泥法,具有生物浓度、有机负荷高,占地面积小,过程简单,成本投入低,抗温性好,菌群组成合理,耐冲击性等优点。包括:1)膜生物反应器—曝气生物滤池法,它能够高效快速过滤超滤膜,同时有效降解高浓度活性污泥生物,且不借助二沉池和污泥回流系统,具有成本小、能耗低以及处理效果好等优点。2)超声气浮—BAF法,在羟基自由基氧化、气泡内高温热解和超临界水氧化三种因素作用下,利用声化学这一边缘科学,在大于20Hz的超声波条件下,提高化学反应速率,超声波有促进有机污染物降解和提高废水的可生化性的功能,但单独应用时去除废水中有毒物质的能力不高。3)A/O—BAF法,此方法模式是“隔油/气浮/二级生化”,处理效果不甚理想。2.氧化沟,氧化沟是在20世纪中期由荷兰开发的一种污水处理工艺,它是在传统活性污泥法的基础上进行改造生成的,污水和活性污泥的混合液可在沟渠形的曝气池中循环流动。其技术过程简单,处理效果良好,排放水达标。3.人工湿地,该方法处理污水最初是借助芦苇之类的人工湿地净化污水,去除其中大量有机和无机物。经过发展,演变为利用基质、微生物和植物,在生态系统的物理、化学和生物协调作用下,通过过滤、吸附、吸收和分解等一些列过程来净化废水,实现废水无害化处理目标。同时通过生物地球化学循环,有利于绿色植物生长。它在出水水质、营养物质去除能力、成本费用、技术含量、综合管理方便等方面具有明显优势。4.氧化塘,将各类微生物和藻类置于氧化塘中,发生氧化反应后,去除有机污染物,使其转变为无机物。研究表明,它对油、酚类有机物、硫化物等的去除效果都较好。5.特种菌类处理,在污水生物处理中,很多细菌具有特殊功能,这些菌类经过分离、培养后,对有机物处理有良好效果。
三、生物处理技术的主要问题及趋势
目前采用高效降解菌的生物深度处理技术在含油废水深度处理领域的研究已取得很大进展,但未来发展中仍存在以下问题,需要重视。体现在:1.由于含油废水所含有机物复杂、繁多的特性,需要结合各种方法,优化各步处理技术,再找出一套综合工艺,满足深度处理技术高效处理废水的要求。2.提高含油废水深度处理器殊菌的浓度与活性。在了解含油废水成分组成的基础上,分离、培养各筛选优势菌种,监测该菌的最佳降解条件。根据反馈信息,提高净化效率。3.基于生物工程技术的处理效果,创新技术。提高更有效处理含油废水的可能性。
国外处理采油废水的技术已经由单一利用一种方法转变为多种方法结合使用,出现了物理化学方法与生物技术综合运用,提高了废水处理效率和达标度。而国内多利用二次、三次采油工艺处理废水,相对较落后,不能达到理想的处理效果,为对油田中这种难降解含油废水进行处理,生物深度处理技术成为国内油田采油废水处理技术的发展趋势。
参考文献
[1]陈进富.油田采出水处理技术与进展[J].环境工程,2000,18(1).
摘 要:随着国民经济的不断发展,各行业排放的工业废水的量也与日俱增。其中,对水环境污染尤为严重当属造纸工业了。统计显示,我国现有的10000多家大中小型的造纸企业,就能到达40多亿t的年废水量,是全国废水排放总量的十分之一。废水对生态环境造成了一定的影响。该文综合阐述了目前造纸废水生物治理中好氧技术、厌氧-好氧组合处理技术以及厌氧技术的应用和进展;对国内外生物处理造纸废水技术的研究进展进行了总结和分析,包括应用白腐真菌降解造纸废水、生物酶技术和生物固定化技术。
关键词:造纸废水 好氧 厌氧 白腐真菌 生物酶 生物固定化
中图分类号:X793 文献标识码:A 文章编号:1672-3791(2015)04(a)-0000-00
随着国民经济的不断发展,各行业工业废水的排放量也在逐渐增加。其中,造纸工业排放的废水对水环境造成了严重的污染。统计数据显示,我国10000多家的大中小型造纸企业,每年就会排出40多亿t的污水,占到了全国废水排放总量的十分之一[1]。2010年,造纸废水CODCr排放95.2万t约占轻工行业CODCr排放总量47%[2],对生态环境造成难以想象的破坏后果。对此,对新型的有效治理造纸废水污染的方法以及途径进行探索和研究,是非常具有研究意义和现实意义的。
1 造纸废水的来源和特点
其生产的各个环节都会产生废水,但主要来自于中段水、纸机白水以及蒸煮液[3]。提取黑液后浆料在洗涤、筛选、漂白的过程中排出来的废水,就是中段水,这种废水成分复杂,且富含对环境危害较大的有机氯化物。纸机白水中主要有细小纤维、填料和胶料(松香等)。酸法制浆的红液或碱法制浆的黑液叫蒸煮液,在整个造纸工业污染中占90%。碱法制浆是我国造纸业普遍采用的,其主要成分是纤维素、木质素、半纤维素、单糖、有机酸和碳水化合物的降解产物等。
2.造纸废水生物处理技术
