首页 > 文章中心 > 人工智能教育的趋势

人工智能教育的趋势

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇人工智能教育的趋势范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

人工智能教育的趋势

人工智能教育的趋势范文第1篇

关键词:人工智能教育;新模式;改革;构想

教育是着眼于未来的事业,教育的首要任务就是为未来社会培养相适应的合格人才。随着人工智能的诞生和发展,我国已经开始将人工智能应用于教育领域,并显示出人工智能对于弥补当前教育存在的种种缺陷和不足,推动教学现代化和教育发展改革进程起着越来越重要的作用。在现代医学发展中,工程科学与临床医学不断融合,相互进步。近几年,随着人工智能技术,机器人技术,虚拟与增强现实技术,3D打印技术与医学不断的融合发展,衍生出一系列的医学诊疗技术,仪器,大大推进了医学发展。从2013年到2017年,国务院、发改委、FAD连续发文,多次提及医疗走智能化、云化的趋势,为推动智能医疗领域保驾护航。智能与医学的结合已经是大势所趋,因此,为培养大量智能医学人才极有必要对智能医学教育新模式进行深入研究。

一、目前医学教育以及医学人才培养状况

智能医学工程是一门将人工智能、传感技术等高科技手段综合运用于医学领域的新兴交叉学科,研究内容包括智能药物研发、医疗机器人、智能诊疗、智能影像识别、智能健康数据管理等。

智能医学工程的毕业生掌握了基础医学、临床医学的基础理论,对智慧医院、区域医疗中心、家庭自助健康监护三级网络中的医学现象、医学问题和医疗模式有较深入的理解,能熟练地将电子技术、计算机技术、网络技术、人工智能技术,应用于医疗信息大数据的智能采集、智能分析、智能诊疗、临床实践等各个环节。实验教学正是融合型创新人才的最好培养方式。智能医学人才的培养需要各学科间的相互交融更为紧密,学生的创新应用能力才能得到更好的培养。与此同时,由于绝大部分医工结合的专业大部分归属与工科学院下,缺乏必要的临床经验,因而学生不能很好的把握新技术的应用。

而国内相关人才缺口还非常大,目前,国内仅仅有生物医学工程、医学信息工程等工科专业培养医工结合人才。但是囿于培养时间与培养模式,他们往往只能针对具体某一方向,并且目前的培养体系还多着重于工学技术的研究,缺乏临床实践。

二、智能+医学教育的必要性探究

2.1技术进步对医疗人员的诊疗帮助

以癌症的治疗为例,由于针对癌症药物的研究何药物数量非常巨大,对于普通医生在短时间内难以进行准确的判断针对癌症的研究和药物数量非常巨大,具体来说,目前已有800多种药物和疫苗用于治疗癌症。但是,这对于医生来说却有负面的影响,因为有太多种选择可供选择,使得为病人选择合适的抗癌药物变的更加困难。同样,精确医学的进步也是非常困难的,因为基因规模的知识和推理成为决定癌症和其他复杂疾病的最终瓶颈。今天,许多受过专业训练的医学研究员需要数小时的时间来检查一个病人的基因组数据并作出治疗决定。

上述问题在拥有工学、医学双背景的医生手中已经不是问题,通过目前日渐成熟的AI技术,对于大量的医疗数据进行检索,通过可靠的编程手段,通过人工智能技术,建立完备的医疗数据库,帮助医生进行诊疗。据调查,美国微软公司已经研制出帮助医生治疗癌症的人工智能机器,其原理是对于所有关于癌症的论文进行检索,并提出对于病人治疗最有效的参考方案,它可以通过机器学习来帮助医生找到最有效,最个性化的癌症治疗方案,同时提供可视化的研究数据。

2.2智能医学对于新时代医生培养的影响

人工智能通过计算机可为学生提供图文并茂的丰富信息和数据,一方面加强了学生的感性认识,加强了对所学知识的理解和掌握,从而提高了教学质量。同时,人工智能可帮助教师完成繁杂的、需适应各种教学的教学课程、课件等设计,使教师将更多的精力专注于学与教的行为和过程,从而提高教学效率。正如前面所述例子,智能网络模块化学习平台可使教学摆脱以往对于示教病例的依赖,拓展了学生们的学习空间和时间,可极大地提高医学学习效率和教学质量。

教育与人工智能相结合将会创新教育方式和理念。北京师范大学何克抗教授在《当代教育技术的研究内容与发展趋势》中提到当代教育技术的五大发展趋势之一就是“愈来愈重视人工智能在教育中应用的研究”。结合上述人工结合上述人工智能在医学教育中的创新作用,下面就人工智能结合医学学教育新模式提出一些构想。

三、交叉医学人才的培养

3.1建立智能医学人才培养体系的必要性

目前智能医学的研发和临床还存在隔阂,临床医生并没有很好地理解人工智能,无法从实践出发提出人工智能能够解决的方向,而人工智能的产业界热情高涨,却未必能踩准点,所以产业界需要和临床深度沟通融合,才能真正解决看病难、看病贵的问题,缓解医疗资源紧张。目前,国内仅仅有生物医学工程、醫学信息工程等工科专业培养医工结合人才。

3.2医学人才培养体系初步构想

据悉,目前已经有天津大学、南开大学等几所院校开设了智能方向的医学本科教育,旨在弥补上述缺口,相关院校也在积极探索新型人才培养方案。应当为医学生开设人工智能课程,应当培养具备生命科学、电子技术、计算机技术及信息科学有关的基础理论知识以及医学与工程技术相结合的科学研究能力。该专业的学生主要学习生命科学、临床医学,电子技术、计算机技术和信息科学的基本理论和基本知识,充分进行计算机技术在医学中的应用的训练,具有智能医学工程领域中的研究和开发的基本能力。

