前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇计算机与设计论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
当然在艺术设计专业课堂中引入计算机也不全是优点,它同其它事物一样,具有两面性。在当前教学应用中也存在很多问题需要注意。第一,学生已开始就接触计算机设计,忘记了原有的基础训练。计算机功能比较强大,对青少年也有很强吸引力,但是如果学生设计时都采用计算机,而对原本的基础训练就会减少,甚至没有。这样虽然学生的设计能力也能提高,但是基本功却越来越差,以至于在实际应用时的手工绘图能力减弱,设计质量也不好。第二,增加老师的依赖性。有些老师为了教学方便,在讲解设计内容时内容更新不及时,只采用以往教学时应用过的图形,导致学生不能获取最新的设计思想。或者老师为了节约课堂时间,本来应该在课堂上将设计思路、图形绘制过程等全部在学生面前展示的,直接在课下绘制好,学生不能参与绘制过程,也就不利于对设计思想的吸收,老师的授课效率也会逐渐降低。第三,学生实践能力不强。老师在课堂上如果都用计算机进行设计,学生也就不再进行基础手工练习,即使安排手工训练课堂,由于学生平常用惯了计算机,手工绘图能力也会减弱。而在实际应用时,很多场合都是需要先手工绘制一些样图,最终定稿之后才在计算机上绘制,以供最终需要。用惯了计算机的学生在实际工作之后,实际动手能力就会大不如从前。第四,院校设计专业课程安排不合理。高校为了迎合社会的发展,在进行课程安排时往往存在不合理的现象,对设计专业的学生安排的课程大多都是专业课,或者是一些与专业设计相关的软件讲解,很少有针对实际应用的课程。真正到实践时,都只会用一些基本的软件,很难有一些创新设计思想。
2针对教学中存在的问题所提出的一些措施
对于当前艺术设计专业引入计算机课堂教学所存在的问题,笔者提出几点自己的看法。第一,在用计算机辅助设计时也不能忘记基础的手工训练。任何学科的学习都要具备扎实的基本功,对于设计来说,没有牢固的基本功,想要对设计进行很大创新几乎是不可能的。因此,艺术设计课堂虽然需要计算机,但是也只能将其作为辅助设计,还是要将基础手工绘制图形作为主要教学方式。第二,对于老师来说不能依赖计算机。上课的时候如果要用计算机进行设计,还要让学生参与绘图过程,不能只是简单的展示。要将设计思想以及一些基础知识向学生讲解清楚,不能让学生脱离课堂。第三,培养学生的实际动手能力。在讲授专业知识的同时,还要注重实际应用,让学生将自己的设计思想以手工的形式绘制出来。第四,高校教学课程要合理安排。不能将最原始的想法改变,计算机只是在艺术设计教学中用以辅助设计,不能摒弃原有教学方法,在接受新事物的同时还要结合传统教学方法的优势,要将新旧事物相结合,以达到最好的效果。
3结语
暖通工程设计阶段的预算管理不仅会对工程项目建设的后续管理效率产生直接影响,而且是整个项目投资能否取得良好效益的关键所在。但是,长期以来,我国暖通工成本程建设者在整个工程项目的预算管理过程中,往往将主要精力放在施工阶段的审核施工图预算以及竣工决算阶段,而忽视了设计阶段的预算管理,从而导致当前我国暖通工程设计阶段的预算管理工作仍存在诸多问题。具体而言,主要表现在如下三个方面:第一,从事暖通工程设计阶段预算管理工作的专业人士较少,在对工程投资项目进行可行性分析的时候,不能充分结合工程所在地的实际情况设计有效的暖通能源供应、资金投入、运行成本以及暖通负荷等指标,导致出现初投资增加、能耗过大以及运行费用过高等不良情形,从而使业主因费用过高、投资不足等原因而被迫停工或修改设计,造成一定的经济损失;第二,暖通工程设计人员在工作过程中大多只重视专业技术水平的提升,而缺乏一定的经济观念,加之受地域、经济水平等条件差异的影响,设计阶段的预算人员又大多采取静态式的预算,一味沿用当地主管部门颁布的现行定额、计算程序、收费标准等办事,导致投资预算质量不高,使暖通工程设计技术和预算之间出现较大缺口,导致暖通工程预算难以控制,甚至出现预算过高现象,进而无法在实际工作过程中发挥其应有的指导作用;第三,部分暖通工程设计人员在实际工作过程中,还容易出现方案设计和预算指标不相符、不做详细的负荷计算和设备选型计算、设计思想保守等问题,从而导致在选择空调方案或设计系统时,出现诸多问题,如不将业主的经济利益放在第一位,只根据估算指标选择暖通设备,从而出现主机选择不当、系统设计不合理等不良现象,这不仅会增加初投资,而且会提高运行成本。
2解决暖通工程设计阶段预算管理工作中存在问题的措施
2.1降低暖通工程设计项目的变更频次由于受设计图纸不完善、设计深度不够以及人为恶性竞争等因素的影响,都会导致设计项目发生变更,而对于暖通工程而言,设计阶段方案的变更就意味着工程规模、建设标准以及相关专业设计内容等诸多方面均可能发生重大变化,这不仅会增加成本费用导致投资失控,而且会对工程进度产生不利影响。因此,这就要求暖通工程建设项目相关负责人在实际工作中应当做好如下几个方面的工作:首先,应当加强对设计阶段合同的管理,给设计单位充足的设计时间,使其充分做好设计前的准备工作,并对暖通工程项目的方案设计、初步设计、施工图设计各阶段进行严格的审批,并实时与设计单位进行沟通,使其充分理解设计意图和功能需求;其次,在暖通工程进行设计阶段预算的过程中,应当权衡工程全寿命建设周期等因素,最大限度的规避设计项目的变更风险;最后,在对暖通工程设计方案进行选择时,应当综合考虑可能对设计方案造成影响的各种因素,从而控制变更频次,减少不必要的预算变更。
