前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇人工智能商业模式范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:技术驱动;共同物流;云计算;人工智能;物联网
中图分类号:F252 文献标识码:A 文章编号:1003-854X(2013)06-0073-04
一、相关文献述评
商业模式是指企业为持续达到其主要目标而确立并运用相关运营机制,并对运营机制进行拓展,综合利用全部相关策略,创造顾客价值并实现企业价值的新型经营方式。刁玉柱(2010)较为系统地梳理了商业模式创新的相关研究成果,从战略分析、要素利用、价值创造及系统整合等四大视角归纳总结了商业模式创新的基本逻辑,认为战略分析与选择是商业模式创新的前提条件与逻样起点,技术、知识及组织创新是商业模式创新的主要动力,价值链的升级转换是商业模式创新的本质逻辑,企业系统间的因果联系是商业模式创新的内在机理①。
关于商业模式创新路径的研究集中在三个方面:一是基于商业模式创新动力与路径关系的研究。Yao Weifeng(2007)等人认为,商业模式创新起源于技术创新,技术创新产生了新的技术突破及市场需求,企业通过抓住技术革新和市场变迁的发展机遇,形成核心竞争力,增加新的利润来源,就可以产生新的赢利模式和商业模式,为顾客和自身创造价值。Fumio Kodama(2004)等人通过研究世界发达国家实践经验,认为网络技术、人工智能技术和模块化制造技术的变化推动了美国、欧洲国家和日本相关企业的商业模式创新,而且商业模式创新有助于企业在更大程度上获得技术变化所带来的收益③。二是商业模式创新途径方向的相关研究。代表性的成果有:Amit等人(2001)采用问卷调查分析方法,研究了美国和欧洲59家互联网企业的商业模式,认为高效率、互补性、目标一致性和新颖性是商业模式创新的方向④;Miles(2006)认为企业之间的深入合作是推动商业模式持续创新的方向。三是基于商业模式创新类型的研究。代表性的成果有:Linde和Cantrel借鉴熊彼特的创新理论将商业模式创新分为四种类型:挖掘型、调整型、扩展型、全新型,为企业引入全新的商业逻辑⑥。Mark等三位著名学者(2008)认为商业模式创新是企业利润增长的关键原因,商业模式创新涉及四个基本要素:客户价值主张、盈利模式、关键资源和关键流程,客户价值主张和盈利模式分别明确了客户价值和公司价值,关键资源和关键流程则描述了如何实现客户价值和公司价值⑦。
共同物流是一种将分散的物流资源共同利用,物流设施与设备共同运作和物流体系共同管理的新型运作模式,多个分散的物流参与方形成合作联盟,共同提高物流系统整体运行效率,显著降低资源消耗。对共同物流的研究最早起源于日本运输省和相关学者对共同配送的研究。荣朝和(2001)介绍了欧洲共同运输政策,并对我国的相关运输体制和政策问题进行了探讨⑧。黄福华、周敏(2007)等深入研究了湖南省农产品共同物流、中小企业共同物流、城市共同物流体系,以及中部地区零售企业的共同物流问题⑨。欧阳小迅、黄福华(2011)基于企业资源理论、交易费用理论提出了共同物流的两种运作模式:物流联盟和物流虚拟企业。王圣云等(2012)采用运输成本和网络分析方法,重点探究长江中游城市集群的物流一经济网络及其空间组织战略⑩。
二、技术变迁引发共同物流商业模式变革的机理
1 新一代技术变迁趋势
能够引致共同物流商业模式创新的新一代技术主要包括:云计算技术、人工智能技术、物联网技术。新一代信息技术和人工智能技术的应用,打破了传统商业模式各要素之间的平衡,建立起一种新的平衡态势,获取竞争优势。云计算(Cloud Computing)是基于互联网的相关服务的增加、使用和交付模式,通过互联网来提供动态易扩展且经常是虚拟化的资源。云计算使得计算能力也可作为一种商品通过互联网进行流通,使共同物流各参与主体的各种复杂信息实时沟通成为可能。