人工智能教育的趋势范文第2篇

[关键词]人工智能;财务机器人;会计电算化;人才培养

0引言

正如会计电算化替代传统手工会计一样,随着信息化、智能化、互联网、大数据等科技元素在会计信息化中的应用,人工智能悄然到来。自2017年“会计证被取消”,到普华永道、安永、德勤等国际会计师事务所纷纷推出财务机器人,这些举动在财务圈引起了轩然大波,许多中职学校会计相关专业的学生,担心基础核算会计将被人工智能取代,对未来颇感担忧。根据世界经济论坛2016年的调研数据预测,到2020年,在全球15个主要的工业化国家中,机器人与人工智能的崛起,将导致510万个就业岗位的流失,未来20年最有可能被机器人抢走饭碗的岗位包括低端制造业的生产、会计等[1]。2017年7月,中国《新一代人工智能发展规划》,将人工智能上升为国家战略。所以笔者认为,基于人工智能背景下的中职会计电算化专业人才培养方式将面临变革,在教学中应站在未来发展的高度,适应信息化发展,及时掌握人工智能相关技术,实现由传统会计电算化专业人才培养向智能化管理会计转型。

1人工智能的概念[2]

人工智能即AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术以及应用系统的一门新的技术科学,它是指由人工制造出来的系统表现出来的智能。目前人工智能在计算机科学领域内,受到了广泛的发挥。在机器人、经济政治决策、控制系统、仿真系统中得到应用。人工智能是信息技术发展的必然,它已悄悄地改变着人类的各行各业。人工智能在会计行业中应用,促使会计由简单核算向管理方向变革,推动了会计行业的发展,同时也促使着中职学校会计及相关专业的人才培养转变。人工智能取代传统的会计电算化操作人员是一种趋势,但也是一种转变,自我提升的机遇。

2中职学校传统会计电算化专业人才培养[3]

2.1课程偏传统基础核算类,轻参与、管理类会计课程

在多数中职学校会计电算化教学计划课程设计中,传统财务会计类课程占大多数,管理会计类课程设置单一或者没有。而财务机器人的出现,则能够替代大部分重复性、流程性基础会计核算工作。

2.2会计实操偏基础性会计技能,轻数据分析、挖掘

在实践教学及技能培养中,过于注重培养学生点钞、传票的翻打、会计书写、凭证装订,会计电算化软件操作机械性录入等。在当前大数据、人工智能背景下,可以让会计人员摆脱繁杂事务,重点放在会计数据分析与数据挖掘,为企业决策提供服务。

2.3课程偏模拟操作,轻实际操作

无论是手工核算还是会计电算化记账,大多数实操是模拟一个企业一个月的业务,学生根据教材或老师给予的信息进行会计处理,过账,做报表。一学期就是这样反反复复练习。学期结束,虽然考试合格,但仍有很多学生不明白为什么这么处理,特别在月末业务处理更加模糊不清,例如工资发放,计提税费、费用摊销、成本及费用结转等。还有绝大多数学生不知道真实环境如何计税、报税、纳税,只是理想中的学习,为了做账而做账。

3人工智能背景下的中职会计电算化人才培养[4]

3.1由基础核算型初级人才向有思想的中级人才转变

人工智能在会计行业中的应用,会计核算软件中的基础数据录入、凭证录入与审核、记账、编制科目汇总表、材料的收发统计、报表的编制等操作很容易被财务机器人替代,但是也有一些是机器无可替代的,需要有思想的“人”来处理。例如:由于大环境变化,企业的固定资产有明显减值趋势,而财务机器人并不能分析与判断这个固定资产是否会减值或减值多少,如果财务上不及时做出处理,将可能导致企业少确认资产减值损失,虚增了企业的资产和利润,对于企业来说,这属于信息失真。在大数据时代,中级类型的会计人才储备相对较少,中职学校的会计电算化教育,需要培养的应当是此类会计人才。教学会学生不能只拘泥于看财务数据,还要学会合理利用有效的会计数据服务于企业的发展,提高企业的核心竞争力。

3.2由传统的财务会计向人工智能环境下的管理会计人才转变

财务机器人的出现,替代了传统的财会人员进行基础数据的录入,日常凭证的填制、审核、记账;凭证、账簿、报表的生成;成本结转、折旧等财务处理;纳税申报等,这不仅提高了会计工作的效率,减少了传统的会计人员繁杂的日常账务处理工作,但同时也让传统的会计人员失去工作。作为会计的教育者,如何让学生在未来立于不败之地,不被财务机器人替代,就需要学校适应时代趋势,教学重点由传统的基础核算向智能管理型会计演变。会计从事的活动,除了重复、机械、烦琐的事情外,还可以创造更多价值,比如:评估、判断、沟通、协作、建议等。管理型计人才就是通过智能机器人核算出的精确信息,对企业的未来做出评估、预判、建议等,甚至帮助企业管理者做出决策。

3.3由会计电算化软件操作员向人工智能会计系统的设计者转变

人工智能环境下的财务机器人,实质就是一种自动化运行的程序,这种程序的设计,需要设计人员既要懂计算机又要懂会计。而现在的中职学校,会计电算化专业主要培养的是会计专业人才,操作会计核算软件,而很少在计算机方面进行教学。在人工智能环境下,懂得会计专业的人才只是人工智能会计系统设计的主导者,而计算机方面人才则根据会计法及相关规则进行系统设计,自动化处理会计业务需要想到协作,融会贯通。人工智能永远是基于系统的规则和大数据,如果规则发生变化,人工智能将无法起作用。在日常教学中,哪怕我们不能完全让学生掌握编写程序,但是应当教会学生看懂和读懂程序,对机器人“思想”进行修改,也算是人工智能的掌控者,而不是被替代者。

4人工智能背景下中职学校会计电算化专业人才培养应对策略[5]

