前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇人工智能教学建议范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
中图分类号:TP18文献标识码:A文章编号:1009-3044(2007)12-21667-02
The Application of Artificial Intelligence in Education
HU Ji-li,YIN Yun-xia
( Anhui University of Traditional Chinese Medicine, Hefei 230038,China)
Abstract:As a result of the interpenetration of older branches into each other, scientific theories and their application of Artificial Intelligence have expanded into nearly all the areas of human activity. This paper introduces the application of Artificial Intelligence in education, especially deals with Intelligence Computer Aided Instruction based on the artificial Intelligence.
Key words:Artificial Intelligence;CAI;expert system;knowledge base
1 引言
人工智能作为当今世界三大尖端技术(空间技术、能源技术和人工智能技术)之一,是计算机科学的一个分支,它的目标是构造能表现出一定智能行为的。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识、心理学和哲学、机器学习、计算机视觉等。总的说来,人工智能的目的就是让计算机这台机器能够像人一样思考。人工智能的研究更多的是结合具体领域进行的,主要研究领域有专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、智能决定支持系统和人工神经网络。它总的来说是面向应用的,随着人工智能的诞生和发展, 人们开始把计算机用于教学领域。同时, 自七十年代以来, 有教学能力的专家系统得到研制。人工智能技术与专家系统的成就, 促使人们把问题求解、知识表示这些技术引入计算机辅助教学(CAI) , 这便是智能型计算机辅助教学(CAI)。
近几十年来, 随着人工智能技术的日渐成熟, 它的一些研究成果被陆续应用到教学领域, 推进了教育发展改革和教学现代化进程。人工智能在教学系统的重要性也已形成共识。
2 人工智能在教育中的作用
目前在教育技术中涉及到AI的主要有以下领域:
2.1 知识的表示与访问
基于人工智能的知识表示是以知识为对象,以计算机的软硬件和计算机科学及人工智能和专家系统技术为工具,以哲学、心理学和逻辑学等为方法和指导,将知识表达成计算机可以直接处理的“知识库”,使用“计算机的智能”来模拟人类专家或“人类智能”,对知识进行快速、精确、自动、科学的处理。它不属于通常的“数据管理或信息管理”的“数据”层次,而是属于“知识处理”或“知识”的智能化层次。其主要内容是对于知识进行形式化的表示、自动化的推理,智能化的教学或创造。计算机辅助教育是其中重要的组成部分。
2.2 符号计算
符号计算包括数值计算、符号计算和函数作图。其代表软件是Mathematica,当该软件在1988年第一次,对科技及很多其他领域的计算机使用方式产生了深刻的影响。Mathematica 1.0时,商业周报将其列入当年最重要的十大新产品名单。这标志着现代科技计算的开始。Mathematica也被大量地用于教育:有成百上千的课程,从高中课程到研究生课程用它作基础。随着各种学生版的,Mathematica也已成为全世界各种不同专业学生的重要工具。
2.3 对学生错误的自动诊断
采用人工智能技术,使得教学过程中系统可以自动诊断学生的学习水平,不仅能发现学生的错误,而且能指出学生错误的根源,从而做出有针对性的辅导或学习建议。而且根据学生的特点自动选择教学内容,自动调整教学进度,自动选择教学策略与方法。
2.4 实现智能性超媒体教学系统
超媒体系统有理想的教学环境,容易激发学生的学习兴趣和学习主动性,但不能保证达到预期的学习目的,而且由于不了解所要教的对象,所以不能做到有针对性的指导,不能因材施教。智能辅助教学系统正好与此相反。将二者结合起来,就可实现性能互补,从而研究制出新一代高性能的智能超媒体教学系统。
3 人工智能应用于教育的新方向:ICAI
3.1 传统CAI的不足
传统的CAI由于其集成性、交互性、多媒体性等特点,在教学中可以极大地激发学生的学习动机,提高教师的教学效率和学生的学习效率。但在使用过程中,CAI的一些弱点也逐渐暴露出来。主要表现有:
(1)缺乏人机交互能力
现有CAI 大多以光盘作为信息的载体, 将教材中的内容以多媒体的形式展现出来, 教学信息是按预置的教学流程机械式地提供给学生的, 学生接受起来很被动。而且在课堂教学中, 一般也只能通过教师按预定的课件流程进行操作, 无论学生还是教师都不能很好地参与教与学的过程, 因此人机交互没有很好地实现。
(2)缺乏教师与学生的互动
现有的CAI 课件在学生自学、进行操作使用时,如何学习都是学生自己的事。教师不能完全了解学生的情况,学生在碰到问题时,也不能向教师求助,师生之间是互相封闭的,软件所起的积极效果大打折扣。同时由于缺乏网络支持,现有的绝大多数CAI 课件是在单机环境下运行的,它们无法利用网络的优势使知识内容快速更新,也更无法提供便捷的学习讨论空间、随时随地的师生交流方式以及远程教学实现的条件。
(3)缺乏智能性
要想面对不同情况的学生进行不同程度的教学过程, 使学生的学习变为主动, 并能由系统自动地提供助学信息而有选择地学习,要想使教师的教学能积极地参与进去并根据系统提供的信息按照学生的认知模型为其准备最适合的学习内容, 给予不同方式的教学模式与方法, 没有智能性的CAI 课件系统, 是很难实现以上目的并达到良好教学效果的。由此可见,现有的CAI 随着人们要求的提高, 已经不能尽如人意。因此以智能CAI 为代表的新的计算机辅助教学系统将是教师在教育技术上需要不断探求、努力实现的发展方向索。
3.2 ICAI-人工智能与多媒体技术的结合
为了克服传统CAI的缺点,需要在知识表示、推理方法和自然语言理解等方面应用人工智能原理。因此很多专家提出了智能计算机辅助教学(ICAI),智能计算机辅助教学(Intelligence Computer Assisted Instruction-ICAI)以认知学为理论基础。将人工智能技术应用于CAI,是智能化的CAI。在ICAI系统中,允许学生与计算机进行较自由的对话,学生的应答不限于数字或简单的短语。系统能够判定学生应答的正确程度,并给予适当的反馈,而不是简单地说“对”或“错”。ICAI的宗旨在于利用现有计算机技术实现较好的人工智能,模仿人类的交互方式、思维习惯及情绪流动,修饰和掩盖计算机的缺陷。