人工智能技术(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能技术企图解析人类智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。在新一代人工智能技术支持下,共同物流的运作过程可以实现全智能化,从而大幅度减少人工劳动比例和操作失误,明显改善共同物流合作的工作效率。物联网技术(Internet of Things)是一种通过射频识别(RFID)、红外感应器、全球定位系统(GPS)、下一代互联网IPv6技术、激光扫描器等信息传感设备,按约定的协议,将任何物品与互联网相连接,进行信息交换和通讯,以实现智能化识别、定位、追踪、监控和管理的网络技术。在物联网时代,各种复杂信息可以通过无线传感网实现共享,共同物流各参与主体都可以实时监控整个运作过程。
2 技术变迁将引导共同物流服务内容的变化
物流服务是共同物流商业模式的支撑点。是共同物流各参与主体与服务客户进行价值交换的载体,当物流服务越能满足客户需求时,共同物流各参与主体盈利能力就越强。在物联网技术支持下,客户可以实时掌握货品运动轨迹,便于企业收集客户需求;云计算技术实现了对海量技术处理的可能;加上人工智能技术的数据挖掘与智能处理,能够实时地应对客户需求的各种变化。共同物流服务体不仅通过提供物流服务满足客户需求,同时也能够提供有价信息、知识服务、产品构想等虚拟产品,形成一体化的集成解决方案,全方位满足客户潜在需求,形成新的利润增长点。
共同物流联盟利用云计算强大的数据挖掘与分析能力,深化多样化的扩展需求,最终实现数据结点越多,资源组合可行性越多,可能开发的新型服务类型越多;另一方面,基于新技术的物流服务服务边际成本不断降低。共同物流各参与企业以开发高附加值产品、开发增值产品扩大收入:通过对客户知识的运用,深度预测未来物流业务的发展趋势,开发出引导客户需求的新型服务,保持长久的竞争力。
3 技术变迁将引导共同物流合作形式的变化
在新技术变迁中。共同物流联盟的成员企业之间信息变得更加透明,信息共享成本迅速降低,能够实现共同物流各成员企业合作形式的变革。在最终客户需求的导引下,共同物流各参与企业的合作形式将从“效率优先”向“智能优先”转变。企业之间的关系从“竞争对抗”向“合作联盟”形式转变,各成员企业与上下游企业共同构成价值链的节点网络,通过满足最终用户需求,获得合作联盟收益。
4 技术变迁将引导共同物流服务的客户需求变化
在传统技术条件下,共同物流各参与主体之间的信息沟通困难,知识共享与传播的难度非常大。通过物联网技术与云计算技术,实现了共同物流各参与主体之间的知识协同,能够更好地发掘、满足客户需求,提升客户价值。在新技术支持下,共同物流各参与主体对客户需求管理进行创新,从“满足需求”向“创造需求”方向发展,新技术实现了客户与共同物流服务企业之间的信息透明化,大大降低了双方的“信息不对称性”,客户对服务的认知越来越深刻,未来将更重视个性化、多样化需求的满足,不仅要求服务的结果,并且要求服务过程的体验。基本需求满足后,在服务之上所附加的个性价值、愉悦体验和精神满足成为客户需求的终点。未来,在新技术支持下,客户能够迅速学习各种新知识,在享受服务过程中知识增长和自身价值提升有可能成为服务重点。
三、共同物流商业模式创新路径设计
当前。我国共同物流还处于初期探索阶段,缺乏成熟的商业模式。在技术快速变迁的驱动下,共同物流的商业模式要素正在发生变化,共同物流联盟所提供的服务价值将从自身价值转变为客户价值,由此将引导共同物流服务内容、合作形式、需求发生变化,在此情景下,共同物流各参与主体必须在商业模式上有所应对,积极探索符合技术变迁背景的商业模式创新路径。
1 共同物流服务内容创新路径