4.1更新理念与改变教学计划

笔者认为,在人工智能背景下,在中职学校,会计及电算化专业办学理念中应加入人工智能等相关技术,同时其人才培养方案、专业建设、教学计划等方面都需要做出相应的调整,培养适应于人工智能时代复合型人才。例如,中职学校会计或会计电算化专业的教学计划中,计算机方面课程开设仅有计算机应用及会计电算化软件操作课程,数据处理、编程类或人工智能课程几乎没有,这样的教学安排不利于学生对未来人工智能的应对能力培养,应当增加相应的计算机方面课程,财务管理、会计政策、法律法规等人工智能无法替代的课程,减少将来可能被财务机器人替代的会计技能课程。

4.2提高教师人工智能等相关理念和技术

要给学生一碗水,教师必须要有一桶水,虽然人工智能的出现解决了许多教育上的难题,但是教师在人工智能背景下还需要增强自身信息化能力,学习人工智能相关理念,掌握人工智能相关技术。这就需要学校给予老师多点人文关心以及人工智能方面的继续教育。

4.3关注人文综合素质培养,让人工智能为我所用

财务机器人出现,会计人员有更多时间去从事财务机器人无可替代更具有情感类的工作,这些工作需要人与人之间的沟通与交流,因此,笔者认为,中职会计电算化专业教育,不仅需要培养学生人工智能动手能力,还要关注学生思想道德、人文综合素质的培养,提升学生的思想道德水平,教会学生爱岗敬业,诚实守信、乐于助人,激发学生的学习主动性和创造性。如果没有良好职业道德水平,即使掌握了人工智能技术,也将会破坏规则,让会计信息失真。我们不能教出人工智能的“奴才”,应当让人工智能为人类所用,做人工智能的主人。

5结语

总之,人工智能正在快速又深刻地改变我们的生活和工作方式,将人工智能用于会计行业会也将会不断得到规范。对于人工智能这类新兴技术在财务行业的运用初期可能会让学生产生恐慌、彷徨,认为学校教育无用。作为专业教师,要教会学生变革思想,提高其对会计价值的认识,提高其人文综合素养,拥有过硬的专业技术,不断地完善专业胜任能力,把握机会,主动迎接挑战,那么人工智能就只是会计人员的好帮手,而不是掘墓人。

主要参考文献

[1]彭维.浅谈人工智能时代财务的变革与转型[J].中国管理信息化,2018(19):39-41.

[2]巩彦哲.人工智能在会计管理中的应用微探[J].财会学习,2018(20):86-87.

[3]卢映芝,黄静.人工智能与会计课程实操的结合探讨———VR技术的引进[J].现代商贸工业,2018(30):160-162.

[4]王立法.论人工智能环境下会计人才培养所面临的挑战及见解[J].财经界,2018(6).

人工智能教育的趋势范文第3篇

关键词:智能科学与技术;知识结构;应用型人才;人才培养;知识型能力本位教育

中图分类号:G64文献标识码:A

文章编号:1009-3044(2020)25-0153-03

1引言

智能科学与技术主要包含智能科学和智能技术两部分内容[1]:智能科学是以人如何认知和学习为研究对象,探索智能机器的实现机理和方法;智能技术则是将这种方法应用于人造系统,使之具有一定的智能或学习能力,让机器系统为人类工作。目前,在本科专业目录中,智能科学与技术专业是计算机类之下的特设专业,在现有的人工智能专业群中,除了新设的人工智能专业外(2019年全国共有35所高校获首批人工智能新专业建设资格),智能科学与技术专业与全球范围大力推进与快速发展的人工智能关系最密切,契合度最高。一方面,智能科学与技术的专业发展和人才培养将为人工智能技术提供理论支撑、技术推进和人才支持,另一方面,人工智能产业现状和未来发展趋势直接影响着智能科学与技术的专业发展和人才需求。

2人工智能时代对人才的需求

站在国家战略的高度来看,人工智能将成为新一轮产业变革的核心驱动力,可以实现社会生产力的整体跃升,因此人工智能将成为引领未来的战略性技术,世界主要发达国家都把发展人工智能作为提升国家竞争力、维护国家安全的重大战略。

随着人工智能时代的到来,许多企业对具有智能科学与技术专业背景的人才有着巨大的需求。首先,IT企业纷纷涉足智能科学领域,提高产品智能水平;其次,许多传统制造业也在转型,从劳动密集型到知识密集型,进一步提升到智能制造型,并逐渐具备高精尖装备制造能力;此外,医疗、通讯、交通等行业也对智能科技人才有着迫切的需要。人工智能对各行各业的影响,充分体现了智能科技的高速发展,对人才数量和素质要求也越来越高。

从人才的金字塔型分布来看,智能科学与技术领域不仅需要高端学术型人才,更需要接地气、重实践的应用型人才。随着“中国智造”的不断推进,智能科学与技术领域已由顶层设计和关键技术突破向生产、应用、装配、服务等环节延伸,迫切需求大批专业技术精、实践能力强、操作流程熟的应用型人才。2019年,人力资源和社会保障部、国家市场监管总局、国家统计局向社会了13个新职业信息,包括人工智能工程技术人员、物联网工程技术人员、大数据工程技术人员等,这也从另外一个侧面说明人工智能等技术推动了产业结构的升级,催生了相关专业技术类新职业,可形成相对稳定的从业人群。

3应用型人才培养模式分析

《中国制造2025》以推进智能制造为主攻方向,强调健全多层次人才培养体系,提到强化职业教育和技能培训,引导一批普通本科高等学校向应用技术类高等学校转型,建立一批实训基地,开展现代学徒制试点示范,形成一支门类齐全、技艺精湛的技术技能人才队伍。

通常而言,人才类型分为三类[2]:学术型人才、应用型人才、技能型人才。实际上从现代职业教育的发展和社会需求来看,应用型人才和技能型人才的界限相对模糊,可统称为应用型人才,即把成熟的技术和理论应用到实际的生产、生活中的技术技能型人才。从国家的层面来看,为了适应人工智能时展,人才需求数量基数最多、缺口最大的就是应用型人才,这也对众多高校培养人才的导向产生重大影响。这里我们重点讨论智能科学与技术应用型本科人才的培养,可从职能、知识结构、能力结构、行业(产业)导向四个方面来分析。