化学方法、物理方法、生物法、物化方法等,是目前国内外造纸污水处理的主要方法。近几年,得到人们重视的膜分离、超临界分离、磁分离、超声波分离等物化处理法因比较昂贵,处理效率不高,应用比较有限。而操作方便、运行费用相对较低、没有二次污染等优点的生物处理法,则越来越受重视。
2.1好氧处理技术
指借助于好氧或兼性厌氧微生物在有溶解氧的情况下来分解、吸收有机物,使之被氧化成简单的无机物,污水得到净化。当前,活性污泥法和生物膜法等好氧生物法是国内外用来处理造纸废水的方法。
处理效果较好且成本低的活性污泥法既能去除部分色度,还能分解大量有机物质,易于管理是我国最常用的好氧处理方法。崔延瑞等[4]采用序批式活性污泥法处理碱法草浆造纸废水,COD的去除率高达80%。张述林[5]等采用混凝与低氧―好氧两段活性污泥法来处理某造纸厂COD为6230mg/L的综合废水,可达93.8%的COD去除率。
生物膜法是指微生物附着在介质表面上形成生物膜,且在不断繁殖生长的同时,还能对污水中的有机污染物进行降解吸收,将其转化为稳定的无机物和原生质,从而达到净化污水的作用。此方法剩余污泥量少且不会产生污泥膨胀,占地少,运行管理方便。Chandler等[6]通过塑料填料,利用两级生物膜反应器中试处理造纸厂废水。结果显示,水力有3h的停留时间,可减少93%的BOD5,出水BOD5达到7.83mg/L的平均浓度。张苗等[7]采用混凝沉淀协同好氧生物膜技术深度处理造纸废水,结果显示,效果最为显著的就是以FeCl3为混凝剂的协同好氧生物膜技术,最高可达69.30%的色度去除率,比单独的混凝沉淀高了3.72 %的去除率。
2.2厌氧处理技术
在专性与兼性厌氧菌的条件下,通过发酵和分解对有机物进行降解的处理技术称为厌氧处理技术。与好氧处理技术相比,其污泥产量小、节省动力能耗、对营养物质需求不高,且能更好地降解某些难降解有机物。殷承启等[8]采用上流式厌氧污泥床( UASB)处理二次纤维造纸废水。UASB 稳定运行时对COD的去除率可达90%以上,总硬度在50%以上以及硫酸根离子80% 以上。刘峰等[9]研究了预酸析―多孔高分子载体固定化微生物厌氧流化床(AFB)处理碱法草浆黑液的效能,结果证明,AFB对黑液进行直接处理时,发挥了其活性生物量浓度大、传质能力强的特点,可有效地去除COD,色度亦有所下降。采用酸析预处理利用AFB的厌氧消化功能,可去除黑液中大部分难生化降解的高分子物质。
2.3 厌氧-好氧处理技术
造纸废水因难降解有机物成分多、污染物浓度高、废水流量和负荷波动大、有较差的可生化性能等,用好氧处理效果不好且能耗大。因此,利用厌氧-好氧组合处理工艺进行处理。首先,能使厌氧处理技术的优势充分发挥,水解、酸化废水中生化性很差的高分子物质,成为易于进行好氧处理的较小分子或分子结构。同时,也可对回流到厌氧池的好氧阶段污泥进行较为彻底的厌氧消化,减少整个系统的污泥排放。该工艺结合了厌氧与好氧处理技术的优点,具有占地面积少、处理效果好、能耗低、节省药剂以及运转、管理方便等优点。
丁志芬[10]对某造纸厂应用厌氧-好氧组合技术处理废水的情况进行了介绍,且和好氧工艺作了比较。结果证明,厌氧-氧工艺运行电费可降低50%,且运行稳定,其COD有机物85%都转化为甲烷气体了,剩余污泥量也减少了60%以上。李巡案等[11]分析了万隆造纸厂废水处理工程改建为厌氧-好氧工艺以及实行清洁生产后,污染物质排放总量明显减少,水质可达到GB18918- 2002一级A标准,与原有的好氧生物处理工艺相比可节省动力约55%。
3 生物处理造纸废水技术的研究进展
3.1 应用白腐真菌对造纸废水进行降解
造纸工业排放黑液COD和色度形成主要是因为木质素,其异质多晶三维多聚体结构是由甲氧基取代的对-羟基肉桂酸聚合而成,分子间的醚键、C-C键很稳定,是当前公认的微生物难降解芳香化合物之一[12]。目前,国内大部分工厂处理造纸废水采用传统生物法应用的微生物主要以细菌为主,并不能有效去除造纸废水中的木素衍生物以及漂白过程中产生的氯酚类物质,这便成为造纸废水达标排放的主要障碍。
白腐真菌是目前所发现的对木质素及其衍生物降解最有效的微生物。多数白腐真菌属于担子菌纲,少数为子囊菌纲。其中,黄饱原毛平革菌(Phanerochaete Chrysosporium)是已被广泛研究的典型白腐真菌。
3.1.1 白腐真菌的降解机制及优势
白腐菌降解木质素通常分两步进行[13]:第一,菌体利用菌丝吸附木质素;第二,白腐菌分泌出的酶催化氧化木质素等污染物,主要分为细胞内和细胞外两过程,整个降解系统在主要营养物质( 碳、氮、硫) 限制条件下才得以启动形成[14~16]。锰过氧化物酶( Mnp)、漆酶(La)、木质素过氧化物酶( Lip) 均合成于细胞内,通过分泌到细胞外对污染物进行降解。前两者均须以H2O2为底物,漆酶以氧气作电子受体催化形成醌及自由基。故降解污染物时,白腐菌需借助H2O2激活,由酶触发启动自由基链反应,产生具有超常的氧化能力的细胞外?OH,对芳香化合物有很好的降解作用。