共同物流服务是围绕最终客户的物流需求,多个参与主体联合开展相关业务,实现客户在全供应链上的价值。在技术变迁的背景下,共同物流服务内容将从以下几个方面创新:(1)供应链一体化服务。现有的物流企业一般采用“单打独斗”的运作形式,和其他物流企业是单纯的竞争关系,由于实力单薄,加上缺乏现代技术支持,无法提供覆盖供应链全过程的一体化服务。在新技术支持下,供应链的各企业能够实现信息实时共享,从原材料开始到最终产品交付客户手中的所有物流过程都能够置于共同物流各参与主体的监控之下,从而共同物流联盟能够提供供应链一体化服务。由于合作信息更加透明,共同物流参与主体的合作伙伴型业务关系有建立的可能,促进全供应链的协调。成为无缝链接的一体化过程。(2)完善信息服务内涵与范围。共同物流服务的各参与主体由于面向多个客户服务,能够及时收集掌握大量行业内一手数据,通过对相关海量信息的全面收集、深入挖掘、科学分析和智能化处理,利用云计算技术,得出各服务行业内的相关经验数据。共同物流合作企业可以凭借其广泛的服务网络为客户收集市场需求信息、产品销售与库存信息、用户反馈信息等,为生产经营企业的决策提供服务。(3)完整的全供应链金融服务。传统的技术条件下,中小企业虽然有大的融资市场。但由于单个物流企业对物流金融业务操作的技术能力十分有限,不可能满足中小企业的融资需求。在技术变迁的背景下,共同物流服务联合多个参与主体,可以共同完成供应链的全程物流服务,对整个供应链的库存实现了全程监控,能够在更大范围内提供“物流金融”业务。此举不仅能够解决中小企业的融资难题,同时给共同物流参与企业带来新的利润源泉。(4)知识发现与知识共享服务。物流服务具备技术密集、知识密集、资本密集、劳动密集等特点,在技术变迁推动下,技术密集特点将不断增强,劳动密集特点将削弱。在新技术支撑下,共同物流服务要求有丰富的经济学知识、管理学知识、运筹学知识、计算机网络知识、物流专业知识以及信息处理技术等知识与之相配套。未来,共同物流服务的核心竞争力就体现在它能综合运用各种知识为客户提供一个专业化的最优物流解决方案上。与此同时,共同物流还将综合利用各种新技术手段,为客户提供知识发现和知识共享服务,提升客户技能,实现高层次价值满足。
通过积极引导共同物流各参与企业注重新技术的应用开发,依靠新技术实现物流效率提升,把有限市场变成无限市场。根据服务对象需求变化,沿着共同物流商业模式创新路径,在供应链一体化服务、信息服务、全供应链金融服务和知识发现与知识共享服务等方面进行创新,不断开发符合客户需要的服务内容。
2 共同物流合作方式创新路径
共同物流合作的主要推动力量来自组合价值,组合价值让渡可以有效利用共同物流各参与者之间的优势互补或正的外部性效应,提高顾客价值并改善各参与企业盈利空间。在新技术支持下,原来制约共同物流发展的合作机制将得到消除,共同物流合作方式创新路径主要是以下两个方面:一是形成链式网络合作方式。共同物流各参与主体在长期合作中,由于缺乏全程信息技术和海量数据计算分析技术,无法实现对供应链全程服务。在物联网技术、人工智能技术、云计算技术的系统集成支持下,共同物流各参与主体能够实现对供应链全程实时海量数据的掌控与利用,合作形式也将从目前的条块分割转变为链式合作。在链式网络中,共同物流参与企业与客户都是属于多条价值链中的节点,客户是指联盟共同物流服务的外部消费者。共同物流企业通过价值交换获得收益,技术变迁能够延长价值链,有效地连结终端客户。二是搭建基于云技术的合作平台。现有的共同物流合作平台基于静态网页,内容更新困难,数据实时共享难度大:未来在技术变迁推动下,有望搭建基于云技术的数据实时交互系统平台,共同物流各参与主体的合作方式也将依托云技术,步人“云时代”:通过搭建基于云技术的新型合作平台,实现数据的全程覆盖。共同物流各参与主体综合利用现代最新技术,打通各企业之间的组织壁垒和合作瓶颈,完善信息沟通模式,将合作贯通供应链全段,最终将单一企业合作模式转变为链式合作模式。
AI最先商业化的项目,应数2011年初次亮相的IBM人工智能认知系统Watson。2016年,借助商务领域的积累切入具体应用,Watson的商业模式逐渐明朗,并为IBM的第四次转型贡献了亮丽业绩。
然而还不够快。受传统业务下滑拖累,IBM 2017年一季度营收继续下滑。
拖着铅球,Watson在与未来赛跑。
百年商业帝国的第四次转型