3.3 ICAI的优点
(1)将教学内容与教学策略分开,根据学生的认知模型提供的信息,通过智能系统的搜索与推理,动态生成适合于个别化教学的内容与策略。
(2)通过智能诊断机制判断学生的学习水平,分析学生产生错误的原因,同时向学生提出更改建议、以及进一步学习内容的建议。
(3)通过对全体学生出现的错误分布统计,智能诊断机制将向教师提供教学重点、方式、测试重点、题型的建议。
(4)为教师提供友好的教学内容、测试内容维护界面,无需改变软件的结构即可调整教学策略。
(5)通过对学生认知模型、教学内容、测试结果的智能分析,向教学督导人员提供对任课教师教学业绩评价的参考意见。可以说,一个理想、完美的ICAI系统就是一个自主、优秀的“教师”。
3.4 ICAI的标准
以现有的科学技术水平而言,短时期内显然无法实现具备上述全部功能的ICAI系统。一般认为,只要具有下列一个或几个特征的CAI系统就可以称之为ICAI系统。
(1)能自动生成各种问题与练习。
(2)根据学生的学习水平与学习情况选择与调整学习内容和进度。
(3)在了解教学内容的基础上自动解决问题,生成解答。
(4)具有自然语言生成与理解能力,以便实现比较自由的教学问答系统,提高人机交互的主动性。
(5)对教学内容有解释咨询能力。
(6)能诊断学生错误,分析原因并采取纠正措施。
(7)能评价学生的学习行为。
(8)能评价教师的教学行为。
不难看出,ICAI与传统的CAI相比,更加符合教育教学的规律,切合学生的认知习惯,具有明显的优越性。
3.5 ICAI的结构
ICAI主要由三个模块组成:专家系统模块、教师模块和学生模块。
(1)知识库
知识库是实现知识推理与专家系统的基础,而建造知识库的前提则是要解决知识的形式化,人工智能技术在教育中的应用表示以及知识的访问与调用问题。因此,知识的表示与访问是人工智能的核心技术之一,也是将AI引入教育领域必须首先解决的一个难题。
ICAI中的资源库应该包括以下一些内容:
①多媒体素材库:包括所要呈现的知识的一些素材,包括:文本、图像、声音、动画及数字影象等多媒体教学资源。这些用于多媒体数据库管理,便于分类、增删、修改及查询等操作。
②教学内容库:教学内容库用于存放教学内容,包括领域知识库(含辅助知识库、提示帮助库、练习题库,和测试题库)。这些教学内容,包括习题和试题分章、节、课及知识点等有序存贮。供专家决策系统调用。
(2)学生模块
学生模块主要包括以下三个模块:学生登陆模块、学生水平评价模块和学生监督模块。
①学生登陆模块:利用该模块主要用于学生使用ICAI时登录,第一次登录时学生输人姓名、性别、年龄、学历等相关信息,然后对学生进行询问,选择合适的测验题对学生进行初测推荐学习计划。当再次登录时,系统根据保存的信息安排合适的学习内容。
②学生水平评价模块:学生水平测试模块用于评价某一教学单元学习完后测试成绩。通过测试等因素分析,可以比较确切地了解学生的具体情况,从而制定出合理的教学策略和教学过程
③学习监测模块:学习检侧模块用于监测记录学生的日常学习情况,记录学生学习某教学单元时的参数值,并记录在学生档案中。包括:学生目前学习单元号;学习方式;正常学习、练习、提前浏览、学后复习;学习时间;学生提示问题的类型和次数;学生本次练习出错次数。
(3)专家决策模块
CAI中的专家决策系统可以看作专家系统中的推理机。专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统,它应用人工智能技术,模拟人类专家求解问题的思维过程求解领域内的各种问题,其水平可以达到甚至超过入类专家的水平。计算机中存有人类专家的知识并具有推理能力,从而可解决诊断、规划、调度、预报、决策等要靠人类专家才能完成的任务。
成功的例子如:① DENDRL系统的性能已超过一般专家的水平,可供数百人在化学结构分析方面的使用;②MYCIN系统可以对血液传染病的诊断治疗方案提供咨询意见经正式鉴定结果,对患有细菌血液病、脑膜炎方而的诊断和提供治疗方案已超过了这方面的专家。
ICAI根据学生模块提供的学生学习情况,通过智能系统的搜索与推理,得出智能化的教学方法与教学策略,能够较科学地评估学生的学习水平,还可以通过分析学生以往的学习兴趣和学习习惯,预测学生的知识需求和常犯错误,动态地将不同的学习内容、学习方法与不同的学生匹配,智能地分析学生错误的原因,进而有针对地提出合理的教学建议、学习建议以及改进方法,既提高了学生学习的满意度,激发了学生的学习热情,也对教师教学提供了客观的依据和科学的方法。
4 结束语
由此可见人工智能技术已经逐步应用于计算机辅助教学中,与教学现代化有着密切的关系。人工智能技术的发展也必将会对ICAI 的发展起到巨大推动作用。近几年来,人工智能的研究者们尝试着使学生脱离“辅导学习”的过程来接受新知识,而采用“通过活动进行学习”的方式。在教学的其他方面,人工智能技术还可以建立人类推理模型学习工具等诸多的运用, 展示出越来越好的实用性。随着Internet 的发展,虚拟现实技术的广泛应用, ICAI 也将得到进一步的完善。21 世纪的教育教学手段将是以智能化CAI 为主线,多学科、多方位发展的新技术的体现。这种手段产生了人机交互、人机共生等全新概念,使人类扩展了自己的能力,促进了教育领域方方面面的改革。
参考文献:
[1]王万森.人工智能原理及其应用[M].北京:电子工业出版社,2000.
关键词:人工智能;创新性教学;精品课程;课程建设;教学改革
人工智能课程是计算机类专业的核心课程之一,也是智能科学与技术、自动化和电子信息等专业的重要课程,其知识点具有不可替代的重要作用。该课程内容广泛,具有很强的综合性、应用性、创新性和挑战性[1],其开设能够更好地培养学生的创新思维和技术创新能力,为学生提供了一种新的思维方法和问题求解手段。同时,本课程能够培养学生对计算机前沿技术的前瞻性,提高他们的科技素质和学术水平。通过课程的学习,学生对人工智能的定义和发展、基本原理和应用有一定的了解和掌握,启发了对人工智能的学习兴趣,培养创新能力。
中南大学人工智能课程开设于20世纪80年代中期。1983年,蔡自兴作为访问学者赴美国普度大学研修人工智能,并与美国国家工程科学院院士傅京孙(K. S. Fu)教授及清华大学徐光v教授合作研究人工智能。在傅京孙院士教授的指导下,蔡自兴和徐光v教授执笔编著《人工智能及其应用》一书,并于1987年5月在清华大学出版社问世,成为国内率先出版的具有自主知识产权的人工智能教材。本教材不仅为我校人工智能课程提供了一部好教材,而且促进了国内高校普遍开设人工智能课程。此后,又陆续编著出版了《人工智能及其应用》第二版、第三版“本科生用书”和“研究生用书”、第四版等,修读该课程的学生也与日俱增。该书第二版还获得国家教育部科技进步一等奖。经过近20年建设,该我校人工智能课程于2003年评为国家精品课程,并在2008年评为国家双语教学示范课程。这是至今国内唯一同时获得国家级精品课程和双语教学示范课程的人工智能课程。同时,我们还开发了人工智能网络课程,具有网络化、智能化和个性化等特色,被国家教育部评为优秀网络课程,供兄弟院校人工智能教学参考使用,受到普遍欢迎[2]。
作为国内第一门人工智能精品课程,我们按照教育部精品课程标准建设《人工智能》课程,尤其是在教学内容、创新性教学方法和教学模式上进行不断进行改革与探索,取得了很好的效果。本文即为我校人工智能精品课程建设与改革经验的初步总结。