故白腐菌在降解污染物上所有具有的优点是其他生物系统尤其是细菌没有的[14]:(1)特定污染物不需要预条件化:处理系统以细菌为主的,诱导合成所需的降解酶须预先置于一定有效浓度的污染物。白腐真菌降解酶的诱导与降解底物的有无多少无关。(2)动力学优势:细菌对化学物的降解多为酶促转化,遵循米氏动力学。初始氧化反应的酶经白腐真菌催化启动对底物没有真正意义上的Km值,对氧化产物的形成有利。(3)产生氧化能力极强的?OH (4)有毒污染物不必进入细胞内代谢而在其细胞外即可有效降解。可忍受高浓度有毒污染物的同时,避免有毒污染物对细胞的毒害。(5)非专一性降解的特性:能降解大量结构不同的化学物质。(6)对营养物的要求低。
3.1.2 白腐菌在造纸废水中的应用
从上述可知白腐真菌在治理造纸废水方面有极大的研究价值。吴涓等[17]比较了几株白腐真菌在造纸黑液废水中的挂膜生长状况及其对黑液废水的处理效果。黄孢原毛平革菌、侧耳菌和S22菌都可以在较强碱性的废水中生长挂膜,且对木质素有显著的降解作用,有很强的适应废水的能力。李雪芝等[18]用8株不同的白腐菌对造纸废水进行处理,选出的白腐菌L02处理效果是最好的。该菌株可直接应用于造纸废水的处理,大幅度降低废水CODCr含量(降低84%以上)、废水的色度(降低93%以上)以及废水的pH值。路忻[19]采用序列间歇式活性污泥法(SBR)法利用白腐菌共代谢理论分析及处理试验研究含木质素的造纸废水。结果表明,相同进水COD浓度和水力停留时间,与单纯好氧生物处理相比,共代谢作用下好氧处理的COD去除率要高得多,有约30%的提高率。
3.2 生物酶技术
白腐菌降解木质素,是通过其分泌的酶的作用来实现。相较于锰过氧化物酶、木质素过氧化酶,在白腐菌木质素降解酶系统中,漆酶的实际应用价值更大一些。首先,木质素过氧化物酶和锰过氧化物酶产生的条件是限碳和氮的。而漆酶可在碳和/或氮存在条件下由菌体分泌[20]。其次,木质素过氧化物酶和锰过氧化物酶只在系统存在H2O2时,才可降解有机污染物,这在现实情况下很难实现的。最后,重要的还在于漆酶具有780 mV氧化还原电位,在不存在H2O2和其它次级代谢产物时,有机污染物的氧化也能够被催化。所以,在环境保护和生物技术方面,漆酶的应用潜力是非常巨大的。
据林鹿等人[21]研究通过漆酶进行去除桉木硫酸盐浆CEH漂白废水时发现,它可以把废水中有毒物质去除掉40%以上。造纸废液中有机氯化物用漆酶处理,具有高效能的催化作用,反应条件温和,对反应设备和反应条件要求也不高。谢益民等[22]采用杂色云芝发酵产生的漆酶液深度处理造纸厂二沉池出水,结果表明,经催化氧化作用,漆酶及其介体体系可氧化聚合废水中的大部分残余木素。在最佳实验处理条件下,木素、CODCr和色度的去除率分别达到82. 0%、76. 9% 和84. 9%。同时,纸浆生物漂白上的研究热点也包括漆酶。通过酶法漂白纸浆,脱氯效果更好[23],相对于传统的氯气漂白法所产生的有毒的氯酚类化合物而言,其避免了对环境的污染。
3.3 生物固定化技术
微生物固定化技术是通过化学或物理的方法,把游离酶或细胞限定在一定的空间区域内,使其能反复利用且保持活性,利于除去高浓度有机物或某些难降解物质。Messner等[24]利用生物滴滤器原理而开发的MYCOPOR反应器,在多孔的载体填料上把白腐菌固定好,废水由从顶部到载体的这个过程就能够得到净化了。处理6~12h,87%、80%和40%的色度、AOX和COD可去除。李朝霞等[25]采用一种新型海藻酸钠/壳聚糖/活性炭生物微胶囊固定化白腐菌和悬浮态白腐菌,在不同接种量下降解造纸废水。结果显示,白腐菌在不同的两种状态下均能对造纸废水进行降解,不过在代谢稳定性和降解木质素能力等方面,固定化白腐菌比悬浮态白腐菌明显要强。刘帅等[26] 用固定漆酶和游离漆酶对造纸废水进行深度处理。通过对废水处理的效果对比,固定漆酶的优点在于达到最佳效果的反应时间短, 酶的稳定性高, 温度耐受性强,pH适应性显著增强。
4 结语
作为一种处理难、成分复杂的工业废水,通过传统的处理技术造纸废水已很难满足如今的排放要求。因此,要实现极大减少造纸废水的排放或者实现零排放,需大力发展微生物处理技术。使微生物与处理技术相结合,为造纸业的绿色发展铺平道路。
参考文献
[1] 王晖,付斌.造纸废水处理方法现状及展望[J].中国资源综合利用,2005(2):21- 24.