2.2设置合理的暖通工程控制目标系统暖通工程作为一项庞大的系统性工程,具有施工周期长、建设复杂、规模巨大、数量多、变化大等特点,因此,要想对暖通工程的投资预算进行有效的控制,就必须充分结合暖通工程的特点,实行分段管理,根据暖通工程不同阶段的特性设置不同的暖通工程控制目标系统。具体而言,暖通工程控制目标系统主要包括投资估算、设计概算以及设计预算三个方面,其中投资估算是方案设计和初步设计阶段的控制目标,设计概算是技术设计和施工图设计的控制目标,而设计预算则是建安工程投资的控制目标。三个阶段不同的控制目标相互影响,相互补充共同构成了暖通工程控制目标系统。在实际工作过程中,合理的控制目标系统会对暖通工程建设产生积极的促进作用,相反,过高或过低的控制目标系统均会对暖通工程建设产生不利影响。
2.3大力推广暖通工程设计监理制当前,在暖通工程建设过程中施工监理制已经得到了广泛应用,而设计监理制则仍处于起步阶段,因此,这就要求在实际工作过程中,应当尽早让监理公司参与暖通工程项目建设,使其在施工前期对项目的可行性进行研究,并参与到设计方案的制定以及财务评价工作中去,从技术和经济方面对设计方案进行综合评定,严格审查设计预算,降低设计环节错误的发生率,减少不必要的资源浪费,从而在保证暖通空调系统在安全、合理、可靠、经济的前提下,实现高效的暖通工程预算管理。
2.4严格执行暖通工程限额设计办法限额设计是指严格按照批准的设计任务书及投资估算来控制初步设计,并按照批准的初步设计概算控制施工图设计,将总控制额分解到各专业的过程。就暖通工程而言,限额设计就是指暖通工作人员在制定设计方案的过程中,应当综合考虑技术经济因素,对工程设计的技术和经济效果进行科学的评估,并将预算理念贯穿到设计阶段实际工作的全过程,从而保证工程预算在可控范围内。此外,还可以设置相应的设计奖惩制度,对采用新材料、新工艺、新设备而使初投资成本和运行费用下降的单位和个人给予相应的奖励,而对设计错误、漏项过多的给予一定的惩罚,做到奖罚分明,提高暖通工程设计阶段预算管理的有效性。
3结语
目前,钢结构因其优良的性能被广泛应用于大跨度结构、高层建筑、重型厂房、高耸建筑物和桥梁结构等。结构设计首先要保证安全性,对于一般的结构构件,强度计算是基本要求,但是对钢结构构件而言,其构件材料强度高,截面小,稳定计算往往是工程设计中的控制因素。【1】:钢结构,陈绍蕃
失稳和屈曲的概念
Bazant [14]、Farshad [15]、Huseyin [16]等引述和讨论了稳定和屈曲的定义,他们从不同的角度和范围描述了失稳现象,并指出屈曲是众多失稳现象中的一个模式,屈曲是发生在结构中的一种失稳。文献[14]-[18]讨论了结构产生屈曲的原因,可以定义结构的屈曲为处于高位能的结构由平衡临界状态随着能量的释放向处于低位能的结构平衡临界状态转移的过程,发生平衡转移的那个瞬间状态,就是临界状态。这也是目前比较广泛被接受的解释[19]。具体地讲有三种:
1) 、从能量的角度来说,结构失稳就是储存在结构中的应变能形式发生转换。
2) 、从力学要素的性质方面来说,失稳是结构中承载的主要力学要素的性质发生了变化。
3) 、从变形角度来说,失稳在实际上也可以被认为是一种从弹性变形到几何变形的变形转移。
钢结构构件以轴压、压弯构件居多,如上所述,其核心问题是稳定问题。就单个钢结构构件而言,影响稳定的主要因素有残余应力的分布、初始缺陷、截面形状、几何尺寸、材料强度和构件的长度等。【2】张志刚。而近年来,采用新技术设计和建造的大型复杂空间钢结构形式(如网壳结构、拱、弦支穹顶结构等)越来越多,通常这类结构整体上或某些较大区域内承受很大的压力作用,也即某些构件承受很大轴向压力,使得这类结构容易引发整体失稳或某区域内的局部失稳现象。大型复杂结构 的这一力学特征显著不同于传统的小跨度或小规模简单结构,因而,在设计这类结构时,除按常规设计规范验算结构构件的强度及稳定性,结构的刚度外,设计者还要验算结构的整体稳定性。【3】整体结构稳定
在现阶段的钢结构设计中,常以计算长度系数法来进行整体结构的整体稳定性分析。以钢框架为例【3】P94
目前大部分工程师在设计钢框架结构承载力时,常分两步进行。第一步进行结构分析,通过一阶弹性分析确定构件在各种外荷载与作用组合工况下的内力效应;第二步进行构件设计,首先查得采用弹性近似分析法确定的构件计算长度系数,然后按现行《钢结构设计规范》(GB50017-2003)的计算公式求得构件的承载力。如果所有构件的承载力大于外荷载产生的效应,则认为结构体系整体和构件均满足承载力要求。 这种设计方法以通过计算长度系数把构件承载力验算和结构整体稳定承载力验算联系起来,被称为计算长度系数法。
