前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇超声波传感器范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
【关键词】 超声波 传感器 应用
超声波是一种弹性波,它具有X射线以及光波和磁波等诸多波线所不具有的功能特点,正是基于超声波的应用灵活性与技术要求性高等特点,人们将其制成超声波传感器进行工业实践与应用。
一、超声波传感器概况
1.1超声波及其原理
物体机械振动状态的传播形式就是声波,而超声波主要是指声波频率在20000Hz以上的声波形式。由于这种声波每秒钟的振动频率较高,因此大大超出了人耳所能承受的听觉范围。超声波按照其在机械振荡过程中的不同表现形式,可将其分为纵向与横向两种振荡波[1]。而在我国现阶段的工业实践中,主要应用的是纵向振荡波,与可听声波相比,超声波具有独特的传播特征,其衍射能力较强,而且在均匀的传播介质中可以进行直线传播。一般情况下,在同等强度条件下,声波的频率与功率具有正相关性,声波频率越大,其传波的功率就越大。因为超声波要比一般声波频率更大,所以其在运行传播时的功率也较大。由于超声波具有诸多优点,因此在不同环境下得到了广泛应用与实践。
1.2超声波传感器的特点
超声波传感器是利用超声波的上述优点研制而成的一种数字传感器,以超声技术为核心、超声传感装置为载体,进行超声波传输与接收。通常情况下,超声波传感器又称为超声换能器及超声探头。超声波探头主要由压电晶片构成,其不但可以接收超声波,而且可以发射超声波。因此在超声探头中,核心运作组件就是其塑料外套或者金属外套中的一块压电晶片。这种压电晶片通过具有磁致伸缩作用的镍铁铝合金材料与具有电致伸缩作用的压电晶片材料制成。采用压电晶体材料构成的超声波传感器是具有可逆功能的一种数字化传感器,在其运行过程中可将机械设备的电能转化为机械能,从而在不同能量转化过程中产生超声波。与此同时,超声波传感器可接收超声波,从而将机械能转化为电能[2]。因此,按照超声波传感器的实际工作运行原理,可将其分为超声波接收器与超声波传输器。
二、超声波传感器的具体应用分析
首先,超声波传感器可在远距离传输过程中得到运用。通过上述分析可知,超声波传感器主要由处理单元模块及超声换能单元模块、输出单元模块所组成。在具体应用过程中,处理单元模块可对超声换能器进行电压激励,从而使经过激励后的电压以脉冲形式发出电磁波。随之,超声换能器转入接收状态,处理单元模块对接收到的超声波脉冲进行科学分析,以此判断其接收到的信号是否是超声波的回声[3]。如果经过核实,其所接收到的信号是超声波回声,则对超声波的声波传输时间进行测量分析,按照行程测算结果,对反超声波的行程时间进行测算分析。在具体应用过程中,可将超声波传感装置安装于适当位置,并对被测物体变化方向发射的超声波进行分析,就可测量物体表面与超声波传感器之间的实际距离。
其次,超声波传感器可在医学领域进行广泛应用。目前,超声波在医学领域中的实践应用,主要体现在患者临床疾病诊断方面。随着这项技术不断成熟,超声波传感器诊断已成为我国现阶段医学领域中的一种重要诊断方式。在实际运用过程中,利用超声波进行疾病诊断的主要优点是受检者无明显的疾病痛苦,而且实践操作过程非常简单、无损害、无创伤,诊断过程中有较为清晰的显像,尤其是诊断精确率较高。
另外,超声传感器在测量液位中具有重要作用。在液位测量过程中,超声波的使用原理是,通过超声波探头发出超声脉冲信号,其在空气中进行广泛传播。当传播过程中遇到空气与液面之后,就会被被测液体的液面反射回来,此时技术测量人员可根据反射回的信号测算时间与距离,从而得到液面实际高度。在液面测量中,超声波传感器测量技术属于非接触式测量,因此测量过程中电磁干扰小、不易受到刺激性液体腐蚀,且测量结果稳定,设备使用寿命较长。
除此之外,超声波传感器可在测距系统中得到应用实践。采用超声波传感器进行距离测算,不但可以科学测量设备输出脉冲的宽度,而且可以测量脉冲波的具体运行时间。因此,测量精度较高,并可对测量结果与测量过程进行修正。
结束语:综上所述,超声波传播方向性较好,因此能够集中进行传播;同时,超声波的传播适应能力较强,其能够在不同传播媒介中进行科学传播,而且能够实现远距离传播;再者,超声波与传声媒介的相互作用适中,而且在传波过程中容易携带有关传声媒介状态的信息。因此,基于上述应用优点,其在我国诸多技术领域已得到广泛应用与实践。
参 考 文 献
[1]李戈,孟祥杰,王晓华,王重秋.国内超声波测距研究应用现状[J].测绘科学,2011,36(04):60-62.