[2] 洪卫,刘勃,等.制浆造纸废水深度处理技术解析[J].中华纸业,2009,30(7):76-81.
[3] 闫一野,乔丽洁.新型分离方法在造纸污水处理中的应用[J].环保与节能,2012 (2):30-33.
[4] 崔延瑞,胡兰群,等.序批式活性污泥法处理碱法草浆造纸废水的研究[J].河南师范大学学报(自然科学版),2003,31(4):61-64.
[5] 张述林,罗启芳,赵金辉,等.混凝与低氧―好氧两段活性污泥法处理造纸废水的研究[J].同济医科大学学报,1998,27(3):196- 198.
[6] Chandler H, Cornelis D. Treatment of recycle paper mill wastewater in moving bed biofilm reactors[C].TAPPI Proceedings Environmental Conference & Exhibition v 2.TAPPI Press, 1997.
[7] 张苗,黄少斌.混凝协同好氧生物膜技术深度处理造纸废水的实验研究[J].造纸科学与技术,2010,29(1):84-88.
[8] 殷承启,洪建国.上流式厌氧污泥床处理造纸工业废水的研究[J].南京林业大学学报(自然科学版),2004,28(5):41-44
[9] 刘峰,杨平,方治华等.预酸析-厌氧流化床处理碱法草浆黑液的研究[J].环境科学学报.1999,19(2):214-217
[10] 丁志芬.厌氧-好氧组合生物技术在废水处理中的应用[J].化工设计.2003,13(5): 26-28.
[11] 李巡案,贺延龄,等.厌氧-好氧工艺处理造纸废水工程实例及清洁生产[J].环境工程学报.2012,6(8):2595-2599.
[12] 王海磊,李宗义.三种重要木质素降解酶研究进展[J].生物学杂志,2003,20(5):9-
11.
[13] 黄丹莲,曾光明,等.白腐菌的研究现状及其在堆肥中的应用展望[J].微生物学通报,2004,31(2):112-116.
[14] 李慧蓉.白腐真菌的研究进展[J].环境科学进展,1996,4(6):69-77.
[15] Andre F, Jaime R, Juani ta F, et al. Biodegradation of Pinus radiate softwood by white- and brownrot fungi[J]. World Journal of Microbiology & Biotechnology2001, 17: 31-34.
[16] Pavel K, Alena K, J aroslav V, et al. Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaete chrysosporium produced in a perforated plate bioreactor[J]. World Journal of Microbiology & Biotechnology1999, 15: 269-276.
[17] 吴涓,肖亚中,等.挂膜生长的白腐真菌处理草浆造纸黑液废水[J].应用与环境生物学报.2004,10(3):370~374.
[18] 李雪芝,赵健,等.白腐菌处理草浆造纸废水研究[J].中国造纸学报,2005,20(1):
88-91.
[19] 路忻,等.木质素真菌降解造纸废水的试验研究[J].河南科学,2008,26(12):
1550-1554.
[20] Munoc C. Laccase isoenzymes of Pleurotus eryngii:characterization,catalytic properties,and participation in activation of molecular oxygen and Mn2+oxidation [J].Appl Environ microbiol,1997,63:2166-2174.
[21] 林鹿,陈嘉翔,等.白腐菌对纸浆CEH漂白废水的脱色、消除毒性和芳香化合物的降解[J].中国造纸学报,1996,11:69
[22] 谢益民,瞿方,等.制浆造纸废水深度处理新技术与应用进展[J].中国造纸学报,2012,27(3):56-61.
[23] 宋美静.纸浆氯漂废水的处理[J].纤维素科学与技术,1999,(2):22- 25.
[24] Messner K,et al.Treatment of bleach plant effluents by the MYCOPOR system [M]. Biotechnology in pulp and paper manufacture Butterworth -Heninemann.1990: 245.