对于一些大跨空间结构杆件的计算长度系数取值,规范缺乏详细的规定,没有提出明确的计算方法。针对实际工程设计时,杆件计算长度系数的取值往往无据可依。为了设计方便,
工程上常通过反推的方法来确定计算长度系数。方法有两种
1) 反推法
为了钢结构设计应用上的方便,可以把各种约束条件的构件屈服荷载Pcr 值换算成相当于两端铰接的轴心受压构件屈曲荷载的形式,其方法是把端部有约束的构件用等效长度为l0
22P =πEI /l cr 0的构件来代替,这样。等效长度通常称为计算长度,而计算长度l0与构件
实际的几何长度之间的关系l 0=μl ,这里的系数μ称为计算长度系数。对于均匀受压的等截面直杆,此系数取决于构件两端的约束。这样一来,具有各种约束条件的轴心受压构件的屈曲荷载转化为欧拉荷载的通式是:
π2EI P cr =(μl ) 2
构件截面的平均应力称为屈曲应力:
P cr π2EI π2E σcr ===2A (μl /i ) 2λ
式中A 为面积,λ为长细比,λ=μl i ;而i
为回转半径,i =关。计算长度系数的理论值可写作:
μ=
其中PE 为欧拉荷载,即两端铰接的轴心受压构件的屈曲荷载。
对两端固接
自由=μ= 0.5,两端铰接μ= 1.0,一端固接,一端铰接μ= 0.7,一端固接,一端μ= 2.0。
2) 反弯点法
通过对整体结构进行屈曲分析,可以得到结构及杆件发生屈曲时弯矩图或变形曲线图。弯矩图和变形曲线图均可以反映出杆件反弯点之间的距离l0。因为反弯点的弯矩为零,因此与铰支点的受力相当。L0可以代表该杆件的计算长度。根据不同的约束条件,反弯点可能落在杆件的实际长度范围之内,也可能在其延伸线上。由于约束条件是多种多样的,有时很难在变形曲线上表示出反弯点之间的距离。反弯点法主要包括以下3个步骤:
1) 由屈曲分析得到结构及杆件的屈曲模态;
2) 提取杆件屈曲模态对应的弯矩图或变形曲线中变形位移曲线;
3) A ) 确定弯矩图中反弯点的位置,从而得出杆件的计算长度及计算长度系数;
4) B) 根据图()中杆件发生屈曲时的变形曲线,可以根据杆件已有的变形拟合出此杆
件在理想铰接状态下的变形曲线。对比两个曲线图,确定杆件变形曲线的拐点(即反弯点)位置,从面可以得出杆件的计算长度及计算长度系数。
计算长度系数的推导方法:
计算长度系数的推导
图4-1 无侧移刚接框架柱的计算简图
图4-1给出的是无侧移多层钢框架的子结构,利用受弯构件和压弯构件的转角位移方程,代入θE =θF =-θB ,θG =θH =-θA ,且θC =-θB ,θD =-θA 建立与节点A 有关的梁端与柱端力矩:
M AG =M AH =
M AB =M AC EI b 22θA (4-1) l EI =c (C θA +S θB ) (4-2) h
其中,C 、S 根据无侧移弹性压弯构件转角位移方程确定:
kl sin(kl ) -(kl ) 2cos(kl ) (kl ) 2-kl sin(kl ) ,S =,k =C =2-2cos(kl ) -kl sin(kl ) 2-2cos(kl ) -
kl sin(kl ) =π根据节点平衡条件:
可得:
EI ⎫EI ⎛EI 2 2b 2+C c ⎪θA +2S c θB =0l h ⎭h ⎝ M AB +M AC +M AG +M AH =0
或 (2K 2+C )θA +S θB =0
(4-3)
式中:
K 2=I b 2/l I c /h
同时,可求出节点B 的弯矩平衡条件为
S θA +(2K 1+C ) θB =0 (4-4)
式中:
K 1=I b 1/l I c /h
由公式(4-3、4-4)组成无常数项的联立程。要得到θA 和θB 的非零解,必须系数行列式等于零。这就是说,子结构失稳时应满足下列条件
2K 2+C
S
即 S =02K 1+C
C 2+2(K 1+K 2) C +4K 1K 2-S 2=0 (4-5)
把式中的C 和S 代入公式(4-5)整理后得,即得下列临界条件:
2⎡⎛π⎫2⎤⎛π⎫⎛π⎫⎡⎤⎛π⎫⎛π⎫⎢ μ⎪⎪+2(K 1+K 2) -4K 1K 2⎥ μ⎪⎪sin μ⎪⎪-2⎢(K 1+K 2) μ⎪⎪+4K 1K 2⎥cos μ⎪⎪+8K 1K 2=0⎢⎥⎥⎝⎭⎣⎝⎭⎦⎝⎭⎝⎭⎢⎣⎦⎝⎭
(4-6)
其中,式中的K 1与K 2分别表示柱下端与上端的梁的线刚度之和与各柱的线刚度之和的比值,说明计算长度系数μ的值取决于K 1与K 2。
对于有侧移框架也可以按以上方法推导,过程从略,得到的临界条件为:
2⎡⎛π⎫⎤
⎢36K 1K 2- μ⎪⎪⎥t ⎢⎝⎭⎥⎣⎦⎛π⎫π⎪a +6(K +K ) =0 12 μ⎪μ⎝⎭
(4-8)
《高层民用建筑钢结构技术规程》第6.3.2条,
指出对于框架柱的计算长度系数可采用下列的近拟公式计算:
1. 有侧移时
μ=
2. 无侧移时 7. 5K 1K 2+4(K 1+K 2) +1. 52 (4-9) 7. 5K 1K 2+K 1+K 2
μ=0.64K 1K 2+1.4(K 1+K 2)+3 (4-7) 1.28K 1K 2+2K 1+K 2+3