3.1职能

智能科学与技术应用型人才是培养面向各类智能科学与技术的工程设计、开发及应用,掌握各类现代智能系统设计、研发、集成应用、检测与维修、运行与管理等技术,具有扎实理论基础、较强工程实践和创新能力的高素质应用型工程技术人才。

3.2知识结构

智能科学与技术专业充分体现了跨学科的特点,其知识结构包含了三个并行的基础领域:电子信息、控制工程、计算机,也蕴含了电子信息工程、控制科学与工程、计算机科学与技术等学科的交叉和融合,体现了智能感知与模式识别、智能系统设计与制造、智能信息处理三个方面的专业内涵。

(1)智能感知与模式识别

属于电子信息与计算机交叉领域,主要定位在机器视觉与模式识别。包括三维建模与仿真、图像处理与分析、图像理解与识别、机器视觉、模式识别、神经网络、深度学习等。主要课程包括:电子技术基础、信号系统与数字信号处理、数字图像处理、模式识别等。

(2)智能系统设计与制造

属于控制工程领域,包括自动控制、无人系统与工程、精密传感器设计与应用等。主要课程包括:机械基础、工程力学、自动控制原理、传感器与测试技术、计算机控制技术、机电系统分析与设计等。

(3)智能信息处理

属于计算机领域,包括交通大数据、汽车与道路安全大数据等的分析与处理、信息处理与知识挖掘、信息可视化等。主要课程包括:智能科学技术导论、计算机程序设计、微机原理与接口技术、数据结构与算法、嵌入式系统设计等。

3.3能力结构

智能科学与技术应用型人才培养着眼于人工智能工程应用,要求学生具有运用计算机及相关软硬件工具进行大数据的采集、存储、处理、分析、应用的能力;具备智能系统的设计、开发、集成、运行与管理的能力;注重培养学生综合运用所学的智能科学与技术专业的基础理论和知识,分析并解决工程实际问题的能力,其能力结构可以借鉴能力本位教育(CompetencyBasedEducation,简称CBE)模式[3]。

CBE是国际上较流行的一种应用型人才培养模式,主要代表国家为加拿大和美国。该模式以能力为人才培养的目标和评价标准,一切教学活动均围绕综合职业能力的培养展开,CBE人才培养模式主要有以下三方面的特色:能力导向的教学目标;模块化的课程结构;能力为基准的目标评价体系。该模式所培养的本科应用型人才具有较强的专业综合能力和职业能力[4],在一定时期得到社会的广泛认可,但是单纯的CBE模式并不能完全适应人工智能时代对人才培养的需求,这是由于目前许多职业岗位在人工智能的冲击下,其形式和内容均会产生动态变化,要求现阶段的人才培养具有延伸性和前瞻性,既要兼顾眼前,也要考虑应对智能化浪潮,打好基础,提高自学习能力。因此,智能科学与技术应用型人才培养有一定岗位针对性,但并不是完全固化岗位内容及层次、固化知识属性,必须强化自我学习能力,才能实现能力可持续增长,岗位的向上流动性以及知识和经验的进化,才能真正适应人工智能时展的需求。

自我学习能力的形成与提高往往源于知识结构的构建[5]。为了塑造更合适的能力结构,需要CBE模式与知识结构的相辅相成,有鉴于此,将这种新型人才培养模式称之为知识型能力本位教育(Knowledge&CompetencyBasedEducation,简称KCBE)模式,这也意味着在人才培养过程中,将知识结构与能力结构放在并重的地位,既着眼于预期能力的培养,也必须让学生筑牢学科专业基础,在走向社会以后,在知识引擎的作用下,通过自我学习,具备并提升适应未来的、新的智能化岗位需求的能力。

3.4行业(产业)导向

从智能科学与技术专业的角度,培养的应用型人才以“智能化应用”为就业大方向,具体而言,包括:

(1)智能感知与模式识别领域

主要从事电子信息的获取、传输、处理、分析、应用等领域的研究、设计及应用,包括图像处理、机器视觉、工业视频检测与识别、视频监控、传感器设计及应用等。

(2)智能系统设计与制造领域

主要从事智能装备、智能制造、智能管理、智能服务等领域的设计、制造及应用,包括智能工厂、智能车间、智能生产线、智能物流、以及智能运营与服务等。

(3)智能信息处理领域

主要从事计算机数据处理、分析、理解、管理、以及服务等领域的研究、设计及应用,包括数据存储与管理、数据分析与预测、交通大数据分析应用、道路与汽车安全大数据分析、智能交通、智能电力、智能家居、智慧城市等。

涉及的产业领域主要包括智能制造,如工业互联网系统集成应用,研发智能产品及智能互联产品等。其他的领域还包括智能农业、智能物流、智能金融、智能商务等。

产业需求带动人才培养,人才培养在满足产业需求的同时推动技术进步,而技术进步又引燃了新的产业需求。产业需求与人才培养的相互作用,呈现出螺旋式上升的发展态势,这在人工智能相关产业与智能科学与技术应用型本科人才培养之间表现的得尤为突出。

4KCBE模式人才培养的主要措施和途径

智能科学与技术专业应用型本科人才的培养模式一定是和人才需求、学校定位相適应的。培养应用型人才,应注重学生实践能力,从教学体系建设体现“应用”二字,其核心环节是实践教学。结合上述的KCBE培养模式,知识结构在能力培养过程中也占有非常重要的地位,因此在能力培养方面,知识和实践作为两大要素,不能偏废任何一方,必须齐头并进,既要固基础,也要重实践。