[关键词]微生物;发酵工艺;工艺优化;培养基;培养条件
中图分类号:Q939.9 文献标识码:A 文章编号:1009-914X(2017)22-0336-01
1 微生物发酵概述
生物发酵工程的概念较多,现代意义上关于生物发酵工程的理解为:在合适的pH酸碱度值、阳光照射度、培养基等条件上,利用微生物的一些特点,并借助一些现代工程技术对微生物进行生产,从而培育出一些能够满足人类进行生产活动的物质,或是将微生物用于现代工业生产的一种技术体系。
微生物发酵过程的优化控制可以分为过程模型和控制策略。发酵过程建模如机理分析建模、黑箱建模和混合建模近年来都得到了快速的发展,而优化控制策略方面的研究内容与成果有:基于线性化近似的经典优化控制、基于非线性系统理论的优化控制以及基于人工智能技术的优化控制等。微生物发酵过程控制技术的优化决定着发酵工程的质量与效益。传统的发酵工程过程为了快速提高发酵生产率与发酵水平,发酵过程更侧重于菌种的筛选和改造上。随着生物科学技术的发展,基因工程与代谢工程研究领域都出现了长足的进步与发展,利用基因重组与诱发等技术可以实现高产菌株普遍生产。但只有通过发酵过程的优化控制,才能实现产品质量最高、生产力最大、成本消耗最低的生产过程,因此对微生物发酵过程的优化控制成为发酵工程中研究人员日益关注的焦点。
2 存在的现状
现阶段,微生物发酵工程面临的一大问题是自动化控制问题。为了顺利解决该难题,首先应对微生物的不同特点有充足的了解。在科学技术快速发展的背景下,人们了解微生物的方式已经发生了改变,已经由原来的借助微生物形态进行表面认识,转变为对复杂生物学与细胞调节等方面。然而,微生物细胞较复杂,这使得生物发酵工程也变成了一类重复性差、高度非线性、慢性变、复杂的生化过程。因此,在研究过程中,不可仅从表面对生物发酵过程进行分析,而根据检测得到的过程参数对生化发酵过程进行详细分析。一般来说,检测的过程参数主要包括物理参数、生物参数与化学参数这几类。
3 生物发酵过程的在线检测与控制技术进展分析
微生物发酵过程属于一种生化反应过程,主要是为了促进最终产物利用率的提升,确保微生物生长环境的舒适度。在舒适、适宜的环境中,有利于微生物进行有效的生长代谢,并能实现对微生物发酵过程的在线检测与控制,从而提升微生物发酵产品的利用率,发挥其最大作用。具体来说,主要包括以下几个方面。
(1)电机搅拌热、冷却水温度、微生物发酵热等因素,均可能影响发酵的温度。此外,发酵罐体积大小,也会在一定程度上影响发酵温度的控制。如果发酵罐的体积较大,往往会采用冷却水或发酵温度为主回路的串级控制方式;如果是体积较小的发酵罐,多采用冷却水流量、发酵温度为主的简单回路控制方式。
(2)在微生物发酵过程中,生物发酵也会受溶解氧浓度的控制情况影响。然而,现阶段国内对该方面的研究较少,仅限于了解到哪些因素会对溶解氧浓度产生影响。目前,影响溶解氧浓度的因素主要有:供给的空气量、发酵罐本身的压力、搅拌桨的转速及形状。
(3)在微生物发酵过程,pH酸碱度值也是影响在线检测与控制的一个重要因素[4]。若pH酸碱度值过高或过低,微生物的生成及代谢过程都会发生变化,故必须保证酸碱度值得合适。若发酵液的酸碱度为强酸性,可通过加氧水的方法弱化其酸性;若发酵液浓度为强碱性,可通过加糖的方式弱化其碱性,调节发酵液的酸碱度,直至合适。
(4)消泡控制也是影响生物发酵工程的一个重要因素。发酵前,微生物的生长往往较旺盛,而此时若加满液料,并将搅拌桨马达最大速度启动,空气通入量也加到最大,很容易导致发酵液上浮的现象,最终发生逃液现象。若发生该类情况,一般会采用双位式控制方法进行处理,可取得较好的效果。
(5)在生物发酵过程中,补料控制也是影响发酵的一个重要因素。在发酵的进行状态中,微生物生成代谢也会在半连续式发酵过程的变化情况下发生相应的改变。所以,在这过程中,应该连续不断地为生物补充营养成分,保证微生物能够按优生物轨迹生长,才能促进微生物代谢产物产量的提升。
不同于物理、化学反应,生物过程反应速度相对较慢,反应物质、产物浓度等的转化率也不高。若要解决上述问题,工业微生物学通常是从两个方面入手:(1)正确选育或改良菌种,提高发酵菌种的优良性;(2)对培养条件进行合理控制,为生产出更好的目标产物创造条件。从某种程度上看,通过控制与优化发酵过程,能够将生物过程较好地控制在一种优化的操作环境或条件下,被认为是促进生产力提升的有效措施或捷径之一,具有非常重要的意义。因此,在发酵过程中,相关人员必须重视对发酵过程的线检测与控制,力将发酵环境或操作条件控制在一个较理想的状态下,为进一步提升生产水平提供强大的技术支持。
4 微生物发酵过程的优化控制策略
4.1 基于线性化近似的经典优化控制
基于“极大值原理”经典的优化控制方法在早期发酵过程优化控制中应用较为广泛。在发酵过程状态空间描述中利用极大值原理以及迭代法可以实现发酵的最优实施效果。极大值原理方法适用于比较复杂的发酵过程控制对象,但极大值原理只能得到开环控制,当发酵过程中的计算量较大时,仅能对少数过程制定出优化曲线,忽视了环境因素对系统的干扰。相关研究人员后来将极大值原方法融入理变量方法,得到最佳的变量优化曲线,控制效果较好,但是还没有达到理想的实验精度与简便性;发酵过程的建模质量对经典优化控制的发展产生了很大程度的影响。
4.2 基于人工智能技术的优化控制
利用计算机科学技术结合人工智能理论对发酵过程进行优化控制成为近几年的发酵过程研究的热点,人工智能技术能突破很多复杂的系统问题,主要包括专家控制、神经网络控制等。利用智能方法对发酵过程进行优化控制,在研究与仿真中呈现出优良的效果。研究人员建立了基于乙醇生产的专家系统,实现了乙醇发酵过程的发酵单元的检测,系统的误差非常小,系统的稳定性也得到了提高。但智能控制方法在模拟活动时仍存在局限性,神经网络控制对于网格结构的确定具有不可控性,因此智能方法交叉成为目前急需研究的发酵控制的技术问题。
5 结论
随着科技的不断进步以及生物技术水平的持续提升,微生物发酵技术已经得到了非常广泛的发展,除了在农业与工业方面获得了广泛的应用外,其在医药领域的应用更加值得期待。利用微生物发酵技术可以有效地解决许多正常生产不能够解决的难题。合理运用微生物发酵技术,并对发酵工艺进行持续地优化与改进,可以有效地提升生产效率,推动发酵工程技术不断前进与健康发展,从而扩大微生物发酵在各领域的应用价值。?