1教学内容优化
1.1课堂教学内容优化
教学内容的确定是课程的首要任务。如何选好教学内容,使学生既能了解本领域的概貌,又能适合学生的基础,便于他们在有限的时间完成学习任务,是一件难事。教学内容除了包含基础理论外,还应该反映人工智能领域的新发展和新动态,跟上学科发展的步伐。本课程最初设定的教学内容分基础部分和扩展应用部分。基础部分主要包括人工智能的定义和发展、知识的表示以及推理,而扩展应用部分主要包括专家系统、机器学习、机器规划、机器视觉等。
近年来人工智能科学的快速发展,涌现出了大批新的方法和算法,研究热点问题也从符号计算发展到智能计算和Agent等。
学内容,既能使学生了解本领域的概貌,又能适合学生的基础,便于他们在有限的时间完成学习任务,是一件难事。教学内容除了包含基础理论外,还应该反映人工智能领域的新发展和新动态,跟上学科发展的步伐。本人工智能课程最初设定的教学内容分基础部分和扩展应用部分。基础部分主要包括人工智能的定义和发展、知识的表示以及推理,而扩展应用部分主要包括专家系统、机器学习、机器规划、机器视觉等。
近年来人工智能科学的快速发展,涌现出了大批新的方法和算法,研究热点问题也从符号计算发展到智能计算和Agent等。
随着科学技术的不断进步,在科学研究和工程实践中遇到的问题变得越来越复杂,传统的计算方法无法在一定时间内获得精确的解。为了在求解时间和求解精度上取得平衡,很多具有启发式特征的智能计算算法应运而生。这些算法通过模拟大自然和人类的智慧来实现对问题的优化求解。计算智能作为人工智能的一个新的分支是目前的研究热点,它主要涉及神经计算、模糊计算、进化计算和人工生命等领域,在如模式识别、图像处理、自动控制、通信网络等很多领域都得到了成功应用。另一个近10年来人工智能的研究热点是Agent和多Agent系统,其理论最早来自分布式人工智能,并随着并行计算和分布式处理等技术的发展而逐渐成为热点。
以上两个内容都是人工智能的重要分支。因此,我们在《人工智能及其应用》第三第3版[3]和第四第4版教材[4]中已经顺应形势加入了这方面的内容,并将教学内容也进行了相应的扩展,加入了计算智能、分布式人工智能与Agent。由于不确定性推理和基于概率的推理方法应用也越来越广泛,我们也将此类非经典推理方法单独作为一章来进行教学。另外,还增加了一些新的内容,如本体论和非经典推理、粒群优化和蚁群计算、决策树学习和增强学习、词法分析和语料库语言学,以及路径规划和基于Web的专家系统等。图1给出本课程的教学内容大纲。
人工智能的教学内容涉及面广且内容较多,要在有限课时内完成教学计划并让学生掌握,具有一定难度。因此需要根据教学对象的需求有所取舍。中南大度。因此需要根据教学对象的需求有所取舍。中南大学在智能科学与技术、计算机、自动化三3个专业中均开设了人工智能课程,根据相关专业课程教学对象,对学时和教学内容进行适当调整。对于智能科学与技术专业,人工智能课程为必修课,共48个学时含实验8个学时。表1表示为相关专业的人工智能课程教学内容分配情况。对于计算机和自动化专业,人工智能课程为选修课,共32个学时含实验8个学时。许多兄弟院校的计算机专业都把人工智能定为必修课,课程学时也在50学时左右。因此,我们一再强烈建议我校的计算机专业把人工智能列为必修课,并适当增加学时。由于智能科学与技术专业开设有专家系统和智能计算选修课程,因此在人工智能教学内容中只将这两部分做简要阐述,而将重点放在知识表示和推理以及扩展应用上。对于计算机专业学生来说,除基本的知识表示和推理外,计算智能和Agent技术也是他们在软件开发和通讯技术理论学习中需掌握的重要概念。同时,计算智能、专家系统对自动控制和电气工程也十分重要,对自动化专业则应掌握该方面的内容。
1.2实验实践教学创新
国内人工智能课程在开设之初大多没有安排实验内容,仅为理论基础和概念讲授。由于理论比较抽象,很难理解,学习效果不理想,学生们对于其应用实现也十分困惑。此后,各高校也逐步在该课程中分配了实验学时,大多数采用prolog语言和专家系统作为实验语言和对象[5]。为了改进该课程的教学,我们也从没有实验到将实验学时从零调整为设置4个学时的实验课时,然后到现在的8个学时的实验课时。随着课堂教学内容的改革,实验内容也进行了优化和更新。
人工智能课程实验的目的是帮助学生掌握基本理论,发挥主动性,研究探讨人工智能算法和系统的运行和实现过程,提出思路并验证自己探索的思路,从而更好的地掌握知识,培养研究能力和创新能力。因此,在实验教学内容的设计上,实验项目应具备研究性和综合性。实验项目目标明确,要求学生带着问题和任务进行实验,但实验过程又要有一定的灵活性,学生可以根据自己的思考进行适当的调整。再者,充分采用虚拟实验方式进行实验,大大提高了学生的兴趣,提供了分析和探讨智能算法的很好平台。同时,学生的实验数据和实验结果分析既有格式要求,又给学生报告自己的研究的过程和结果留有空间,并在评分时加以充分考虑。这些做法能够鼓励学生,特别是鼓励优秀学生进行独立性研究,满足他们学习的需求。
1) 人工智能课程的实验环节不足和课时分配问题。
中南大学的人工智能课程的实验环节经历了从精品课程建设前没有到开设,一直到其内容和形式上的不断改进过程。但目前实验还主要处于演示性和编程的实验阶段,而非设计和训练阶段。此外,由于人工智能课程涵盖范围广、内容多,而课程所设置的学时有限。,如何分配好课堂教学与实验课时也是一个需要在今后课程建设中不断探索的问题。
对于某些专业的人工智能课程,可以考虑单独开设人工智能实验课程或人工智能程序设计与实验课程。
2) 人工智能技术发展迅速情况下如何保持该精品课程持续发展的问题。
人工智能作为一门高度融合的交叉科学,其发展速度迅速,不断有新理论、新问题涌现出来。我们的
人工智能教学既要注重基础理论知识,又要紧跟学科发展的步伐,势必要求对课程内容进行不断更新,这对我们的教学资源和教师素质都提出了更高的要求。
4结语
本文介绍了中南大学的精品课程――人工智能课程教学内容和创新性教学方法的一些探索,已在课堂教学内容的优化、实验环节的改进、教学方法的创新的实施上取得了很好的效果,充分激励了学生的学习积极性和主动性,多方位培养学生发现问题、分析问题和解决问题的能力。我们的想法和做法可供兄弟院校同行参考。不过,仍然存在一些不足之处。随着智能科学与技术的发展和更为广泛的应用,人工智能课程的重要地位必将更加突显,我们也需要继续努力,与时俱进,不断完善人工智能精品课程的建设。
注:本文受教育部质量工程国家级精品课程人工智能(2003)、全国双语教学示范课程人工智能(2007)项目支持。
参考文献:
[1] 薛莹. 创新教育新途径人工智能与机器人教育:哈尔滨市教育研究院张丽华院长访谈录[J]. 中国信息技术教育,2010(1): 20-22.
[2] 蔡自兴,肖晓明,蒙祖强,等. 树立精品意识搞好人工智能课程建设[J]. 中国大学教学,2004(1):28-29.
[3] 蔡自兴,徐光佑. 人工智能及其应用[M]. 3版. 北京:清华大学出版社,2003.
[4] 蔡自兴,徐光佑. 人工智能及其应用[M]. 4版. 北京:清华大学出版社,2010.
[5] 韩洁琼,闫大顺. 人工智能实验教学探讨[J]. 计算机教育,2009,(11):135-138.
[6] 刘丽珏,陈白帆,王勇,等. 精益求精建设人工智能精品课程[J]. 计算机教育,2009,(17):69-71.