关键词:超声波;传感器;胶位控制
中图分类号:TB486 文献标识码:A 文章编号:1671-2064(2017)01-0026-01
1 引言
在卷烟包装生产过程中,胶位控制系统一直是困扰生产效率提高的重要环节。目前,烟草企业的包装设备中主要机型为GD包装机,该机型胶位检测传感器设计为电容传感器,是开关量输出模式,机器在生产过程中受环境因素影响有时会出现误动作,严重影响产品质量和机器的生产效率。
2 系统原理
超声波可在不同介质中以不同的速度传播的特性,超声波具有定向性好,能量集中,在传输过程中衰减小,反射能力较强等特点。对胶位控制系统的进行新型设计,采用超声波传感器元件,超声波传感器可广泛应用于非接触式检测,不受光线,被测物颜色等的影响,它不仅能够定点和连续测胶位,这种特性对胶位检测不受生产环境因素干扰非常有益。与其他测位技术相比较,它不需要特别防护,安装维修较方便,而且结构方法都较简单,经济效益显著。胶位控制设计采用超声波液位测量技术,运用超声波脉冲回波方法,由发射传感器发出超声波脉冲,传到液面经反射后返回接收传感器,测出超声波脉冲从发射到接受所需的时间,根据媒介中的声速,就能得到从传感器到液面之间的距离,从而精确测定胶位高度。
3 胶位控制方案
3.1 系统的设计
由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到使用要求。另一方面在工作中,超声波传感器有着优越的抗干扰性与工作的稳定性,故选择超声波传感器代替原设备的电容传感器进行测量物体间的距离。
在数据处理方面,本文设计采用PLC作为控制器(如图1示,系统软件设计的总框图),针对超声波传感器的测量结果进行处理,用触摸屏进行显示和设定。超声波传感器的输出信号是0―10V,接入PLC的模拟量输入模块中经处理转换为液面高度显示在人机界面上。
3.2 系统的控制
系统的控制主要完成显示液面高度、设定报警区间和注胶时间功能控制模式(如图2示,系统控制模式)。区间设定是根据实际情况设定,保证涂胶量符合生产工艺要求,通过液面高度和注胶高度的比较来判断是否注胶,液面高度情况还能反映元器件是否损坏。超声波传感器的测量结果可以实现供胶的闭环控制,随机器速度的变化控制增加与减少供胶量,胶位液面可以设定高低位报警功能,能够实现以数字的形式显示测量距离。
3.3 元件的x择
系统设计采用UNDK系列超声波传感器,这类型传感器检测范围为30―250mm,分辨率小于0.3mm,声波频率为300KHZ,响应时间小于50ms。其参数基本特点符合设计要求,能够达到控制的精度和要求。
4 结语
包装机新型胶位控制系统设计利用超声波的技术原理,采用超声波传感器元件,系统控制功能精确,可以有效提高包装机的胶位控制精度,有效减少机器胶位控制系统的故障,有利于提高机器生产效率,是具有推广价值的实用新技术。
关键词:测距;超声波传感器;STM32; 1602显示屏
中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2016)35-0238-02