参考文献
[1] 张文芝,郭坚华.微生物发酵工艺优化研究进展[J].?广东农业科学,2013,(6).
[2] 董昌健.对如何推动微生物发酵工艺优化的研究[J].?吉林农业,2013,(10).
【关键词】 生物淋滤 污水污泥 重金属
1 引言
随着我国城市污水处理率的逐年提高,污水处理厂的污泥产量也急剧增加。污水污泥通常经过机械脱水后再进行后期处置,传统的处置方法主要有卫生填理、焚烧、海洋处理和土地利用。其中土地利用是最常用、最具备经济性的方法[1]。污水污泥中含有占其干重0.5-2%的重金属[2],因此在污泥土地利用之前必须进行处理以避免二次污染。污水污泥中重金属的处理基本思路是重金属稳定化(控制重金属的生物活性)和减量化。但污泥稳定化后,随着土壤pH、氧化还原电位等环境条件的改变,重金属有可能重新溶出或其生物毒性增加而造成污染。因此,高效且经济的生物淋滤方法成为了研究的热点[3]。
2 主要微生物种类及特征
可用来进行生物淋滤的细菌有硫杆菌属、氧化亚铁钩端螺旋菌属、硫化杆菌属、酸菌属、嗜酸菌属以及其它与硫杆菌联合生长的兼性嗜酸异养菌。其中,应用最广泛的是氧化亚铁硫杆菌,其次是氧化硫硫杆菌和铁氧化钩端螺旋菌[4]。一般说来,应用于淋滤重金属的微生物以其生长的温度可以大致分为中温菌和嗜高温菌。
2.1 中温菌
中温菌主要有氧化亚铁硫杆菌、氧化硫硫杆菌、器官硫杆菌、嗜酸硫杆菌、温浴硫杆菌和氧化亚铁钩端螺旋菌。其中氧化亚铁硫杆菌的最适温度在30-35℃之间,其最适pH为2-3。氧化亚铁硫杆菌的生物膜由外膜、肽聚糖、周质区和内膜构成。周质区存在铁氧化酶,从外界培养液跨膜运输到周质区的Fe2+在铁氧化酶催化下失去一个电子,这个电子传递给分子氧并伴随H+和能量的吸收,这一能量使细胞内ADP(二磷酸腺苷)和Pi(无机磷)结合成ATP(三磷酸腺苷)使细菌得以生长繁殖[5]。氧化硫硫杆菌是普遍存在于污水污泥中的微生物,它通过氧化还原性硫来获得能量,其最适温度在28-30℃之间,最适pH为1.5-2.0。
2.2 嗜高温菌
在较高温度的条件下,古菌成为了重金属淋滤的优势菌种[6]。Sulfobacillus thermosulfidoxidans及其相近的菌种可以在较高温度条件下实现较快的淋滤速率。极端嗜高温菌可以在70℃时生长,并利用硫或硫代硫酸盐作为能源,主要包括Sulfolobous viz.S. ambivalens、S. brierleyi和Thiobacter subterraneus。
3 生物淋滤机理
污泥厌氧消化是国内外污泥消化的主要形式,厌氧消化污泥中重金属70%以难溶性的硫化物(Cr主要以Cr(OH)3形式)形式存在[7],在氧化亚铁硫杆菌等细菌的作用下,金属硫化物变成可溶性的金属硫酸盐,通过固液分离可达到去除污泥中重金属的目的。
一般认为生物淋滤污泥中重金属有两种作用机理[8-9]:
3.1 直接机理
细菌通过其分泌的胞外多聚物直接吸附在污泥中金属硫化物(MS)表面,通过细胞内特有的氧化酶系统直接氧化金属硫化物,生成可溶性的硫酸盐,见式:
M表示重金属 (1)
通常,污水污泥中的金属硫化物如NiS,CuS和ZnS等可以通过上式所示的机理被溶解。
3.2 间接机理
在以硫为基础的淋滤过程中,污水污泥中的元素硫或还原性硫化物通过氧化硫硫杆菌氧化成硫酸,进而污泥中的pH来提高重金属的溶解[10]。
(2)
(3)
Me为二价金属。
在以铁为基础的淋滤过程中,细菌在液相中先将Fe2+氧化到Fe3+,Fe3+随后再通过与重金属硫化物的反应而淋滤出来。在这个过程中,细菌不需要接触到矿物的表面[11]。
(4)
(5)
反应式(4)和(5)构成了一个循环,使得越来越多的重金属被淋滤出来,在反应式(5)中产生的硫酸还可以促进以硫为基础的间接淋滤过程。
4 淋滤模式
4.1 序批淋滤模式
目前,关于污水污泥重金属淋滤的实验室研究大多都是在序批式反应器中进行。Wong和Henry[12]报道了在序批实验中使用氧化亚铁硫杆菌淋滤厌氧消化污泥的研究。在以FeSO4为能源时,8d内对Cu、Ni、Zn、Cd和Pb的去除率分别为65%、78%、87%、86%和0%。淋滤的最佳起始pH是4,最佳的温度范围是25-30℃。与纯培养的氧化亚铁硫杆菌淋滤序批实验相比,氧化硫硫杆菌和氧化亚铁硫杆菌混合菌种对重金属的淋滤效果要高10%。10 d内混合菌种对厌氧消化污泥中Zn、Cu、Cd和Pb的去除率分别为95%、75%、50%和55%。针对23种市政污水污泥的序批淋滤实验结果表明,氧化硫硫杆菌对重金属的平均溶解率为62.5%,要高于氧化亚铁硫杆菌的49.5%[13]。不同菌种的淋滤效率的差异主要是由于系统间pH的不同所致,一般认为较低的pH会导致污泥中重金属较高的溶解率。对与大多数的污泥中的重金属来说,高效淋滤所需的pH范围是2-3之间。在淋滤序批实验中,虽然大部分的研究针对的都是厌氧消化污泥,但是Couillard等[14]报道了使用氧化亚铁硫杆菌淋滤好氧污泥的研究。在提前将污泥酸化至pH为4,假如FeS作为能源的条件下,污泥中的重金属能在1-2d内实现高效的溶出。由于氧化亚铁硫杆菌对简单的有机物,如有机酸、低分子量糖类、氨基酸等特别敏感,所以污泥中含有较高浓度的有机物会抑制其序批淋滤效果[15]。