(1)筑牢智能科学与技术专业知识基础,构建与智能化应用相关的知识体系

在本科的低年级阶段,应注重公共基础课,特别是数学和力学课程,还应充分了解智能科学与技术专业的内涵,让学生对所学专业有一个比较全面的认识。在本科中高年级阶段,重点强化专业基础,包括电子技术基础、自动控制原理、传感器与测试技术、微机原理与接口技术、数据结构与算法等。归纳地说,应该筑牢数理基础、计算机基础、机电基础和控制基础,因此对原理课程需要强化,这样对很多工作机理、来龙去脉的理解才能深刻。

(2)增强智能科学与技术专业的实践环节,构建以能力培养为重心的教学体系

按照KCBE模式,校企合作是强化实践的一种重要形式[6]。学校根据人工智能企业实际情况灵活设置实践课程内容,根据企业发展趋势及时调整课程体系以避免教学内容与企业需求相脱离。人工智能企业还可以参与学校教学目标和教学计划的制定,并为学校实践教学提供各方面支持,从而提高人才培养的针对性。

人工智能教育的趋势范文第4篇

【关键字】人工智能;教育;进展

【中图分类号】G40-057 【文献标识码】A 【论文编号】1009―8097(2008)13―0018―03

人工智能是一门综合的交叉学科,涉及计算机科学、生理学、哲学、心理学、哲学和语言学等多个领域。人工智能主要研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能,其长期目标是实现人类水平的人工智能。[1]从脑神经生理学的角度来看,人类智能的本质可以说是通过后天的自适应训练或学习而建立起来的种种错综复杂的条件反射神经网络回路的活动。[2]人工智能专家们面临的最大挑战之一是如何构造一个可以模仿人脑行为的系统。这一研究一旦有突破,不仅给学习科学以技术支撑,而且能反过来促使人脑的学习规律研究更加清晰,从而提供更加切实有效的方法论。[3]人工智能技术的不断发展,使人工智能不仅成为学校教育的内容之一,也为教育提供了丰富的教育资源,其研究成果已在教育领域得到应用,并取得了良好的效果,成为教育技术的重要研究内容。

人工智能的研究更多的是结合具体领域进行的,其主要研究领域有:专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、智能决策支持系统、人工神经网络和分布式人工智能等。[4]目前,在教育中应用较为广泛与活跃的研究领域主要有专家系统、机器人学、机器学习、自然语言理解、人工神经网络和分布式人工智能,下面就这些领域进行阐述。

一 专家系统

专家系统是一个具有大量专门知识与经验的程序系统,它使用人工智能技术,根据某个领域中一个或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复杂问题。[5]专家系统主要组成部分为:知识库,用于存储某领域专家系统的专门知识;综合数据库,用于存储领域或问题的初始数据和推理过程中得到的中间数据或信息;推理机,用于记忆所采用的规则和控制策略的程序,使整个专家系统能够以逻辑方式协调地工作;解释器,向用户解释专家系统的行为;接口,使用户与专家系统进行对话。近几十年来,专家系统迅速发展,是人工智能中最活跃、最有成效的一个研究领域,广泛用于医疗诊断、地质勘探、军事、石油化工、文化教育等领域。

目前,专家系统在教育中的应用最为广泛与活跃。专家系统的特点通常表现为计划系统或诊断系统。计划系统往前走,从一个给定系统状态指向最终状态。如计划系统中可以输入有关的课堂目标和学科内容,它可以制定出一个课堂大纲,写出一份教案,甚至有可能开发一堂样板课,而诊断系统是往后走,从一个给定系统陈述查找原因或对其进行分析,例如,一个诊断系统可能以一堂CBI(基于计算机的教学,computer-based instruction)课为例,输入学生课堂表现资料,分析为什么课堂的某一部分效果不佳。在开发专家计划系统支持教学系统开发(ISD)程序的领域中最有名的是梅里尔(Merrill)的教学设计专家系统(ID Expert)。[6]

教学专家系统的任务是根据学生的特点(如知识水平、性格等),以最合适的教案和教学方法对学生进行教学和辅导。其特点为:同时具有诊断和调试等功能;具有良好的人机界面。已经开发和应用的教学专家系统有美国麻省理工学院的MACSYMA符号积分与定理证明系统,我国一些大学开发的计算机程序设计语言、物理智能计算机辅助教学系统以及聋哑人语言训练专家系统等。[7]

目前,在教育中,专家系统的开发和应用更多的集中于远程教育,为现代远程教育的智能化提供了有力的技术支撑。基于专家系统构造的智能化远程教育系统具有以下几个方面的功能:具备某学科或领域的专门知识,能生成自己的提问和应答; 能够分析学生的特征,评价和记录学生的学习情况,诊断学生学习过程中的错误并进行补救教学;可以选择不同的教学方法实现以学生为主体的个别化教学。[8]目前应用于远程教育的专家系统有智能决策专家系统、智能答疑专家系统、网络教学资源专家系统、智能导学系统和智能网络组卷系统等。

二 机器人学

机器人学是人工智能研究是一个分支,其主要内容包括机器人基础理论与方法、机器人设计理论与技术、机器人仿生学、机器人系统理论与技术、机器人操作和移动理论与技术、微机器人学。[9]机器人的发展经历了三个阶段:第一代机器人是以 “示教―再现”方式进行工作;第二代机器人具有一定的感觉装置,表现出低级智能;第三代机器人是具有高度适应性的自治机器人,即智能机器人。目前开发和应用的机器人大多是智能机器人。机器人技术的发展对人类的生活和社会都产生了重要影响,其研究和应用逐渐由工业生产向教育、环境、社会服务、医疗等领域扩展。

机器人技术涉及多门科学,是一个国家科技发展水平和国民经济现代化、信息化的重要标志,因此,机器人技术是世界强国重点发展的高技术,也是世界公认的核心竞争力之一,很多国家已经将机器人学教育列为学校的科技教育课程,在孩子中普及机器人学知识,从可持续和长远发展的角度,为本国培养机器人研发人才。[10]在机器人竞赛的推动下,机器人教育逐渐从大学延伸到中小学,世界发达国家例如美国、英国、法国、德国、日本等已把机器人教育纳入中小学教育之中,我国许多有条件的中小学也开展了机器人教育。