当今社会测距是很普遍也很重要的问题,许多场合下需要准确、迅速、实时的测距。例如盲人在行走的过程中,需要一个装置来检测前方有无障碍物,在距离障碍物距离过近的时候必须可以报警;又如汽车倒车的时候也需要检测车尾与车库的距离,在危险距离的时候可以报警,使车主可以及时刹车,避免发生事故;再如一些的门口也需要测距的装置,当有人靠近的时候,会发出警报,使该区域的安全性得到保障。目前,测距的方法很多,如红外检测具有造价低、安全性能好、制作简单等优点;缺点是检测精度低、实用性低。由于超声测距是一种非接触式检测,其抗干扰能力较强,如光源、气候对超声的干扰都比较小,相比于其他的技术更精确,更安全。同时,超声测距具有少维护、不污染、高可靠、长寿命等特点。基于这一现状,本设计选用超声波来检测距离。
1 系统的整体设计
针对上述问题,本出如下的设计:先由超声波传感器向正前方发射超声波,与此同时开始计时,超声波沿着前进的方向传播,由于超声波能感应到障碍物,因此传播过程中碰到障碍物就会立即朝反方向回传,这样超声波接收器就可以接收到因障碍物而回传的超声波,同时,计时停止。超声波在空气中的传播速度v,设传播时间为t,那么单程传播的为t/2,由距离(s)=速度(v)时间(t)/2,就可以计算出发射点距障碍物的距离(s)。同时一方面将距离(s)由显示屏显示出来,让使用者能对前方有无障碍物一目了然,并且还能掌握障碍物与其的具体距离;另一方面,设置一个距离最小值,也成阈值,当障碍物的距离小于这个阈值的时候,单片机会给报警器发出报警信号,使报警器报警,让使用者能够迅速准确的做出应对措施。超声波测距原理如图1所示。
2 系统的硬件设计
2.1 硬件器件的x型
本设计的传感器选取的是非接触式的HC-SR04超声波测距模块,HC-SR04超声波测距模块使用成本低、抗干扰能力强并且准确性能好。单片机选取ARM系列最新、最先进构架的Cortex-M3内核的STM32,STM32不仅性能优越,而且价格便宜,所以本设计选取它作为主处理器。由于本设计的显示屏只需要显示距离信号,所以选取易于控制、成本低的1602显示屏。
2.2 硬件设计
硬件的组成可以分为两个部分:第一部分由超声波传感器以及STM32处理器组成,为检测部分,具体作用为:首先由STM32控制超声波发射器发射超声波,与此同时STM32控制定时器开始计时,由于超声波是沿着直线传播,当在前方遇见障碍物时,超声波会立即反射回来,当超声波传感器接收到超声波的时候STM32控制计时结束;第二部分由1602显示屏、报警电路组成,STM32检测计算出来的距离会由1602显示屏显示出来,当距离小于预先给STM32设定的阈值时,STM32会立即给报警电路发出报警信号,使蜂鸣器报警。报警部分由蜂鸣器和报警电路组成,报警电路如图3所示。
3 系统的软件设计
软件的设计主要是对STM32的编程,首先初始化串口和定时器,并且预先设置好阈值。接着给连接超声波传感器的IO口发出指令,开始发射超声波,并且由STM32控制定时器开始计数;接着实时监测超声波接收器有无信号的读取,若有,则说明前方有障碍物,定时器停止计数。取定时器的计数差值,由定时器计数的差值可以计算出共同的时间,而单向路程所需的时间为共同时间的一半,就可以计算出障碍物与超声波传感器的距离。同时还要将这个距离与预先设置好的阈值进行比较,若距离值小于阈值,则STM32会给报警电路发出报警信号,达到报警效果。
4 实验结果分析
随机选取不同的距离、不同材质的障碍物进行检测十次,每当达到检测范围的时候,显示屏每次都能准确的显示出障碍物的距离,并且当过度靠近障碍物的时候,蜂鸣器每次都会发出报警。结果表明本文设计的超声波测距系统能够准确的实现测距和报警的目的,满足当前市场的要求,同时制作简易,具有很好的发展和使用前景。
参考文献:
[1] 胡萍.超声波测距仪的研制[J].计算机与现代化,2003(10):54-57.