4.2 连续淋滤模式
连续淋滤模式可以提高污泥处理量,适合于大规模的应用,但是目前对此的研究很少。连续模式的淋滤研究一般均在连续搅拌反应釜(CSTR)中进行。Couillard和Mercier[16]报道了使用氧化亚铁硫杆菌在CSTR和带污泥回流的CSTR(CSTRWR)系统中的淋滤研究结果。在HRT为1、2、3和4d,以1g/L的FeSO4·7H2O为能源时,CSTR与CSTRWR有基本一致的淋滤效率,对Ni和Cd的去除率分别为82.4-83%和83.3-85%。Tyagi等[17]研究了使用纯培养氧化亚铁硫杆菌的连续淋滤反应器中HRT、污泥回流比的影响。研究结果表明在HRT为0.75d,回流比为20%的情况下,超过90%的Cu和Zn能被淋滤出来。而Seth等[18]的研究发现当连续式淋滤工艺的HRT为14d,使用1.5g/L的S作为能源时,Cd、Cu、Ni和Zn的去除率分别为50、33、48和74%。
4.3 污泥消化与同步生物淋滤
污泥消化与同步生物淋滤(SSDML)是污泥消化过程和生物淋滤过程在同一个反应器中进行,实现病原体、污泥挥发性固体和重金属的同步去除。SSDML可以在序批或连续式曝气搅拌槽反应器中得以实现。通常,以硫为基础的生物淋滤过程在中性pH的条件下开始反应,所以可以与好氧污泥的消化过程组合在一起。Tyagi等[19]的研究结果表明污泥固体含量对SSDML工艺有明显影响,重金属的溶解率随着污泥固体含量从8.7提高到29.6g/L而降低。氧气浓度对SSDML工艺也有明显影响,当氧气浓度从2提高到7 mg/L时,氧化还原电位、酸化率和总挥发性固体的降解率都得到了提高[20]。
5 规模化应用存在的问题
尽管生物淋滤技术可以高效的去除污水污泥中的重金属,但是目前还没有实现规模化应用。目前主要存在的技术问题如下:
5.1 污泥肥料成分含量的损失
污泥生物淋滤过程中存在一个主要的关注热点是可能的肥料成分含量的损失。污泥中75%的营养元素可以在淋滤的过程中损失掉。在淋滤过程中,pH通常都降至2以下,在降低的pH和较高的氧化还原电位条件下使得污泥中的有机物被氧化,进而使得污泥中的营养元素被溶解出来。N的损失也可能是因为污泥中微生物的蛋白质结构被破坏所致。淋滤的时间越长,损失的营养元素含量将会越多。Shanableh和Ginige[21]发现在生物淋滤污泥过程中有76%的P和38%的N被损失了。Wong等[22]发现在较低的起始pH时,以氧化亚铁硫杆菌淋滤污泥会有39%N和45%P的损失,但是在pH为6时N和P的损失基本可以忽略。Blais等[23]也发现在污泥起始pH为1.5时,淋滤过程会有44%的P损失,而起始pH为2.5时P的损失只有6%。
5.2 污泥调理和脱水性能
在生物淋滤技术规模化应用前另一个需要注意的是污泥的调理和脱水性能。淋滤过程完成后,污泥需要在絮凝剂的帮助下进行脱水,脱水后的污泥中和后才能作为肥料使用。然后,在pH小于2的情况下,高分子聚合物产生的絮体很小并且易碎,使得污泥调理和脱水变的非常困难。因而只能将pH调高至2-3之间或加入双氧水提高氧化还原电位来克服这个问题。保持污泥的脱水性能对于淋滤后高效的固液分离具有重要意义[24]。
5.3 经济性问题
与传统的污泥中重金属去除方法相比,生物淋滤工艺被认为是高效经济的,它只需要传统化学法1/5的成本。通常,生物淋滤过程需要16-20d,在此期间需要足够的曝气和搅拌。去除重金属的成本除了包括化学药剂、搅拌、曝气、基建和运行费用外,还应包括污泥调理、脱水以及从酸性滤出水中回收重金属的费用。Sreekrishnan和Tyagi[25]发现生物淋滤工艺(氧化硫硫杆菌)仅在较低处理容量和高固体浓度时具有吸引力。
参考文献:
[1]Metcalf and Eddy, 2003. Wastewater Engineering: Treatment, Disposal and Reuse, fourth ed. McGraw-Hill Publishing Company Ltd, New York.
[2]Lester, J.N., Sterriet, R.M., Kirk, P.W.W., 1983a. Significance and behavior of metals in wastewater treatment processes, part I, Sewage treatment and effluent discharge. Sci. Tot. Environ 30, 1-44.
[3]Wong, J.W.C., Xiang, L., Gu, X.Y., Zhou, L.X., 2004. Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source. Chemosphere, 55, 101-107.
[4]周顺桂,周立祥,黄焕忠.生物淋滤技术在去除污泥中重金属的应用。生态学报,2002,22,125-133.