机器人在作为教学内容的同时,也为教育提供了有力的技术支撑,成为培养学习者创新精神和实践能力的新的载体与平台,大大丰富了教学资源。多年来,我国中小学信息技术教育的主要载体是计算机和网络,教学资源单一,缺乏前瞻性。教学机器人的引入,不仅激发了学生的学习兴趣,还为教学提供了丰富的、先进的教学资源。随着机器人技术的发展,教学机器人种类越来越多,目前在中小学较为常用的教学机器人有:能力风暴机器人、通用机器人、未来之星机器人、乐高机器人、纳英特机器人、中鸣机器人等。

三 机器学习

机器学习是要使计算机能够模仿人的学习行为,自动通过学习来获取知识和技巧,[11]其研究综合应用了心理学、生物学、神经生理学、逻辑学、模糊数学和计算机科学等多个学科。机器学习的方法与技术有机械学习、示教学习、类比学习、示例学习、解释学习、归纳学习和基于神经网络的学习等,近年来,知识发现和数据挖掘是发展最快的机器学习技术。机器学习(自动获取新的事实及新的推理算法)是使计算机具有智能的根本途径,对机器学习的研究有助于发现人类学习的机理和揭示人脑的奥秘。[12]

随着计算机技术的进步和机器学习研究的深入,机器学习系统的性能大大提高,各种学习算法的应用范围不断扩大,例如将连接学习用于图文识别,归纳学习、分析学习用于专家系统等,大大推动了在教育中的应用,例如在建构适应性教学系统中,用机器学习与朴素的贝叶斯分类器动态了解学生的学习偏好,有较高的准确率[13]。基于案例的推理(case-based reasoning,CBR)是一种新兴的机器学习和推理方法,其核心思想是重用过去人们解决问题的经验解决新问题,在计算机辅助教育方面,已经出现了基于CBR的图形仿真教育系统,并且,针对个体特征的教育教学方法研究也有所突破。[14]另外,数据挖掘和知识发现在生物医学、金融管理、商业销售等领域的成功应用,不仅给机器学习注入新的生机,也为机器学习在教育中的应用提供了新的前景。

四 自然语言理解

自然语言理解就是研究如何让计算机理解人类的自然语言,以实现用自然语言与计算机之间的交流。一个能够理解自然语言信息的计算机系统看起来就像一个人一样需要有上下文知识以及根据这些上下文知识和信息用信息发生器进行推理的过程。[15]自然语言理解包括口语理解和书面理解两大任务,其功能为:回答问题,计算机能正确地回答用自然语言提出的问题;文摘生成,计算机能根据输入的文本产生摘要;释义,计算机能用不同的词语和句型来复述输入的自然语言信息;翻译,计算机能把一种语言翻译成另外一种语言。由于创造和使用自然语言是人类高度智能的表现,因此对自然语言处理的研究也有助于揭开人类高度智能的奥秘,深化对语言能力和思维本质的认识。[16]

自然语言理解最早的研究领域是机器翻译,随着应用研究的广泛开展,也为机器人和专家系统的知识获取提供了新的途径,例如由MIT研制的指挥机器人的自然语言理解系统SHRDLU就可以接收自然语言,进行人机对话,回答关于桌面上积木世界中的各种问题。同时,对自然语言理解的研究也促进了计算机辅助语言教学和计算机语言设计等方面的发展,例如“希赛可”网络智能英语学习系统,这个基于网络的“人-机”语境的建立,突破了普通英语教师和传统的单机的多媒体教学软件所能具备能力限制,也比建立于网络的“人-人”语境更具灵活性,可以为远程学习者提供良好的英语学习支持,在国内第一次系统地将用自然语言进行的人机对话系统应用在计算机辅助外语教学上,在国际上也是一种创新。[17]

五 人工神经网络

人工神经网络就是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能的元件(即人工神经元),按各种不同的联结方式组织起来的一个网络,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能,例如可以用于模仿视觉、模式识别、声音信号处理、控制、故障诊断等领域,人工神经元是人工神经网络的基本单元。[18]人工神经网络有两种基本结构:递归(反馈)网络和多层(前馈)网络,两种主要学习算法:有指导式学习和非指导式学习。

人工神经网络从模拟人类大脑神经网络的结构和行为出发,具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合于处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题,[19]这使人工神经网络具有更大的发展潜能,目前已经开发和应用的人工神经网络模型有30多种。人工神经网络在教育中的应用大多是与教学专家系统相结合,以此来改进教学专家系统的性能,提高智能性,使其在教学过程中对突发问题具有更好的应对能力。人工神经网络在学校管理中也得到应用,例如采用误差反传算法(BP)的多层感知器已应用于高校管理之中。

六 分布式人工智能(Distributed Artificial Intelligence,DAI)

分布式人工智能是分布式计算与人工智能结合的结果,研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型,主要研究问题是各Agent之间的合作与对话,包括分布式问题求解和多Agent系统两个领域。[20]分布式人工智能系统一般由多个Agent组成,每个Agent又是一个半自治系统,Agent之间及Agent与环境之间进行并发活动并进行交互来完成问题求解。[21]由于分布式人工智能系统具有并行、分布、开放、协作和容错等优点,在资源、时空和功能上克服了单智能系统的局限性,因此获得了广泛的应用。