Exploration of Innovative Teaching Mode of Artificial Intelligence Elabrate Course
――Construction and Reformation in Elaborate Course of Artificial Intelligence
CHEN Bai-fan, CAI Zi-xing, LIU Li-jue
(Institute of Information Science and Engineering, Centnal South University, Changsha 410083, China)
【关键词】互联网信息时代 人工智能 应用研究
当前,世界已全面进入以大数据共享、信息爆炸为特点的互联网信息时代。富有智能化和人性化的计算机网络技术服务成为了人们青睐和关注的焦点。人工智能作为互联网信息时代凝聚高端技术的超值网络服务,在增强互联网安全性、提高网络操作自动化等方面意义重大。现阶段,已有更多行业领域的用户在应用人工智能,体验这一技术所带来的新生活。
1 人工智能简述
人工智能,即Artificial Intelligence,是现代社会特有的综合类前沿学科,交叉云集了计算机、网络技术、控制方法论、信息论、神经生物学、语言学等多学科知识,主要用来研究机器在思考、学习、规划等行为的拟人态进化,使之解决问题的能力大幅提升。人工智能发展至今已有超过60载岁月,其成就在整个历程中熠熠生辉,代表着人类文明的不断发展与超越。人工智能经历了三个阶段的发展变革:第一阶段是以人工智能驱动机器设备,代替或辅助人类思考并解答难题;第二阶段是研发智能机器人,处理不同系统及环境信息的交互工作,如不确定性信息的处理工作;第三阶段的代表成果就是数据挖掘系统,可实现海量模糊信息采集与分析,可视化技术发展迅猛,计算机具有自主学习能力。
2 人工智能的应用领域代表成就
任何一项技术的创新与发展,都源于人类开展生产生活的实际需求,人工智能技术的研究也不例外,发展至今已经为解决不同领域的实际需求提供了众多技术应用。目前,人工智能在下列应用领域中取得了代表性成就:
2.1 专家系统
专家系统,其实是由庞大的程序组编写完成的数据系统,广泛积累不同专业的知识经验,这些知识均可事先归纳分析,可按具体模式表示,从而帮助用户凭借领域专家的固有知识进行推理解决问题。专家系统可系统化分析输入信息并结合已有知识体系进行全面推理,提出建O性的决策建议,相当于发挥行业专家的作用。
2.2 数据库智能检索
人工智能想要做到全面模拟人类思维和动作,需要建设强大的数据库资源,便于及时开展智能检索。数据库基于计算机软件开展,存储了海量专业学科知识,也称之为知识库系统,一旦有用户需要查阅解决该学科的专业问题,都可通过智能检索功能实现快速精准地检索。
2.3 程序自动设计
自动化的程序设计就是借助更高规格高标准的程序设计系统来完成指定功能的程序设计,该系统需要用户输入所设计程序的需求目标,并对整个流程和架构有更为高级的描述,系统就能自动组织对应程序完成设计。高度自动化的程序设计编写方式,也展现了人工智能系统的思考、学习、修正自身缺陷的拟人态功能。
2.4 目标模式识别
模式识别,顾名思义正是为识别不同物体的特征是否匹配目标对象而具备的功能。现代计算机加强了模式识别系统功能,能够提高机器对外界信息的感知能力,不断接受外界信息,对所处环境的特征进行识别,加强概念理解。当前,目标模式识别已由二维向三维层面升级,为研究智能机器人提供了坚实的基础。
当然,人工智能的应用领域远不止上述这些,还在机器学习、机器视觉图像处理(machine vision)、自然语言理解(Natural Language Understanding)、自然信息博弈论等方面发挥着重要的作用。
3 不同行业的人工智能技术应用实例
目前,众多企业为求发展,与内部运营管理中加强了人工智能的应用,聚力解决各项问题,为企业赢得了经济效益,推动着社会发展。
3.1 企业管理应用
将人工智能应用于企业管理中,需要人的智能和人工智能之间的辩证关系,灵活运用工智能应用平台加强对企业内部各项管理智能软件的开发工作,借助灵活的人工智能技术帮助企业实施科学决策。
3.2 水利管理应用
人工智能能够在水情控制与洪灾预报中发挥作用。如可使用人工神经网络和遗传算法等技术,模拟汛期的最大洪峰与洪水总量,研究更有针对性的抗洪模型,提高了洪灾预报精度和汛期准度,有效发挥防洪降灾、拦洪储水的重要作用。同时,人工智能还能够分析大江大河的复杂地质与环境系统,对治理河流起到良好的辅助作用。
3.3 建筑行业应用
目前,建筑行业的用地规划、给排水工程、暖通空调工程、施工管理等内容都在应用人工智能。已有企业基于神经网络算法发明了结构节点探伤法,可查探建筑结构损伤度;也可在市政工程建设中不断强化正反向混合推理的理论思想,查明城市污水处理管网故障;可构建用于分析建筑工程性能效益的系统,加强建设项目性能效益预测和实际效益分析。
3.4 机械行业应用
人工智能同样成为互联网时代下的机械行业技术中的重头戏。如:人们利用人工神经网络算法,设计出土方工程的机械调度的优化方案;多个工程都可搭建含多目标的寻优函数模型。许多大型机械装置,都配置了人工智能操作平台,可提高安全风险监控水平,增强机械操作自动化,进一步优化生产效率。
3.5 商品销售预测应用
人工智能的各种函数模型或优化算法,可在商品销售金额的预测中发挥巨大作用。如:在计算机中输入不同商品某一时间段的销售额,形成非线性系统进行分析,评估各种影响因素。采用人工神经网络,不断放大自分布处理、自组织学习、自适应与自容错等特性,体现强大的预测功能。
当然,人工智能还广泛应用到电子网络技术应用、企业财务管理、航班信息查询、教学服务、心理咨询公路建设、焊接制造、等众多方面,为更多企业带来可观的经济效益。
4 结束语
互联网信息时代的人工智能应用,将会随着科技力量的不断壮大而实现更多的应用。人们应该高度重视人工智能理论与技术的探究,从而更好地为全人类服务。
参考文献
[1]何承.计算机网络技术中人工智能的应用探讨[J].信息通信,2016(03):180-181.
[2]韩晔彤.人工智能技术发展及应用研究综述[J].电子制作,2016(12):95-95.
[3]王宇飞,孙欣.人工智能的研究与应用[J].信息与电脑,2016(05):115-117.