K 1与K 2分别表示柱下端与上端的梁的线刚度之和与各柱的线刚度之和的比值 其中有侧移框架常指纯框架体,无侧移结构常指有支撑和(或)剪力墙的体系
4.1 计算长度系数确定方法
《钢结构设计规范》(GB50017-2003)(以下简称“规范”) 对框架柱的计算长度系数有明确的规定。在框架平面内框架的失稳分为有侧移和无侧移两种,有侧移框架的承载力比无侧移的要小得多。因此,确定框架柱的计算长度时首先要区分框架失稳时有无侧移。框架柱的分析方法有两种:一是采用一阶分析方法(计算长度法),即分析框架内力时按一阶理论,不考虑框架二阶变形的影响,计算框架时用计算长度代替柱的实际长度考虑与柱相连的影响;二是采用二阶或近似二阶分析方法求得框架柱的内力,稳定计算时取柱的几何长度。目前国内外大多数国家的规范采用了计算长度法。该方法的计算步骤为:首先采用一阶分析求解结构内力,按各种荷载组合求出各杆件的最不利内力;然后按第一类弹性稳定问题建立框架达到临界状态时的特征方程,确定各柱的计算长度;最后将各杆件隔离出来,按单独的压弯构件进行稳定承载力的验算。验算中考虑了材料非线性和几何缺陷等因素的影响。该方法的最大特点是采用计算长度系数来考虑结构体系对被隔离出来构件的影响。该方法对比较规则的结构可以给出比较好的结果,而且计算比较简单。
柱的计算长度系数与相连的各横梁的约束程度有关。而相交于每一节点的横梁对该节点所连柱的约束程度,又取决于相交于该节点各横梁线刚度之和与柱线刚度之和的比。因此,柱的计算长度系数就由节点各横梁线刚度之和与柱线刚度之和的比确定,常见的钢框架设计方法中均给出了根据框架柱端部约束条件直接查用的计算长度系数表格或曲线。“规范”将框架分为无支撑纯框架和有支撑框架,根据支撑抗侧移刚度的大小,有支撑框架又可分为强支撑框架和弱支撑框架。
根据不同的情况,不同支撑框架柱可分别选用有侧移框架柱和无侧移框架柱的计算长度系数μ[47]。
“规范”有侧移和无侧移框架柱的计算长度系数μ均为根据一定理想化的假定得到。对于需要确定无侧移框架计算长度的柱子以及与之相连的4根梁和上下两根柱的计算模型如图4-1。对有、无侧移框架均采用了理想化的假定[46,48,49]。
无侧移框架柱确定计算长度系数μ时的基本假定[46]:1) 、梁与柱的连接均为刚接;2) 、柱与上下两层柱子同时失稳,即图4-1中,柱AB 与柱BD 、AC 同时屈曲;
3) 、刚架屈曲时,同层的各横梁两端转角大小相等,方向相反;4) 、横梁中的轴力对梁本身的抗弯刚度的影响可以忽略不计;5) 、柱端转角隔层相等;6) 、各柱
的这里P 是柱子的轴力,P E 是柱子计算长度系数为1时的欧拉临界力;7) 、失稳时各层层间位移角相同;8) 、材料为线弹性材料。
有侧移框架柱确定计算长度系数μ时同无侧移框架柱的基本假定大体相同,只是在第3点:刚架屈曲时同,同层的各横梁两端转角大小相等但方向相同。
4.1.2 网壳规程的规定
《网壳结构技术规程》(JGJ61-2003)根据节点的型式,规定了构件的计算长度。对于双层网壳杆件计算长度应按表4-1采用,单层网壳按表4-2采用。
表4-1 双层网壳杆件的计算长度l 0
节 点
杆件
螺栓球
弦杆及支座腹杆
腹 杆 l l 焊接空心球 0.9l 0.9l 板节点 l 0.9l
表4-2 单层网壳杆件的计算长度l 0
节 点
弯曲方向
焊接空心球
壳体曲面内
壳体曲面外 l l 毂节点 0.9l 0.9l
“规范”及网壳规程的这些规定有很大的局限性:对于其它节点型式,特别
是大型网壳结构,杆件规格多、截面尺寸大、构造复杂,采用上述节点型式将很不合理,导致无法采用现成的规范条文;而且本章后续的研究表明:网壳规程所取的计算长度系数,特别是单层网壳,存在较大的安全隐患,不能直接运用于设计中;构件的计算长度系数也不仅仅简单地与节点型式相关;当前规范针对大跨空间结构构件的计算长度取值,缺乏明确的规定,更没有提出计算方法,导致结构设计人员无据可依。实际工程设计中,通常将需要稳定设计的构件近似为轴压构件,通过欧拉公式反推的方法来确定计算长度系数,常见的各种方法如本章4.4节所述。
4.4.1 工程设计常用的方法
欧拉荷载的推导:
加图:(P31)【5】陈骥的书
所图所示两端铰接的挺直的轴心受压构件,按照小挠度理论求解中性平衡状态时弹性分岔弯屈屈曲荷载。
如图所示,两端铰接的轴心受压杆件,在压力P 的作用下,根据构件屈曲时存在微小弯曲变形的条件,先建立平衡微分方程,再求解构件的分岔屈曲荷载。在建立弯曲平衡方程时作如下基本假定:
(1) 构件是理想的等截面挺直杆。
(2) 压力沿构件原来的轴线作用。
(3) 材料符合胡克定律,即应力和应变呈线性关系
(4) 构件变形之前的平截面在弯曲变形后仍为平面。
(5) 构件的弯曲变形是微波的。曲率可以近似地用变形的二次微分表示,即()
可取如图隔离体,列方程:(EIy``+PY=0)推导得出:P=n2pi()2EI/l2,其中式中n=1时为构件具有中性平衡状态时的最小荷载,即分岔屈曲荷载Pcr ,又称为欧拉荷载Pe=pi^2EI/l2
采用计算长度系数进行稳定设计的原因:
的概念:
稳定问题具有多样性、整体性及相关性三个问题:【5】陈绍蕃P94
1) 多样性:轴性受压杆件有弯曲屈曲、扭转屈曲、弯扭屈曲等多种形式。
2) 整体性:构件作为结构的组成单元,其稳定性不能就其本身去孤立地分析,而
应当考虑相邻构件对它的约束作用。这种约束作用显然要从结构的整体分析来确定。稳定问题的整体性不仅表现为构件之间的相互约束作用,也存在于围护结构与承重结构之间的相互约束作用中,只不过在通常的平面结构(框架和桁架)的分析中被忽略了。
3) 相关性:具体体现在不同失稳模型之间有耦合作用、局部屈曲与整体屈曲互有
影响、组成构件的板件之间发生屈曲时有相互约束用等。
【5】P169
结构和构件丧失稳定属于整体性问题,需要通过整体分析来确定它们的临界条件。不过,为了计算简便,目前在设计工作中的做法是所计算的受压构件(或压弯构件)从整体结构中分离出来计算,计算时考虑结构其他部分对它的约束作用,并用计算长度来体现这种约束。
计算长度的概念:
计算长度的概念来源于理想轴心压杆的弹性分析。其把端部有约束的压杆化作等效的两端铰接的杆件,等效条件为两者的承载力相同。
构件在荷载作用下的变形曲线图可以反映出了反弯点之间的距离,此距离代表了该构件的计算长度;因为反弯点的弯矩为零,因此与铰支点的受力相当。根据不同的约束条件,反弯点可能落在构件的实际长度范围之内,也可能在其延伸线上[46]。
常见的结构形式的受压构件的计算长度系数在相应的规范及规程中都有所体现。将规范涉及到的可以直接使用的规范例举如下:
1) 钢结构设计规范第5.3条:桁架:含弦杆、单系腹杆(用节点板与弦杆连接)、交叉腹杆,
均分平面内与平面外的计算长度考虑;
框架:依据侧移刚度将框架分为无支撑、弱支撑和强支撑框架三种,分别按照本规范的附录D 的表格D-1至D-2查找框架柱的计算长度系数;
单层厂房的阶形柱(单阶柱及双阶柱):按本规范附录D-3至D-6查找相应的计算长度系数
2) 钢高规:第6.3.1及6.3.2条规定了钢框架柱的计算长度取值
指出1)重力荷载作用下的稳定计算,应按钢结构设计规范相应条文进行,并指出相应的近似公式:。。。。
2)结构在重力和风力或多遇地震作用组合下的稳定计算相应的计算长度系数。
网壳结构技术规程:第5.1条,根据钢壳的分类及其节点的做法形式,分别定义其计算长度系数
3) 空间网格结构技术规程:第5.1条,根据网架、双层网壳、单层网壳、立体桁架及其杆
件分类和节点形式,分别定义其计算长度系数
对于梁-柱钢框架结构体系,可直接采用规范查表的方法或实用公式确定构件的计算长度系数。但对于大多数不规则(非梁-柱钢框架结构体系)的大跨空间结构构件的计算长度取值,如上所述,规范不可能包含所有的结构类型,也缺乏明确的规定,没有提出计算方法,导致结构设计人员无据可依。
因此为了设计方便,工程上通常将其近似为轴压构件,通过反推的方法来确定计算长度系数。
大跨度结构及其杆件的稳定问题都是一个整体问题,各杆件互相支承、互相约束,任何一个构件的屈曲都会受到其他构件的约束作用,影响因素较多。而对于空间钢结构杆件的计算长度系数,规范(桁架体系、网壳结构)根据杆件位置规范一般规定在0.8~1.0范围内取值。有学者的研究资料表明:对于复杂结构体系中部分杆件,采用低于1.0的计算长度系数取值可能偏于不安全。因此,工程上常从整体结构稳定性角度出发,取重力荷载(自重+附加恒载+活荷载)标准值工况组合作用作为初始态,根据计算长度系数的物理意义,通过整体结构线性屈
曲分析来研究各主要杆件的计算长度系数,主要包括以下3个步骤[56]:
1) 、由线性屈曲分析得到结构的各阶屈曲模态以及屈曲临界荷载系数;
2) 、检查各阶屈曲模态形状,确定该杆件发生屈曲时的临界荷载系数,乘以相应的初始态轴力,得到该构件的屈曲临界荷载P cr ;
3) 、由欧拉临界荷载公式反算各杆件的计算长度系数,即:
π2EI P cr =
2(μl )
μ=式中:EI 为杆件发生屈曲方向的弹性抗弯刚度;P cr 为杆件对应的屈曲临界荷载;l 为杆件的几何长度;μ为杆件计算长度系数。
由4.3.2节可知,当某个方向的荷载(如水平荷载)较大时,确定计算长度系数的初始态应采用各工况的组合,这样,根据不同的荷载组合下(初始态)反推出来的计算长度系数是不同的。
确定计算长度系数主要是确定欧拉临界荷载P cr 。
本文以确定一平面无侧移框架柱的计算长度为例,详细地介绍工程设计中。如图4-6所示的有侧移,横梁与柱均为刚接,柱的截面为H500×400×12×20, I c =1.019×109mm 4,为保证柱先于梁发生屈曲,设梁的截面为1000×400×30×30, I b =9.80×109mm 4,钢材采用Q235。作用在梁上的荷载标准值q=60kN/m,柱高l c =6m,梁长度l b =6m。
图4-6 无侧移刚架
按规范的设计方法,由K 1i =i b
c EI b /l b I b l c 9.80⨯109⨯6000====9.6173,EI c /l c I c l b 1.019⨯109⨯6000
K 2=0根据钢结构规范附录D 表D-1,采用插值法μ=0.7341, 或采用实用公式的方法:
μ=0.64K 1K 2+1.4(K 1+K 2) +31.4⨯9.6173+3==0.7404 1.28K 1K 2+2(K 1+K 2) +32⨯9.6173+3
.3.2 整体屈曲法
通过整个结构的屈曲分析确定该构件的计算长度,其方法是将该构件放在整体模型中,进行屈曲模态分析,从而得到欧拉临界力和屈曲系数的方法。整体模型的屈曲分析具有较为直观的屈曲模态,可以直接看到结构整体的屈曲变形,通过判断各阶屈曲模态对应的变形来判断具体结构构件是否发生屈曲,从而得到其对应的屈曲临界力[57]。该方法较难判断具体构件应对应的屈曲模态,常导致计算结果偏于保守;但该方法考虑了诸多计算长度系数的影响因素,与实际情况也相符合,较为合理。
本文采用SAP2000做钢框架的屈曲分析。在荷载q 的作用下,钢框架的轴力如图4-7(a)所示,图(b)为构钢框架的第一阶屈曲模态,从变形图可以看出,柱子发生了屈曲。 -180-180
(a) q作用下的轴力(kN) (b) 第一阶屈曲模态(η=784.547)
图4-7 荷载作用下的轴力及屈曲模态
所以,柱子的临界荷载为:
P cr =ηP =180⨯784.547=141218.46kN
由欧拉临界荷载公式反算各杆件的计算长度系数:
μ===0.638
由此可见,两者非常接近。工程中的一系列对比,也说明这些做法是正确的,下面以笔者的一个实例来说明些方法在工程实践中的运用。
本算例取决于某工程的施工顶升架,顶模钢平台由桁架层、支撑柱和支撑钢梁组成,钢平台桁架层由主桁架、次桁架、三级桁架和边桁架及内部小次梁、吊架梁等构件组成。桁架层高2.05m ,支撑柱高12.6m ,两层支撑钢梁间距4.5m 。顶模钢平台设计采用SAP2000软件,图2.1.1至图2.1.3为顶模钢平台sap2000计算模型。
图2.1.1顶模钢平台三维图
图2.1.2 顶模钢平台立面图
图2.1.3 顶模钢平台平面图
荷载考虑:恒荷载、活荷载、风荷载(考虑三种情况:施工状态及提升状态下遭遇八级风、
施工状态下遭遇十级风、施工状态下遭遇台风荷载)、顶升不同步位移、施工电梯荷载。
1.1 边界约束条件
根据边界约束条件的不同,钢平台分为两种计算模型。施工状态时,假定两道支撑梁两端为铰接,如图2.3.1所示;顶升状态时,忽略支撑梁的约束作用,将千斤顶与支承柱的连接简化为铰支座,如图2.3.2所示。
图2.3.1施工状态支承柱的约束边界
下列仅以施工状态 图2.3.2顶升状态支承柱的约束边界
1.1.1.1 支承柱计算长度取值(根据屈曲分析)
采用十级风施工状态模型:
以结构整体模型为基础,对结构进行特征值屈曲分析。正常施工状态下取D+L计算屈曲工况,圆管柱及格构柱在Mode98的屈曲模态下首次发生屈曲。其屈曲变形及屈曲荷载如下:
圆管柱在D+L工况下的最小轴力值为:-2634kN ,则根据屈曲分析结果,施工阶段的支承柱的一阶弹性屈曲临界荷载为2634×11.05=29105.7kN,根据欧拉公式可以反推得到理论计算长度系数:
μ=π2EI
P cr l 23. 142⨯2. 06⨯105⨯5. 355⨯109==1. 40 29105. 7⨯103⨯138002
1.1.1.1 钢结构构件计算应力比
将各计算长度系数值手工输入模型中,应力比计算结果如下图所示:
具体各构件应力比数值可在模型中查看,圆管柱最大应力比为0.378,格构柱应力比均小于0.95,满足规范要求。
整体稳定性计算步骤如下【3】P61
钢结构系统整体稳定性理论分析的主要步骤包括:
(1) 建立完善结构力学模型
按理论设计结构构型建立完善结构计算模型,包括确定结构几何模型、构件单元模型、构件规格尺寸、构件材料特性、结构边界条件等。
确定整体稳定性验算的荷载组合
荷载组合常采用标准组合。对于活荷载需要按不同的分布模型分别进行组合; 对于风荷载需要按不同的风向分别进行组合。
结构线性整体稳定性分析
对每一种荷载组合,通过对稳定特征方程的分析,分别计算结构线性整体稳定的临界荷载因子()及相应的屈曲模态矩阵()
确定结构的初始几何缺陷模型
对每一种荷载组合,确定相应的初始几何缺陷模式及幅值,可采用“一致缺陷模态法”模拟。若第一临界点为重临界点,应选用与临界荷载因子()相应的所有模态。对于第一临界点附近频率密集的结构,应多选用几个模态。
结构大位移几何非线性整体稳定性分析
包括完善结构和有缺陷结构分析,获得相应的整体稳定最小临界荷载因子()和()
判断构件是否出现屈服变形现象
判断在几何非线性分析过程中,当荷载达到整体稳定最小临界荷载因子()之前,主要构件是非否屈服,若未屈服,则转第(8)步,进行结构整体稳定性评定,否则,进入第(7)步。
结构大位移弹塑性整体稳定性分析
分析缺陷结构的弹塑性整体稳定性,获得相应的整体稳定最小临界荷载因子() 结构整体稳定性判定
论文关键词:中职,计算机,实验教材,建设