关键词:智能轮椅;传感器;系统;定位
中图分类号:TP273.5 文献标识码:A 文章编号:1007-9599 (2011) 22-0000-01
Hardware System Design Based on Multi-Sensor Intelligent Wheelchair
Hao Minchai
(Shijiazhuang Vocational College,Shijiazhuang 050081,China)
Abstract:High-performance low-cost intelligent wheelchair can greatly improve today's elderly and disabled users of the quality of life,safe and convenient to use people to their destination,during operation,the smart wheelchair can accept user issued the directive,according to the designated routes,so the design of intelligent wheelchair in the perception of the environment is an integral part of this paper,the context-aware intelligent wheelchair part of the multi-sensor system architecture,component design analysis and interpretation.
Keywords:Intelligent wheelchair;Sensor;System;Positioning
一、传感器系统总体结构设计
能够实现智能轮椅的总功能主要有:定位系统,环境感知系统、控制系统、驱动系统和人机交互界面等功能。因此该系统的硬件结构如图1所示。其中传感器模块主要有内部状态感知和外部环境感知两部分构成,对于姿态传感器主要用来调整轮椅自身的位姿信息;编码器传感器是位移速度和距离获得自定位的信息采集源;视觉、超声波和接近开关主要负责持续获得周围环境和轮椅位于障碍物的距离等的信息。驱动控制模块我们采用电机控制后轮驱动的方式,在控制器的操作去控制电动轮椅的前进、后退和转向。
图1:智能轮椅硬件系统结构图
二、多传感器数据采集与处理
该智能轮椅有2个相对独立的驱动轮并各自配有电机码盘。电机码盘实时进行数据检测构成了里程计式相对定位传感器,并安装有倾角传感器和陀螺仪传感器来测量轮椅在运动过程的姿态。超声波传感器和接近开关用于感知周围环境信息。为能够实现远距离的障碍物信息,还配备了超声波传感器。还配备了CCD图像传感器用于判断前方行进路程中的深度信息。
三、姿态传感器
该智能轮椅设计采用了一个倾角传感器和一个陀螺仪的组合来构成姿态传感器检测车体平台的运行姿态。倾角传感器用来测量轮椅偏离竖直方向的角度,陀螺仪用来测量角速度。
以TMS320LF2407A为控制核心的运动控制器,根据编码器和姿态传感器检测到的平台运行的位移和姿态信号,通过一定的控制策略计算出控制量,再经脉宽调制控制及驱动器放大后驱动直流电动机运转,随时调整车体平台的运行速度,从而使车体平台始终保持平衡状态。控制电路原理图如图2所示。控制板采集来自倾角和角速度传感器的信号并对信号进行调理(滤波、整形、偏移),然后将信号传送到控制板中,经过DSP的运算处理(控制算法由电动车系统的数学模型推导而出),通过DSP的两路脉宽调制将控制信号发出,再经过电机驱动模块驱动电机运转,控制轮椅保持平衡状态。
图2:控制电路原理图
四、多路超声波测距模块
本智能轮椅自主避障系统采用超声波传感器测量障碍物的距离,工作时,由单片机通过三路信号线选通多路模拟开关,由多路模拟开关负责每一路超声波传感器的通断。每一路超声波传感器工作时,都由单片机的I/O口发射出频率为40kHz,幅值为5V的矩形脉冲信号,经过信号放大电路,变成稳定的12V矩形脉冲信号,由超声波发射换能器发射出超声波。超声波遇到障碍物返回,由超声波接收换能器接收,经过信号滤波放大集成电路,触发单片机中断。由单片机计算渡越时间,从而计算出障碍物的距离。
五、编码器