作者简介
李君,男,江西省上饶市人。上海财经大学浙江学院,主要从事教学软件管理类工作。
关键词:人工智能;教学内容;教学方法
中图分类号:G642 文献标识码:A
1 引言
人工智能(AI)是二十世纪五十年代后期兴起的利用计算机模拟人类智能活动去求解问题的学科,与空间技术、原子能技术一起被誉为二十世纪三大科学技术成就,目前广泛应用于专家系统、机器翻译、语音识别、文字识别、计算机视觉、机器人、电子游戏等方面,已经成为计算机技术发展以及许多高新技术产品中的核心技术。
为了适应人工智能技术日益广泛的需要,国内外高校普遍开设了“人工智能”方面的课程,特别是作为计算机方面专业的核心课程之一。我校自从1993年开始为自动化专业本科生开设“智能控制”选修课,1996年为自动化、计算机、机械等专业本科生开设“人工智能导论”、“人工智能及其应用”课程。目前,我校软件学院、信息学院、机电学院都开设了“人工智能导论”课程,已经成为计算机科学与技术、软件工程、数字媒体技术、自动化、机械制造与自动化等许多专业本科生的一门重要的技术基础课程,也是面向包括人文社科等全校所有专业的公选课之一,其目的是使学生了解人工智能的基本概念和基本原理,初步学习和掌握人工智能的基本技术和前沿内容,拓宽知识面,启发思路,为学生提供最基本的人工智能技术和有关问题的入门性知识,提高学生应用开发软件的能力和水平,为今后在相关领域的研究和应用奠定更为坚实的基础。因此,建设好“人工智能导论”课程具有重要意义和很广的受益面。
由于人工智能是交叉学科,涉及面广、内容抽象、不易理解,学生往往有望而生畏的感觉,在教学过程中,老师教、学生学都比较吃力。为了更好地实现上述教学目标,提高本课程的教学质量,协调好教与学的双边关系,使学生由望而生畏的感觉,变为有用有趣的感觉,根据已有人工智能课程在教学与实践方面的经验和方法,结合“人工智能导论”课程的近几年教学实践,对课程的教学体系、教学内容、教学方法、教学手段、考核方式等方面进行了探索总结。
2 调整与优化教学体系和教学内容
“人工智能导论”是计算机科学与技术、软件工程、数字媒体技术、自动化、机械制造与自动化等许多专业本科生的一门重要的技术基础课程,也是面向包括人文社科等全校所有专业的公选课之一,其研究领域及内容十分丰富,涉及的基础面广。因此如何选好教学内容,既能使学生了解本领域的概貌,又能适合学生的基础,便于他们在有限的时间完成学习任务,是一件重要而又困难的事情。
进入21世纪以来,人工智能学科又有了新的发展。为了及时反映人工智能研究和学科的最新进展,我们修订了“人工智能导论”的教学大纲,对教学内容进一步优化和更新,极大充实了各个系统的内容。我们确定的教学内容主要分为三部分:第1部分为概论,介绍人工智能的基本概念、基本内容、主要研究领域及发展过程;第2部分是知识表示,推理和搜索技术,讨论几种常用的知识表示方法、推理技术(包括确定性推理方法和不确定推理方法)和搜索求解策略;第3部分是人工智能应用研究领域,包括专家系统、自然语言理解、机器学习、人工神经网络、遗传算法等的基本概念和方法等。其中第2部分是基础理论,是人工智能的重要基础,应该循序学习。第3部分是人工智能的应用,由于每个研究内容都相对独立、自成体系且有其专门的学术著作研究、热点,因此针对高等院校的本专科生来说,不必循序学习,而且结合专业特点可以选择其中几个研究领域。例如对自动化专业的学生来说,可以选择专家系统、人工神经网络、遗传算法等,同时可增加在自动控制领域的应用,包括专家控制、神经网络控制和进化控制等热点:而对计算机科学与技术专业来说,可以选择专家系统、自然语言理解、机器学习等,并辅以动物识别系统、语音识别系统、智能机器人等实例。总之就是要把握课程性质和教学目的,调整本课程教学体系,优化教学内容,让学生以有限的时间学到人工智能的基础知识和基本方法。
另外,在选择和确定教学内容时必须兼顾基础知识和新兴技术,注意与相关课程(如离散数学、数据结构、概率论、自动控制原理、Matlab系统仿真、面向对象的编程技术等)的链接,密切理论与实际的关系,通过课堂讲授和课外训练,注意学生能力培养,提高他们的学习效果和整体素质。
3 加强课程立体化建设和系列教材研究
在课程的立体化建设中,教材充当了地基的角色,所有的课程内容安排,无不体现出以教材为基本,以教材为模板。所以本着基础、实用的原则,我们先后编著出版了《人工智能及其应用》课程教材导论部分概括性强,引人入胜;基础部分系统全面,叙述深入浅出,循序渐进;应用部分密切理论与实际关系,典型形象。其中第二版在第一版的基础上,增加了证据理论、模糊推理、神经网络等理论的一些典型应用,使学生能够更深入地理解和应用这些理论;另一方面,又新增了自然语言理解及其应用内容,以适应目前计算机翻译、人机自然语言交互等技术日益广泛应用的需要。系列教材适应了人工智能导论新课程开设的需要,反映了人工智能学科的发展,为人工智能课程确立了基本框架,发挥了重要作用。系列教材的问世不仅解决了本校“人工智能导论”课程教学用书的问题,而且也被各兄弟院校普遍采用,促进了该课程的普遍开设,推动人工智能学科的发展。
为了配合教材第二版的教学和自学,在已有教学经验和教学成果积累的基础上,制作了高质量的教学课件和完整的教学视频录像,并刻录成光盘随书供读者使用;同时又研究与开发了网络课程(http://),以更好地调动学生的学习兴趣和主动性,促进本课程的教学改革。
包括主教材、电子教案、教学视频录像、网络课程及教学资料库等在内的课程立体化建设符合二十一世纪高校教学的要求,支持教师提高教学手段现代化的水平,更贴合学生的学习需求。
4 改革与创新教学模式和教学方法
在“人工智能导论”课程教学的过程中,我们积极探索教学新路,经过数年辛勤试验,结合蔡自兴教授等对人工智能课程的建设经验,对课程的教学模式和教学方法进行了如下一些的改革与创新。
(1)通过多种途径激发学生的学习兴趣
“兴趣是最好的老师”,“人工智能导论”课程的学习效果,直接受到学生兴趣和参与意识的影响。由于这是一门导论性前沿课程,一般来说,学生开始学习兴趣很大。但是,当一些学生开始接触到抽象概念和算法时,往往感到不易接受。我们通过各种途径和方法,激发和培养学生的学习兴趣。例如,鼓励学生参与课堂讨 论、布置读书报告和课外实验、以问题为导向的启发式教学、专题讨论/辩论等形式。特别,我们精心组织和准备了模糊控制技术及其应用、智能机器人技术与应用、智能交通、BCI(脑机交互接口)等专题,以及智能调度软件、语音识别系统、动物识别系统、足球机器人比赛、机器人轨迹跟踪、倒立摆的智能控制等课内演示,使学生扩大了眼界,增加了感性知识,达到提高学生学习兴趣的目的与效果。
(2)面向问题的启发式教学
人工智能中的许多问题,有的似是而非,有的引人入胜。在教学中,有意识的提出相关问题,提请学生思考,鼓励学生提出自己的猜想和解决方案。然后逐步进入教材中的解决方案,启发学生求解这些问题,并进行分析和比较,从而强化了学生学习的主动意识和参与意识,提高了学生的学习积极性。例如,在讲到比较抽象的“遗传算法”时,提出“遗传算法如何用于优化计算?”这一问题。针对该问题,先从“达尔文的生物进化论”入手,讨论“遗传”、“变异”和“选择”作用;然后通过一个简单的例子,从特殊到一般地启发学生思考“遗传”、“变异”和“选择”的实现,最终让学生与教师一起导出遗传算法用于优化计算的基本步骤。这样,学生不但从中学习了遗传算法,而且得到一次逻辑思维的训练,取得很好的教学效果。
(3)课堂辩论与交互式教学