教育部高度重视中职学校教材建设,对中职学校和广大教师寄予厚望,在《关于全面推进素质教育、深化中等职业教育教学改革的意见》(2000.3.21)中提出:“中等职业学校要根据实际需要,及时更新教学内容,开发教学资源,编写反映自身教学特色的补充教材和讲义等”。因此,编写、选择和补充适合中职学生口味的“教材套餐”,既要全社会共同参与,形成合力,精耕细作,精心打造,同时也是中职学校和全体教师义不容辞的责任和义务。
1.当前中职计算机专业实验教材存在的主要问题
一是生源质量较以往下滑教育学论文,出现了实验教材偏难,与学生实际接受能力脱钩现象。以往的中职生录取是重点高中与普通高中之间的分数段,而今是在普通高中分数段以下,这是一个客观存在的事实,生源质量下滑,而教材内容和形式变化少,超出了学生的实际接受能力,导致学生学习兴趣下降,学习效果不佳。特别是近年来,这一问题不但没有改变,甚至更加突出。
二是实验教材和理论教材的风格接近,忽视了实验教学的特点,难以实现实验教材的创新。课程总框架上理论课重而实践课轻,而且专业课也是重专业理论而轻技能训练;授课模式上仿效理论教学,实践课无法形成体系。造成实验课成了理论课的附属。
三是实验教材建设未与市场需要接轨,与用人单位需求往往有很大的差距,实验教材建设没有邀请相关专业技术人员参与,对市场了解不多不深,出现了编写实验教材所选素材的“信息孤岛”现象。
四是实验教材的更新速度慢,与计算机软硬件的更新速度相比存在滞后的现象。计算机技术的发展速度较快,而实验教材的更新速度相对较慢,导致实验教学教材和实验教学环境不一致的情况,影响了实验教学的效果。
2.中职计算机专业实验教材建设若干问题探讨
中职生的实验教学,要求我们不断更新教育观念教育学论文,树立以人为本、以学生为本、以学生发展为本的教育理念。教师应在实验教学中,选择好的实验教材,不断完善教案、讲义,进行模块化整合,激发并强化学生的学习兴趣,我国古代教育家孔子说过:“知之者不如好之者,好之者不如乐之者。”可见,一本满足专业要求、学生爱不释手的实验教材是培养学生的学习兴趣,并引导他们逐渐将兴趣转化为稳定的学习动机的前提和基础。
1)建立“三层次”实验教学体系,并配套相适应的三类实验教材
由于计算机专业课程是实践性较强的课程,因此我们在理论教学的同时,特别注重加强实验教学,以培养具备一定基本理论素养和基本技术技能的计算机应用型创新人才。在实验教学过程中,我们选择或编写三类教材,即初级、中级和高级三个版本级别的实验教材来满足三个层次学生的实验教学,即基础性实验、综合性实验和研究开发性实验三个层次的实验教学。学生按不同层次分组,使用不同教材,自主学习,并分别接受教师指导与训练,加强教学的针对性,分类教学有利于调动学生的学习兴趣,培养学生你追我赶的学习氛围,实现不同层次的人才培养目标。
2)组织编写创新型计算机专业实验教材,构建和完善适合中职特色的实验教学体系
创新型计算机专业实验教材的编写从满足经济发展对高素质劳动者和技能型人才的需求出发教育学论文,在课程结构、教学内容、教学方法等方面进行了新的探索与改革创新。以利于学生更好地掌握课程的内容,以利于学生理论知识的掌握和实际操作技能的提高。总体来讲就是打破“三种思维定式”和做好“三个结合”。打破“三种思维定式”其实是先洗脑。具体来讲:一是打破高教系列和中职系列实验教材一体化混编模式;二是打破将理论教材的编写模式应用于实验教材编写模式之中;三是打破单一实验教材版本,不分层次。做好“三个结合”就是要与时俱进。具体来讲:一是要将理论知识与实验内容有机结合起来,相互渗透,互相促进;二是要将实验知识与实际应用结合起来,实现与企业对接,与社会融合;三是要将实验内容与计算机软硬件更新结合起来,实现实验内容与实验环境同步。创新型计算机专业实验教材建设是一项系统工程,由教育主管部门组织团队,有科研院所参与,有企事业精英加盟,通力合作,把中职计算机专业实验教材编写好,既要有内容丰富和适合实验教学的纸质教材,也要有各种风格的视频和音频教材,同时辅之以虚拟实验室,为中职学生奉献教材精品和提供访问友好的虚拟实验室平台,促进中职教育又好又快良性发展。
如何构建和完善适合中职特色的实验教学体系,我们有很多成功的例子,如北大青鸟从教材到教学已形成了自己独特的体系,洪恩集团计算机教学软件使很多人学会了计算机的操作等等,我认为构建和完善适合中职特色的实验教学体系,首先要从实验课程教学质量标准评价体系建设和实验课程教学监督评价体系建设入手,建立和规范对实验课程教学质量的全面监控和全程监控反馈机制教育学论文,同时加大过程考核力度,建立健全相关规章制度,对实验教学质量的提高具有关键作用;其次就是引进、学习一些知名教育集团的职业教育培养模式,加以消化吸收,构建适合本地学生的实验教学体系;最后就是加强职业教育校际间的交流,联合编写教材或讲义,通过实验教学研讨会、教师教学比武和学生技能竞赛等活动来不断完善和丰富本地特色的实验教学体系。
3.结束语
总之,中职计算机专业教材建设一定要以职业能力发展为主线,以培养具备一定基本理论素养和基本技术技能的计算机应用型创新人才为目标,不抛弃,不放弃,让每一个学生都能走上健康发展的道路,在职场中找到自己的位置,最终到达成功的彼岸。
[参考文献]
[1]卫红.本科层次会计学科实验课程教学体系构建研究[J]. 财会通讯(学术版),2009,9.