[5]Zhang D Y, Li Y Q,Sun Y K. Feasibility study on biological precessing technology of metal material.Science in China(Series C), 1997,27(5),410-414.
[6]Pathak, A., Dastidar, M, G., Streekrishnan, T R. Bioleaching of heavy metals from sewage sludge: A review. Journal of Environmental Management. 2009, 90:2343-2353.
[7]Angelidis M. Chemistry of metals in anaerobically treated sludge.Water Res., 1989, 23(1):2-33.
[8]Tyagi RD, Blais JF, Auclair JC, et al. Bacterial leaching of toxic metals from municipal sludge: Influence of sludge characteristics. Water Environ Res., 1993, 65 (3): 196-204.
[9]Couillard D, Mercier G. Optimum residence time in (CSTR or Airlift reactor) for bacterial leaching of metals from anaerobic sewage sludge-bioreactor comparison. Water Research, 1991, 25: 221-231.
[10]Suzuki, I., 2001. Microbial leaching of metals from sulfide minerals. Biotechnol. Adv 19 (2), 119-132.
[11]Lombardi, A.T., Garcia Jr., O., 1999. An evaluation into the potential of biological processing for the removal of metals from sewage sludges. Crit. Rev. Microbiol. 25, 275-288.
[12]Wong, L., Henry, J.G., 1984. Decontaminating biological sludge for agricultural use. Water Sci. Technol 17, 575-586.
[13]Blais, J.F., Tyagi, R.D., Auclair, J.C., Lavoie, M.C., 1992. Indicator bacteria reduction in sewage sludge by a metal bioleaching process. Water Res. 26 (4), 487-495.
[14]Couillard, D., Chartier, M., 1991. Removal of metals from aerobic sludges by bioleaching solubilization in batch reactors. J. Biotechnol 20, 163-180.
[15]Cho, K.S., Ryu, H.W., Lee, I.S., Choi, H.M., 2002. Effect of solids concentration on bacterial leaching of heavy metals from sewage sludge. J. Air Waste Mgmt. Assoc. 52, 237-243.
[16]Couillard, D., Mercier, G., 1990. Bacterial leaching of heavy metals from sewage sludge-bioreactors comparison. Env. Pollut 66, 237-252.
[17]Tyagi, R.D., Couillard, D., Tran, F.T., 1991. Comparative study of bacterial leaching of metals from sewage sludge in continuous stirred tank and air-lift reactors. Process Biochem 26 (1), 47-54.
[18]Seth, R., Henry, G.J., Prasad, D., 2006. A biological process that reduces metals in municipal sludge to yield sulfur enhanced biosolids. Environ. Technol 27,159-167.