组织课堂辩论,讨论的议题包括人工智能的应用前景和其他比较等有争议的问题。学生对这些问题展开了激烈的争论,激发了学习潜能,明确了学习目标。例如,为了加深学生对智能机器人内涵的理解,我们组织了“机器智能能否超过人类智能”的辩论会。会前正反双方结合本课程内容及其相关知识,认真进行准备;辩论会上正反双方唇枪舌战,激烈争辩,气氛热烈。辩论后,学生余意未尽,讨论热情不减。无论是哪一方获胜,都达到了预期的效果。教学中我们还注意采用了多种交互式策略,如课堂上教师提问可鼓励或指定学生提问,也可由学生自由地就某个知识点进行主题发言后老师点评等。
(4)个性化学习与因材施教
在本课程教学过程中注意对学生因材施教和个性化教学。例如,通过组织学生进行读书报告的形式,鼓励学生从多方面、多角度考虑问题,多提新颖思想,有意识地鼓励优秀学生探讨比较深层的内容,并辅导优秀学生将其成果以科技论文和发表文章的形式转化为成果。又如,在教学设计和实验设计中,注意要求学习有余力和兴趣的学生选作部分探索性、创新性的功课和实验(选学内容,如模糊控制器的设计、进化控制等),从而引导学生发挥个性优势,达到因材施教的目的。同时注意分析学习较差的学生的具体困难,进行有针对性的指导。
(5)多媒体与网络教学的使用
本课程在PPT演示文稿和网络课程上,采用了大量的多媒体表现形式,如视频、动画、声音和图像等。目的在于使得人工智能抽象的知识形象化,便于学生理解。例如,课内让学生在线观看涂晓媛博士的计算机动画“人工鱼”的录像片段、人工生命Floy中生命智能体在环境中不断的适应进化构成演示等,有助于加深学生对所学知识的理解,促进教学水平的提高,激发了学生对课程的兴趣,使学生创新意识得到增强。此外,随教材附赠的教学光盘和开发的网络课程(http://)提供了学生课外自学用的高质量的电子课件、完整的教学视频录像、丰富的实验和案例资料等,以更好地调动学生的学习兴趣和主动性。
(7)理论与实践结合
在教学内容安排上,注意理论联系实际,适时布置一些人工智能实验给学生进行课外练习。设计的课外实验包括产生式系统实验,归结反演实验,主观Bayes推理网络实验,A搜索实验,以及基于Maltab工具箱的模糊控制位置跟踪系统、两车追赶模糊控制系统、神经网络模式识别仿真、遗传算法优化计算等实验。通过实践和参与,保持学习兴趣,有助于学生对人工智能基本概念和难点的理解,掌握基本方法和技术,为从事智能系统应用开发打下基础,从而达到教学目的。例如,我们组织学生参观我们的研究生综合自动化实验室,观看机器人臂取物、倒立摆控制、语音识别软件、指纹识别软件、智能调度软件等演示,密切理论与实际的关系。
我们在教学改革实践中探索的这些教学方法,有利于充分激励学生的学习积极性和主动性,有利于鼓励学生发挥独立思考和创新思维,有利于多方位培养学生学习发现问题、分析问题和解决问题的能力。
5 运用多样化的教学手段和考核方式
5.1 多样化的教学手段
采用现代信息技术进行教学,构筑“人工智能导论”课程的现代教学模式,是本课程的主要特点之一。教学过程中采用了多媒体教学课件和网络课程相结合的方法,充分利用多媒体的丰富表现形式,利用网络课程的交互性、情景化等,进行教学。采用的方法包括:
(1)抽象知识内容的多媒体表示
通过动画和视频来演示抽象的概念、算法和过程,包括机器人轨迹跟踪、机器人臂取物、足球机器人比赛、倒立摆控制、“人工鱼”等录像片段,以及智能调度软件、语音识别系统、指纹识别系统、动物识别系统等软件演示。
(2)通过PPT撰写教案
精心编制PPT,组织好课件内容,做到图文并茂,提纲挈领,便于学生理解,便于教师讲授。
(3)开发与应用网络课程
“人工智能导论”网络课程较好的实现了交互性、在一定程度上实现了学习过程的情景化。在交互性方面,通过网络课程的课堂练习和章节练习,评价学生的学习情况,并给学生提出学习建议。在情景化方面,采用了在线答疑形式,使得学习过程丰富有趣。
(4)先进实验系统的观摩与演示
利用我们的研究成果等有利条件,有针对性地对学生进行成果演示(包括智能调度软件、语音识别系统、指纹识别系统、动物识别系统等软件),使学生知道学了有用,而且很有用,很有趣,很有意义,从而进一步诱导学生的学习兴趣,巩固了课堂所学知识,提高了教学质量。
教学效果通过上述先进的现代信息技术的应用,不仅极大地提高了学生的学习兴趣和主动性,而且也取得很好的实际教学效果,提高教学质量。
5.2 作业、考试等教改举措
(1)改革作业方式与方法
改变过去那种单纯的书面习题作业,发展成为必须交给教师评阅的书面家庭作业、不必交给教师的课外思考题目、口头布置的思考题或阅读材料以及大型作业等。其中上交作业通过网络进行,教师批阅后的作业也通过网络返回给学生,实现了作业呈交和返回的网络化。
(2)改革考试方式与方法
如何对本课程的考试方式进行改革一直是我们探索的问题。我们综合考虑课堂出勤情况(10%)、平时正式作业成绩(20%)和期末课程考试(70%),进行综合评分。期末考试有时采用综合试题考试,出几个大题目让学生选择其中几个进行开卷笔试,当面交卷后评分;有时采用课外开卷论文结合或口试面试。最近,我们还对部分学生结合实验或实际问题提问等进行考核。我们正进一步改革、试验和探索,使考试成为衡量与培养创新能力,促进学生学习主动性和提高课程教学质量的重要环节。
关键词:知识表示与知识推理;教学设计;教学实践;数理逻辑;人工智能
知识表示与知识推理是智能信息处理的基础。从人工智能的角度看,知识是构成智能的基础,人类的智能行为依赖于利用已有的知识进行分析、猜测、判断和预测等。当人们希望计算机具有智能行为时,首先需要在计算机上表达人类的知识,然后再告诉计算机如何像人一样地利用这些知识。
自从人工智能领域诞生以来,知识表示与知识推理就一直是其中最为重要的子领域。经过五十多年的发展,知识表示与知识推理领域的许多研究内容、研究方法和研究成果已经深深渗入到计算机科学,进而对计算机学科的发展产生了深远的影响。例如,在C++、Java等面向对象程序设计语言中,“继承”这一最为核心的技术就来源于知识表示与知识推理。再如,在软件自动化领域,许多程序规格语言和程序验证技术都借鉴了知识表示与知识推理领域的Prolog语言等研究成果。从工程开发的角度看,专家系统、智能搜索引擎、智能控制系统、智能诊断系统、自动规划系统等具有所谓智能特征的系统都或多或少地依赖于知识表示与知识推理技术。因此,对于计算机专业的学生来说,学习知识表示与知识推理方面的课程,对于今后在相关领域从事系统开发和科学研究都大有裨益。
在ACM与IEEE-CS联合攻关组制订的计算教程CC2001(Computing Curricula 2001)中,知识表示与知识推理得到了高度重视。CC2001给出的计算机科学知识体由14个知识领域组成:在其中的IS(Intelligent Systems)知识领域中,关于知识表示与知识推理的内容占据了10个知识单元中的2个,即知识单元“(Is3)知识表示与推理”以及知识单元“(IS5)高级知识表示与推理”。在ACM和IEEE-CS进一步修订后的计算机科学教程CS2008(Computer Science Curriculum 2008)中,知识表示与知识推理同样得到了高度重视。此外,在我国高等学校计算机科学与技术教学指导委员会制定的计算机专业规范中,上述的IS3和IS5两个知识单元被全部包括到计算机科学专业的核心课程“人工智能”中。然而,据我们了解,由于“人工智能”在许多高校仅仅作为专业任选课开设,使得计算机相关专业的许多学生无法接触到知识表示与知识推理方面的内容。与此同时,由于课时数限制及没有得到重视等因素,实际开设的“人工智能”课程(包括本科生课程和研究生课程)往往难以覆盖CC2001在知识单元IS3和IS5中列出的各个知识点。