随着计算机技术的蓬勃发展和广泛应用,计算机辅助教学管理也日趋普及。计算机辅助高等教育评估是其中一个比较新的分支,它的出现不仅改善了教育评估方式,而且有力地促进了传统教育评估方法向高效率、高质量和更加准确可靠的方向转变,促进了教育评估系统的改革,推动了教育评估方法的更新。教育评估是高等教育活动中一个非常重要的方面。而建筑工程专业毕业设计(论文)工作则是本科生培养中一个至关重要的环节,做好本科生毕业设计(论文)评估工作,有助于改进建筑工程专业本科生的培养。遗憾的是,多年来对本科生毕业设计(论文)评估工作普遍重视不够,或者虽然重视,却仅仅停留在定性评价的阶段,缺乏准确可靠的评价标准,所有这些都不同程度地影响了本科生毕业设计(论文)工作的质量。在这种情况下,将计算机引人本科生毕业设计(论文)评估活动中来,可以大大改善这种状况。计算机具有存储量大、可连续工作等特点,而且利用计算机处理评估材料,获得评估结果,具有速度快、效率高、结果可靠的特点,只要指标体系建立合理,计算机能不受任何人为因素的干扰,提供给教学管理人员实事求是的结果,成为他们工作中得力的助手。为此,我们开发研制了建筑工程专业毕业设计(论文)计算机辅助评估预测系统(以下简称评估预测系统)。
二、评估预测系统的开发研制
(一)基本原理与方法
如何实现评估过程从定性到定量的转变,是开发研制该系统的关键所在。我们依据高等教育评估的原理,采用模糊综合评价的基本原理和方法,给出了建筑工程专业毕业设计(论文)评估的量化模型,具体步骤如下:
1.建立毕业设计(论文)评估指标体系。一级指标分为教师、学生、选题、客观条件四个方面。各方面再细分则为二级指标,如:教师方面分为准备工作、课堂讲授、出勤率、答疑情况、教学方式、教师职称等六个方面;学生方面分为学习态度、平时成绩、计算书完成情况、图纸完成情况、创新情况、译文完成情况等六个方面;选题方面分为结构类型、课题新颖程度、计算机应用合理程度、题目性质、外文资料、创新性等六个方面;客观条件分为设计教室、绘图仪器及图板、机房及出图设施、每位教师指导学生人数等四个方面。
2. 设立评价等级V,V=1好(VI),较好(V2),—般(V3),较差(V4)|。
3. 构造单因素评判矩阵R,
其中,R中每一个元素rij表示第i个评价因素对第j个评价等级的隶属度。
4. 设立各评价因素权重集A,例:一级指标权重集八=(0_35,0.35,0.15,0_15),八的取值可根据经验,并依据以往各届毕业设计(论文)评估结果经反复试算确定。
5.计算综合评判矩阵
6.对各级指标体系重复步骤
7.计算测评结果
求得最终评判矩阵B该量化模型针对毕业生总体进行评估,评价毕业生的综合质量,改变了过去仅片面地对个人进行评估的状况。
(二)评估预测系统的计算机开发语言
系统采用流行的Windows人机交互式界面,力争做到界面友好,操作方便。根据本系统的特点和具体要求,我们选用了Windows环境下的VisualBasic5.0可视化编程语言开发本系统。VisualBasic5.0是微软公司开发的功能十分强大而又简单易用的可视化编程环境,编程速度快,界面质量高,是编写Windows应用程序的最佳选择。使用VisualBa¬sic语言开发本系统充分体现了本系统处理数据、信息快捷方便的特点。
(三)评估预测系统的总体结构
在Windows操作系统下安装本系统后,启动系统,进人主菜单,依据界面提示您就可以轻松完成评估工作,系统主框图如下:
三、评估预测系统的优点
1. 量化评估,提前预测,动态管理。该计算机辅助评估预测系统能够对毕业设计(论文)工作方案可能取得的效果进行预测。教学管理人员只要依据该系统的提示输人各项有关毕业设计(论文)工作方案的参数,系统随即能计算出毕业设计(论文)工作的成绩,从而对各项工作方案的结果作出预测。通过反复改变参数——计算成绩,教学管理人员就能够发现各种方案的优缺点,即哪一项安排对毕业设计(论文)工作是有利的,如果实施下去会取得好的工作效果;哪一项安排对毕业设计(论文)工作是不利的,实施下去必将导致毕业设计(论文)工作成绩下滑。这种预测如果安排在毕业设计(论文)工作开始之前,管理者就能有效地对毕业设计(论文)方案进行调整,从而获得满意的效果。我们将99届与往届的工作方案作了一下比较,发现由于老教授退休较多,本次毕业设计年轻教师比例上升,但年轻教师职称偏低,讲师居多,教授、副教授比例严重下降,用该系统初步预测发现毕业设计整体质量将要下滑。根据这个信息,系学术委员会马上采取措施,对年轻教师提出更高要求:指导教师中讲师一级必须具有硕士学历,且应有一定的工程实践经验,在课题选择及指导上必须具有较强的创新性,最后经系学术委员会严格审查后方可上岗。再用本系统预测后发现,毕业设计(论文)工作最终得分并未降低,反而稍有提高。目前,99届毕业设计(论文)工作已经结束,最终得分的确较98届有所提高,与系统预测结果吻合较好。
2. 有效监督,对症下药。毕业设计(论文)工作进行到中期时,系里为了加强对毕业设计(论文)工作的监督管理,一般要求安排一次中期检查。该检查能发现一些问题,但对这些问题造成的结果却很难预知。这样的话,发现缺点往往不能及时纠正,任其发展下去必将导致不良后果。这时,如果用该计算机辅助评估预测系统进行一下“中期评估”,各种问题可能导致的结果将一览无遗,且该系统会帮助教学管理人员清楚地发现各种导致毕业设计(论文)工作成绩偏低的原因,从而有针对性地,高效率地对缺点进行纠正,对优点给予肯定,保证毕业设计(论文)工作顺利进行,最终取得优异成绩。例如,99届某老师所带设计组,由于指导教师出勤率过低,中期检查时系统评估预测该设计小组成绩偏低,系领导马上对指导教师进行了批评教育。由于纠正及时,最终这个小组成绩达到了总体平均成绩。
3.总结校核,公平合理。毕业设计(论文)工作结束后,系里要对指导教师、学生的工作学习成绩进行评定。由于诸多非客观因素的影响,结果往往难以做到公平合理。此时借助该系统对毕业设计(论文)工作的成绩进行校核评估,可使毕业设计(论文)成绩评定1:作更加公平合理。该软件是“诚实的检查官”,只要输入的各项参数正确,系统将实事求是地予以评分,这就摒弃了人为因素的干扰。