编码器是将信号或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”,通过“1”和“0”的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。
产生的时钟频率是每个输入序列的4倍,且把这个时钟作为通用定时器2的输入时钟。图4给出了正交编码脉冲、增减计数方向及时钟的波形。
图4:编码器输出脉冲图
六、结论
关键词:超声波传感器;多谐振荡发生器;PLC;软计数器
中图分类号:TP273 文献标识码:A
一、前言
路通信号灯通常采用固定时间控制信号灯的变化,但是路通情况是受到工作日、假日、天气、人为等多种因素共同制约的。用一成不变的时间控制,显得缺乏灵活性和造成一定的浪费。考虑到以上诸多因素,本设计采用超声波传感器对通行车辆进行实时数量检测,并将监测数据传送给可编程序控制器PLC进行数据计数处理和信号控制。针对灵活多变交通情况进行信号灯的控制,能够即时有效地缓解交通压力。
二、工作原理
利用超声波的反射特性,可以通过超声波探头对被测物体进行计数,图1中为基于PLC的超声波检测信号灯控制电路。电路中LM1812为超声波专用集成电路,其内部包括脉冲调制C类振荡器、高增益接收器、脉冲调制检测器和噪声抑制电路。其元件链接及其功能为:1脚连接LC设定发射与接受振荡频率;2脚耦合电容为内电路第二增益输入端;3脚输出电阻为第一增益级输出端;4脚输入耦合电容为第一增益级输入端;5脚接地;6脚发射器输出;8脚开关脉冲限流;9脚接收器开启延迟;10脚接地;11脚限制监测器输出占空比;12脚接电源;13脚电源退耦;14脚检出器输出端;15脚接地;17脚噪声控制;18脚控制内部计分器复位时间常数。
LM1812的8脚为发送/接受控制端,高电平发射,低电平接收。由于接收器的增益很高,超声波传感器的引线必须用屏蔽电缆连接,并且1脚和4脚上的元件要远离,避免产生自激振荡。NE555构成多谐振荡器,为8脚提供振荡频率,控制其发送和接收,三极管进行驱动放大信号。
LM1812的14脚输出计数脉冲。接收到信号,14脚为低电平;接收不到信号,14脚为高电平。以红绿两个信号灯为例,PLC的数字输入端I0.0控制开启,I0.1控制断开。当有车通过,即可以接收信号,14脚为低电平,I0.O接通闭合,输出线圈M1通,绿灯亮;PLC根据内部程序的软计数器开始计数,可以任意设定计数值,当计数到,计数器线圈闭合线圈M2通,红灯亮,通过红灯互锁开关使绿灯灭。当车辆未达到计数值就已没有车辆再通过,如果继续等待直到凑够车辆数量,即为时间浪费,所以本设计同时采用另一开关I0.1控制红灯开启从而通过其互锁关闭绿灯。当接收不到信号时,14脚为高电平,I0.1接通闭合,输出线圈M2通,红灯亮,通过其互锁关闭绿灯。
三、核心器件介绍
1 超声波传感器:利用晶体的压电效应和电致伸缩效应,将机械能(超声波发射)与电能(超声波接收)相互转换,并利用波的特性实现对各种参量的测量。超声波是一种在弹性介质中的机械振荡,超声波具有的基本特质之一反射和折射现象,当超声波在两种不同介质中通过时,会产生反射和折射。利用其各种特性,可做成超声波传感器,配上不同电路,制成各种超声波仪器装置,应用于工业生产等领域。
2 本设计采用可编程逻辑控制器(PLC),西门子S7-200系列产品中的CPU226型。它属于整体式紧凑型系列产品,其特点是结构紧凑,将电源、CPU输入输出端子、拓展单元插座等一起装在机壳里,体积小、重量轻、便于安装在机器设备上实现机电一体化。CPU226型共有24个输入点(I0.0~I0.7、I1.0~I1.7、I2.0~I2.7)。其输入电路采用双向光耦合器,24V直流极性可以任意选择。系统设置1M为输入端子(I0.0~I1.4)的公共端,2M为输入端子(I1.5~I2.7)的公共端。
结语
本设计以控制一个交通灯的两个信号灯(红、绿)为例,介绍了基于PLC硬件连接的软件配套控制方法。PLC输出部分未连接,根据现场不同的控制要求,可以编写软件程序,并依照程序要求去拓展输入部分和连接输出部分外电路。本设计的中心思想,就是为了对复杂多变的交通路口情况进行实时监控,改善不合理的等待,避免造成时间资源浪费。全面考虑诸多特殊因素并通过硬件的连接和软件配套设置进行了有效的应对措施。
参考文献
[1]刘伟.传感器原理及实用技术[M].北京:电子工业出版社,2009.
[2]孔凡才.周良权.电子技术综合应用创新实训教程[M].北京:高等教育出版社,2008.