实际上,经过五十多年的发展,知识表示与知识推理领域已经沉淀出一系列基本的方法、理论和技术;这些方法、理论和技术在CC2001的知识单元IS3和IS5中基本上都以知识点的形式列举了出来。作为计算机专业的教育工作者,我们有责任将这些体现了几代人智慧结晶的知识介绍给学生。另一方面,从研究者的角度来看,知识表示与知识推理是一个非常活跃的研究领域;尤其是随着Web技术的发展以及Web科学的出现,知识表示与知识推理将在计算机科学中扮演越来越重要的角色。面对万维网这个全球最大的分布式信息库,如何让计算机对其中海量的数据和信息进行分析、推理和管理,进而为人类提供方便的知识服务,是目前信息技术领域面临的一个重大问题。针对这个问题,国内外研究者基本上都是从人工智能的角度寻求解决思路;近年来成为研究热点的语义Web更是完全建立在知识表示与知识推理的基础上。因此,从开拓学生思维以及介绍研究与技术前沿的角度来看,也非常有必要向学生讲授知识表示与知识推理的相关内容。
基于以上认识,我们为计算机软件与理论专业和计算机应用技术专业一年级的硕士研究生开设了一门32课时的选修课程,以CC2001和CS2008列出的知识单元为核心,对知识表示与知识推理的相关内容进行教学。本文对教学设计和教学实践中遇到的主要问题进行分析,针对这些问题给出相应的解决对策,并对我们获得的经验和教训进行总结。
1 “知识表示与知识推理”知识体的教学设计
自上世纪九十年代以来,国内外许多高校就将“知识表示与知识推理”作为一门课程,面向研究生或高年级的本科生开设。其中比较著名的包括加拿大多伦多大学Hector J.Levesque教授开设的知识表示课程,美国斯坦福大学Leom Morgenstem教授开设的知识表示课程,英国曼彻斯特大学Ulrike Sattler教授等讲授的知识表示和推理课程,中山大学刘咏梅教授讲授的知识表示和推理课程等。但是,由于没有统一的课程设置标准,这些课程讲授的知识点都不尽相同。2000年,Leom Morgenstem和Richmond H.Thomason总结了开设知识表示与知识推理课程时面临的挑战,提出了相应的解决思路。其中,针对该课程缺乏统一的教学知识体的情况,他们设计了一个持续14周、每周2次课的教学大纲。在文献[5]中,Leora Morgenstem进一步修订了之前提出的教学大纲,建议在其中增加语义Web及Web本体语言OWL等内容。
尽管目前各高校开设的知识表示与知识推理课程的课程大纲仍然不尽相同,但比较可喜的是,对知识表示与知识推理的教学在CC2001计算教程中得到了高度重视。CC2001分别在“知识表示与推理”和“高级知识表示与推理”两个知识单元中列出了关于知识表示与知识推理的教学内容。知识单元“知识表示与推理”由以下知识点组成:命题逻辑和谓词逻辑回顾,归结原理与定理证明,非单调推理,概率推理,贝叶斯定理。知识单元“高级知识表示与推理”由以下知识点组成:结构化知识表示(包括对象与框架、描述逻辑和继承系统),非单调推理(包括非经典逻辑、缺省推理、信念修正、偏好逻辑、知识源的集成、冲突信念的聚合),对动作和变化的推理(包括情景演算、事件演算和分枝问题),时态和空间推理,非确定性推理(包括概率推理、贝叶斯网络、粗糙集和可能性理论、决策理论),针对诊断的知识表示与定性知识表示。在CC2001的基础上,CS2008在知识单元“知识表示与推理”中增加了合一与提升、前向链接、反向链接以及归结等知识点;在知识单元“高级知识表示与推理”中增加了本体工程和语义网络两个 知识点。
以CC2001和CS2008列出的知识点为基础,在综合考察了国内外相关课程的开设情况之后,我们对“知识表示与知识推理”课程的教学内容及相应的学时分配设计如下。
1)概述(2学时)。介绍知识表示与知识推理领域的发展历史、现状和前景:讲授知识表示的基本思路和基本原理;介绍知识表示方法和技术的典型应用:列举典型的采用了知识表示技术的系统,与没有采用知识表示技术的系统进行比较分析。
2)基于一阶谓词逻辑的知识表示和推理(4学时)。讲授一阶谓词逻辑的语法、语义和语用;通过例子讲授如何应用一阶谓词逻辑进行知识表示;讲授如何应用消解原理进行知识推理;讲授如何应用Tableau算法进行知识推理;分析一阶谓词逻辑存在的局限。
3)Horn子句逻辑与产生式系统(2学时)。讲解Horn子句及其过程解释;介绍SLD归结以及分别采用反向链和正向链的推理过程;通过例子讲授如何应用Horn子句逻辑进行知识表示和推理;对Prolog语言进行简单介绍;通过例子介绍如何应用产生式系统进行知识表示和推理。
4)结构化知识表示(6学时)。介绍对象与框架,介绍基本的框架形式系统:介绍语义网络,对推理过程中的继承机制进行介绍。介绍描述逻辑家族的研究历史和发展现状;以逻辑系统ALC为例,讲解描述逻辑的语法和语义;通过例子讲授如何应用描述逻辑进行知识表示;讲授如何应用Tableau算法对描述逻辑刻画的知识进行推理。
5)非单调知识表示和推理(4学时)。介绍非单调性推理的研究历史;讲解封闭世界假设与开放世界假设;讲解缺省推理和限定推理;对自认知逻辑、偏好逻辑和真值维持系统进行介绍;对信念修正、知识源的集成以及冲突信念的聚合进行介绍。
6)非确定知识表示和推理(4学时)。对模糊逻辑进行介绍;讲授概率推理和主观贝叶斯方法;对粗糙集、可能性理论和决策理论进行介绍。
7)解释与诊断(2学时)。讲授反绎推理的基本思路,将其与演绎推理和归纳推理进行比较分析;以一个电路系统为例,讲授如何在知识表示的基础上采用反绎推理进行故障诊断。
8)动作与规划(4学时)。介绍动作与规划领域的研究历史和发展现状;讲授如何在STRIPS系统中对动作进行刻画以及如何进行规划求解:讲授如何应用情景演算和事件演算对动作进行刻画、推理、及规划求解;对框架问题、条件问题和分枝问题进行介绍;对规划语言PDDL进行介绍。
9)时态和空间推理(2学时)。对时间点/时间段、离散/连续、有限/无限、线性/分支等表示时态信息的不同方式进行介绍;对Allen的区间代数理论进行介绍;对线性时态逻辑和分支时态逻辑进行介绍;对基于点/基于区域、离散/连续、有限/无限、同维/混合维等表示空间信息的不同方式进行介绍;对区域连接演算RCC进行介绍;对时态与空间推理的结合进行简单介绍。
10)语义Web和本体工程(2学时)。介绍语义Web的基本思想、技术现状和发展趋势;讲授语义Web的层次模型以及各个层次的目标和功能;对资源描述框架RDF、Web本体语言OWL、Web规则标记语言RIF、Web查询语言SPARQL等进行介绍。对本体的构建、管理和维护进行介绍。
上述教学内容的基本特点是覆盖了CC2001和CS2008列出的关于知识表示与推理的所有知识点。此外,我们将目前作为计算机科学和人工智能领域研究热点的语义Web等内容引入了课堂教学,不仅可以将相关研究前沿展示在学生面前,而且还可以让学生更加深刻地体会学习知识表示与知识推理的价值,进一步激发他们的学习热情。另一方面,上述教学内容存在的一个缺陷是内容过多。由于受到课时数的限制,部分内容在讲授时不能充分展开,留给学生课堂练习和讨论的时间不充裕。
2 教学实践中的主要问题及对策
在围绕“知识表示与知识推理”知识体开展教学实践时,我们遇到的问题主要来自以下几个方面:教师和学生对“人工智能”课程以及其中的“知识表示与知识推理”知识体不重视,缺乏合适的教材,学生缺乏必要的基础知识。下面对这些问题进行逐一分析,对我们采取的对策进行相应介绍。
2.1 师生对“人工智能”课程不重视