分布式人工智能中的Agent和多Agent技术在教学中的应用逐渐受到关注。在教学中引入Agent可以有效地提高教学系统的智能性,创造良好的学习情境,并能激发学习者的学习兴趣,进行个性化教育。目前,Agent和多Agent技术多用于远程智能教学系统,通过利用其分布性、自主性和社会性等特点,提高网络教学系统的智能性,使教学资源得到充分利用,并可实现对学习者的学习行为进行动态跟踪,为学习者的网络学习创造合作性的学习环境。在网络教学软件中应用Agent技术的一个典型是美国南加利福尼亚大学(USC)开发的教学Adele(Agent for Distance Education - Light Edition) [22]。Agent技术在网络教学软件中取得的良好效果,促进了研究者对分布式人工智能在教育中的应用研究。

综上所述,科学技术的发展将会推动人工智能技术在教育中应用的广度和深度。从人工智能的应用趋势来看,人工智能在教育中应用的扩展可以通过以下三个方面进行:一是人工智能与其他先进信息技术结合。人工智能已经与多媒体技术、网络技术、数据库技术等有效的融合,为提高学习效率和效度提供了有力的技术支持,而引起教育技术界广泛关注。[23]例如人工智能技术通过与多媒体技术相结合,可以提高智能教学系统的教学效果;与网络通讯技术相结合,可以提高和改进远程教育的智能性。二是人工智能应用研究领域间的集成。人工智能应用研究领域之间并不是彼此独立,而是相互促进,相互完善,它们可以通过集成扩展彼此的功能和应用能力。例如自然语言理解与专家系统、机器人的集成,为专家系统和机器人提供了新的知识获取途径。三是人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸与扩展,这些新领域有分布式人工智能与Agent、计算智能与进化计算、数据挖掘与知识发现以及人工生命等[24],这些发展与应用蕴藏着巨大潜能,必将对教育产生重要的影响。

技术发展不断发挥着引导教育技术研究的作用,一种新兴技术的出现总是会掀起相应的研究热潮, 引发对技术在教育中应用的探讨、评价以及与传统技术的对比。[25] 人工智能作为一门交叉的前沿学科,虽然在基本理论和方法等方面存在着争论,但从其研究成果与应用效果来看,有着广阔的应用前景,值得进一步的开发和利用。

参考文献

[1] 史忠植,王文杰.人工智能[M].北京:国防工业出版社,2007:1.

[2][11][18][19] 《计算机与信息科学十万个为什么》丛书编辑委员会,计算机与信息科学十万个为什么(8):人工智能[M].北京:清华大学出版社,1998:5,189,78-79,84.

[3] 任友群,胡航.论学习科学的本质及其学科基础[J].中国电化教育,2007,(5):1-5.

[4][21] 蔡瑞英,李长河.人工智能[M].武汉:武汉理工大学出版社,2003:12-13.

[5][12][15][20][24] 蔡自兴,徐光.人工智能及其应用(第三版)――研究生用书[M].北京:清华大学出版社,2007: 12-14,19-20.

[6] [荷]山尼•戴克斯特拉,[德]诺伯特•M. 西尔,[德]弗兰兹•肖特,等.任友群,郑太年主译.教学设计的国际观第2册:解决教学设计问题[M].北京:教育科学出版社,2007:67.

[7] 任友群.技术支撑的教与学及其理论基础[M].上海:上海教育出版社,2007:42-43.

[8] 路利娟.应用专家系统提升现代远程教育的智能化[J].中国教育技术装备,2007,(12):79-80.

[9] 陈恳,杨向东,刘莉等.机器人技术与应用[M].北京:清华大学出版社,2007:6.

[10] 关注机器人幼儿教育――访鲍青山博士[DB/OL].

[13] 柏宏权,韩庆年.机器学习在适应性教学系统中的应用研究[J].南京师范大学学报(工程技术版),2007,7(4):76-79.

[14] 杨健,赵秦怡.基于案例的推理技术研究进展及应用[J].计算机工程与设计,2008,29(3):710-712.

[16] 自然语言理解[DB/OL].

[17] 贾积有.人工智能技术的远程教育应用探索――“希赛可”智能型网上英语学习系统[J].现代教育技术,2006,16(2):26-29.

[22] Erin Shaw, W. Lewis Johnson, and Rajaram Ganeshan, Pedagogical Agents on the Web[DB/OL].

人工智能教育的趋势范文第5篇

关键词:人工智能;计算机网络教学;现状;运用

中图分类号:TP393-4

所谓人工智能,就是利用人工方法在计算机上实现智能,也可以说是人工智能在计算机上的一种模拟。人工智能广泛融合了神经学、语言学、信息论和通讯科学等众多学科和领域。目前主要存在三条人工智能研究途径:一是以生物学理论为支撑,掌握人类智能的本质规律;二是以计算机科学为支撑,通过人工神经网络进行智能模拟,实现人机互动;三是以生物学理论为支撑。

1 人工智能技术的特征

智能技术主要分为两类,人类和计算机智能,两者存在相辅相成的关系。利用人工智能技术能够实现人类智能向机器智能的转化,相反,机器智能也能够利用智能教学转化为人类智能。

1.1 人工智能的技术特征。首先,人工智能具备非常强的搜索功能。该功能是利用相关搜索搜索技术实现对海量信息的快速检索,满足个性化信息需求;其次,人工智能具备很强的知识表示能力。具体来讲,就是人工智能对信息的行为,能够像人类智能一样,对模糊的信息加以表示;最后,人工智能具有较强的语音识别和抽象功能。前者主要是为了对模糊信息加以处理。而后者主要是为了对信息重要度加以区分,以便提高信息处理效率。用户只需要智能机器提出具体要求便可,至于复杂的解决方案就交给智能程序了。