许多教师和学生对“人工智能”课程不够重视,甚至存在偏见。我们觉得,这种现状很大程度上是由人工智能自身的发展历程造成的。人工智能领域刚诞生时就被赋予过高的期望;早期的研究者也过于乐观地给出了一些不切实际的承诺。由于不能在短期内实现过高的目标和兑现相应的承诺,使人工智能领域在上世纪80年代末90年代初一度跌入低谷,甚至达到了声名狼藉的地步。这一特殊的发展历程使得一部分对人工智能了解不多的教师和学生产生误解,认为人工智能是一个比较务虚的领域。这种误解甚至影响到“人工智能”课程的开设。目前,在许多高校计算机相关专业的课程设置中,“人工智能”往往只作为选修课程开设,没有得到教师和学生的普遍重视。
实际上,从信息技术发展规律的角度来看,人工智能的上述发展历程是很正常的。根据市场权威研究机构Gartner给出的“技术成熟度曲线”(hype cycle)理论,一项新的IT技术在产生之后,一般先是默默无闻地奋力发展几年,然后会由于被大家寄予很高的期望而迅速火爆起来,接着会因为没能兑现过高的承诺而跌入谷底,最后会再次崛起并由于过硬的成就而被大众普遍接受。人工智能已经经历了从默默无闻到迅速火爆再到跌入谷底的发展过程,目前正处于再次崛起的阶段,并且将通过不断取得的成就而被大众普遍接受。
人工智能的教学在CC2001和CS2008中得到了高度重视。CC2001给出的计算机科学知识体由14个知识领域组成,作为其中的知识领域之一,智能系统(即人工智能)与离散结构、程序设计、操作系统、计算机体系结构等已经得到普遍重视的知识领域具有了相同的地位。在我国高等学校计算机科学与技术教学指导委员会制定的计算机专业规范中,也将“人工智能”作为了计算机科学专业的核心课程。但是,对人工智能相关知识的传播需要一个长期的过程,仍然需要广大科研和教育工作者的不懈努力。
2.2 师生对“知识表示与知识推理”知识体不重视
即便部分教师和学生认识到人工智能知识领域的重要性,但对于其中的“知识表示与知识推理”知识体仍然不够重视,认为没有必要专门通过一门课程进行教学。
针对这个问题,我们可以对人工智能领域的发展历程作进一步考察。我们知道,人工智能领域的诞生就是从知识表示和知识推理开始的。在1956年标志着人工智能诞生的Dartmouth会议上,Herbert Simon和Allen Newell展示的“逻辑理论家”就依赖于知识表示和知识推理。在此之后的五十多年中,知识表示与知识推理就一直是人工智能中最为重要的子领域。相 应的一个佐证是,1966年到2009年期间,在获得图灵奖的56名科学家中,Marvin Minsky、John Mccarthy、Herbert Simon、Allen Newell、Edward Feigenbaum和Raj Reddy等6名科学家都在知识表示与知识推理领域取得了开创性的研究成果。
知识表示与知识推理的重要性在CC2001和CS2008中同样得到了体现。CC2001给出的“智能系统”知识领域由以下10个知识单元组成:智能系统中的基本问题、搜索与约束求解、知识表示与推理、高级搜索、高级知识表示与推理、智能主体、自然语言处理、机器学习与神经网络、人工智能规划系统、机器人;C$2008在CC200I的基础上增加了智能感知这个知识单元。其中,关于知识表示和知识推理的教学内容不仅占据了两个知识单元,而且在智能主体、人工智能规划系统、机器人等知识单元中也占据了相应的多个知识点的位置。由于32课时的人工智能选修课程通常只能对上述知识单元作一个概要性的介绍,对于想进一步深入学习的学生,在有条件的情况下,我们完全有必要开设一门关于“知识表示与知识推理”的课程。另外,从上一节给出的教学设计可以看出,如果要覆盖CC2001和CS2008给出的关于知识表示与知识推理的所有知识点,一门32课时的课程在时间上还很不够用。因此,基于以上分析,我们希望“知识表示与知识推理”的教学首先能够得到相关教师的认可和重视,然后通过课程设置等途径逐渐吸引学生的关注,并在教学过程中激发起学生的学习兴趣和热情。
2.3 缺少合适的教材
尽管CC2001和CS2008详细地列出了关于知识表示与知识推理的主要知识点,但是,据我们所知,目前还没有出现完全覆盖这些知识点的合适教材,而中文的相关教材更是缺乏。
在参考了多方面的资料之后,我们选择了Ronald Brachman和Hector Levesque撰写的《Knowledge Representation and Reasoning》作为教材。Ronald Brachman和Hector Levesque都是知识表示与知识推理领域的著名学者。其中,Ronald Brachman于1977年在哈佛大学攻读博士学位时提出了KL-ONE系统,开创了目前成为研究热点的描述逻辑领域,之后于2003年担任了美国人工智能学会的主席,目前是ACM院士、雅虎全球研究运营副总裁。Hector Levesque在知识表示领域也做出了许多开创性的研究成果,曾于2001年担任人工智能顶级会议IJCAI的主席,于2006年当选加拿大皇家学会会士。除了时态和空间推理以及本体工程这两个知识点之外,CC2001和CS2008中列出的其他关于知识表示与知识推理的知识点,在《Knowledge Representation and Reasoning》中都基本上得到了体现。另外,为了在课程中向学生介绍语义Web方面的知识,我们选择了Grigoris Antoniou和Frank van Harmelen撰写的《A Semantic Web Primer》作为参考书目。
2.4 学生缺乏必需的基础知识
知识表示与知识推理的核心思想是采用形式语言(尤其是逻辑语言)对知识进行刻画和推理,因此要求学生在学习该课程前具有扎实的数理逻辑基础知识。
尽管数理逻辑对于整个计算机学科来说具有非常重要的作用,但在目前计算机相关专业的课程设置中,数理逻辑往往只作为离散数学课程的一个部分进行教学,在课时数量上非常有限。此外,从教材的角度来看,大部分离散数学教材的数理逻辑部分主要介绍命题逻辑的相关知识,而且只介绍命题逻辑联结词、范式、等值演算、自然推理系统等最基本的内容;对一阶谓词逻辑以及命题逻辑中更为深入的内容介绍得很少,甚至不介绍。这些内容对于学习知识表示与知识推理知识体来说远远不够。例如,根据我们在讲授“知识表示与知识推理”之前的调查,许多研究生对于一阶谓词逻辑的语法与语义等基本概念都还比较模糊,对于消解原理、Tableau方法、可满足性问题等内容更是没有接触过。
针对上述问题,除了原计划关于一阶谓词逻辑知识表示的4个课时之外,我们临时增加了2个课时的课堂教学,为学生补充命题逻辑的语法和语义、公式可满足性问题、Tableau判定算法、基于消解原理的判定算法等内容。由于受到课时的限制,许多重要的结论及其证明过程无法在课堂上详细阐述。
值得一提的是,由于研究课题的需要,我们组织部分研究生一起学习了John Bell和Moshe Machover撰写的著名教材《A Course in Mathematical Logic》。在学习这本教材时,我们将研究生分为三个小组,让各个小组自学该教材,对其中的引理、定理以及问题(Problem)进行证明或求解,然后在每周一次的学习班上使用黑板讲解他们的证明或求解过程。在3个月的时间里,将这本教材中的第一章和第二章学完后,这些研究生的数理逻辑知识明显上了一个台阶。在之后学习知识表示与知识推理的过程中,这部分研究生的学习效果也明显好得多。在今后的教学中,我们希望计算机相关专业的研究生能够先学习一门数理逻辑方面的课程,然后再学习知识表示与知识推理课程。
3 结语