1.2 智能多媒体技术。首先,人机对话更加灵活。传统多媒体在人机对话方面极为欠缺,导致教学单调乏味,不能取得预期良好效果,但智能多媒体却不然,他能够实现人机自由对话和互动,同时还能结合学生实际对学生的问题给出不同层次的答案。其次,教学可行性更强。由于学生在认知能力和个人素养方面都存在差异,而且学习主动性也不尽相同,人工智能必须要结合学生实际学习状况,为每一位学生设计制定个性化的学习计划和学习目标,对学生进行针对性较强的教学,真正实现因材施教。再次,具有强大的创造性和纠错性。前者属于人工智能的显著特征,而后者属于人工智能的重要表现方面。最后,智能多媒体具有老师特征。在实际教学过程中,智能多媒体可以对教学双方的行为进行智能评价,以便能够及时发现教学中的薄弱点,有助于实现教学相长,全面提高教学质量和教学效果。

2 计算机网络教育的现状

随着现代科学的进步,网络信息的发达,人们的教学观念和学习观念都发生了前所未有的改变,网络时代正全面到来。为了满足现代社会对人才的实际需求,培养大量现代化优秀人才,计算机网络教学模式业已成型并不断完善。目前,高校正规教学模式依然是现代教学主流,尽管在系统传授知识和规范培养人才方面具有无可比拟的优势,但在资金投入、效益创收和时空限制等方面具有很大的弊端,灵活性不足,无法有效满足现代教育的发展要求。

计算机网络教学对传统教学形成了巨大挑战,并产生了深远影响。它不仅有效弥补了传统教学的时空限制缺陷,而且赋予了教学极大的乐趣性,吸引了越来越多的人积极投身到网络教学建设中去,任何人无论何时何地都能够通过网络课堂去学习和提高。但目前计算机网络教学发展仍处于探索期,在实际运用方面还存在许多问题:第一,计算机网络教学中的学习支持服务体系尚不健全,导学手段和答疑方法还非常落后,由于各种原因,在服务方式上缺乏针对性、策略性和积极性;第二,计算机网络实验教学中存在着空间分散、时间流动和自主性差等问题和弊端;第三,计算机网络的系统承载能力和信息查询能力还十分有限;第四,如何实现计算机网络考试的开放性,确保考试的客观性、公正性、权威性,已经成为网络教学发展的瓶颈;第五,计算机网络教学中的核心支撑系统――CAI,还无法有效满足和适应网络教学的实际需求和发展要求。

主流CAI课件主要有两种,一种是单机版的初级课件,包括简单的Authorware课件、PPT幻灯片和图文网页等。一种是高级的网络版课件。该类课件主要以静态图文和动态演示组成的网页为主,以聊天室、电子邮件和QQ群等形式为辅,实现师生互动、网络答疑的一种改进型课件。初级课件在实际教学中以操作容易、更新及时和维护方便著称,但实际上就是传统教学手段的变相挪用。还有些课件,尽管在互动性方面有着不错的效果,但是制作繁琐、更新较慢和维护复杂。因此,高级网络课件是目前网络教学中的主流课件,已经成为了计算机网络课件的固定模板。改进型的网络课件有效地解决了传统多媒体在师生互动不足的问题。上述两类课件是现在最为常见的两种CAI课件,尽管两者都有各自的优势,但作为网络教学的重要手段,仍存在许多问题和弊端:无法实现因材施教,无法开展层次教学;作为教学的一大主体,学生在个性化交互操作方面仍有很大不足;对学习过程中出现的普遍问题无法进行智能统计、分析和评价等。

3 人工智能技术在计算机网络教学中的运用

3.1 人工智能多媒体系统。(1)知识库。智能多媒体已经不再是用来进行纸质媒体数字转化的工具了,它应该具备相应完善的知识库,而知识库里的教学内容要结合教学实际和学生现状进行针对性、个性化设计。同时,要实现知识库资源的高度共享,并及时加以更新和补充,如此才能充分发挥知识库的教学服务作用。(2)教学板块。教学板块的设计主要是出于教学综合性考虑的,教学方法的创新是其关注的重点内容。该模块的实现要以掌握专业知识、教学策略和人机对话等领域的知识为前提,结合学生实际学习现状和特点,利用智能系统的现代化技术手段对知识和相关教育措施加以高效搜索。(3)学生板块。及时掌握学生心理动态和学习状况是智能网络教学的一大特征,结合学生实际状况加以智能评判,进而加以针对性指导和个性化辅导,实现因人施教和因材施教,全面提高学习效率和学习质量。(4)用户模块。用户模块是智能系统无法忽视和省略的关键模块,整个智能系统的正常运行离不开人工程序操作,用户需要通过用户终端将教学内容上传到网络教学平台,才能顺利完成教学。

3.2 人工智能多媒体教学的发展。(1)加强与网络的结合。随着网络技术的成熟,智能网络教学与网络之间的关系日益紧密,多元化、多维度网络空间日益成为一种趋势。互联网具有信息量大、更新速度快、超时空性等优势,加强与网络的结合是人工智能计算机网络教学未来发展的重要方向。(2)加强智能的应用。人机对话、机器指导的教学模式将成为未来网络教学的核心模式,传统教师的角色将逐渐被计算机取代。最为典型的就是现代智能导航系统。(3)加强系统软件的研发。系统软件的更新日新月异,旧的系统软件已经无法有效满足网络发展的时代要求,加强系统软件的研发以便充分满足网络要求,更好地帮助学生解决实际问题,进而提高学习效率和教学质量。

4 结束语

人工智能技术在计算机网络教学中的运用将为现代化教育提供新的发展思路,将全面改善网络教学环境,拓展学习服务渠道,提高计算机网络教学质量,并有可能彻底打破计算机网络教育的时空限制,全面加强网络教学的开放性,实现网络学习的个性化、人性化和智能化,充分落实以学生为本的教学理念。未来CAI技术的进一步成熟将全面提高网络教学的整体格局,我们有理由相信,智能网络教学将迎来全新的发展春天。

参考文献:

[1]刘广钟,高军,刘,李吉彬.报文分析技术在计算机网络教学中的应用[J].计算机教育,2014(01).

[2]赵冉,朱西方.仿真技术在高职计算机网络教学中的应用探讨[J].河南科技,2014(01).