与眼下最热的围棋AI等通用人工智能不同,IBM的“人工智能”一开始便是为解决商业问题而生,其方向是商业领域的增强人工智能(Intelligence Augmentation)。2007年8月,几个人工智能专家告诉IBM高级副总裁约翰?凯利,他们要创建世界上第一个处理非结构化数据、可与人互动的人工智能系统。2011年人工智能认知系统Watson初次亮相,就打败了美国问答游戏电视节目《危险边缘》的连胜纪录保持者和最高奖金得主。2014年,IBM专门组建Watson部门,并陆续投入数十亿美元。
2011年IBM百年之际,《经济学人》周刊曾撰文总结IBM三次重大转型:从机械制造到计算机制造、从大型机制造到包括个人电脑在内的分布式计算机系统、从计算到服务。2016年初,IBM董事长兼CEO罗睿兰宣布IBM正式进入第四次转型,目标是成为一家认知解决方案云平台公司,“未来五年,我们所作的每一个决策,无论个人或专业机构,都将受到Watson的协助。”
2017年4月,“天工开物 人机同行”2017 IBM中国论坛在北京举行,IBM展示了其作为认知解决方案和云平台公司在全球范围内的突破性进展,及与中国本地伙伴在电子、能源、教育、汽车、医药、高性能材料及相关服务等行业或领域的合作成果:
神思电子采用IBM 的Watson Explorer,在金融和医疗行业锁定“智能客服”、“实体服务机器人”和“自助设备智能升级”领域,提升服务质量与效率。与杭州认知合作,应用IBM Watson肿瘤解决方案帮助中国医生获得循证型癌症诊疗的决策支持,从而为患者提供个性化治疗方案。隆基泰和与IBM共同合作,借助Watson平台构建综合能源云平台,为工业商业企业构建完整的客户能耗视图、用能预测及能效水平的分析和洞察能力打造智慧能源服务体系。
此外,IBM为上海世外教育集团打造“儿童英语口语辨识及评价系统”帮助6-15岁学生学习英语,与禾嘉股份共同推出基于区块链的医药采购供应链金融服务平台,在精细化工行业,默克正在利用IBM IoT技术打造全新智能物流与智能工厂,而一汽大众也将采纳IBM大数据、云计算、认知计算等技术打造佛山创新中心,建立智能工厂。
除了垂直行业,IBM“商业人工智能”也在为专业人士提供增强智能,提高工作效率和业务水平。目前,Watson系统已进入法律、医疗、教育、金融,零售,服b设计等60多个职业领域示范人机协作,将专业人士从重复劳动中解放出来。论坛上,IBM大中华区董事长陈黎明表示,“我们相信,企业大规模采用人工智能技术的爆发期就在当下,并将为各行业和专业带来巨大的创新价值。”
拖着铅球赛跑
商业的残酷在于,仅凭方向正确,未必能赢得赛跑。除了亚马逊、微软、谷歌这样的外部竞争者,IBM对云计算和Watson孤注一掷,更大的压力来源于自身:新兴业务的增速能否超越传统业务下滑的速度。
4月19日,IBM2017年一季度财报,其“战略业务小组”(IBM重点发展的云计算、分析、社交、安全及移动产品)营收增长12%,至78亿美元。Watson所属的认知解决方案业务板块营收同比增长逾2%,达41亿美元;云计算业务营收增长33%至亿美元,净收入为23亿美元。
与战略业务表现亮丽形成对比的是,受传统硬件和软件业务增长停滞的拖累,IBM整体业绩依然继续在下滑:公司一季度营收同比下滑2.8%,降至181.6亿美元,低于预期的184亿美元。其公司营收连续20个季度下滑,并创下2002年一季度以来最低水平。
财报后,IBM股价下跌超过8美元,跌幅近5%。其大股东伯克希尔哈撒韦2016年报显示持有8120万股IBM,也就是说,如果巴菲特一季度没有减仓,将损失约6.5亿美元。
有趣的是,之前尽管和比尔?盖兹关系很好,巴菲特开始尝试购买科技股的时候,并没有买微软的股票,而是选择了IBM,几乎全程体验了一把IBM转型带来的缓慢复苏。
2015年,巴菲特入股IBM时正是其收入连年下滑之际,2016年初,IBM股价已跌至不足120美元。一年之后,2016年IBM财报显示,IBM云业务当年实现137亿美元营收,同比增长35%,占IBM全年总营收的17%;云业务年化营收达86亿美元,同比大幅增长63%;计入“技术支持及云平台”项目的年毛利率达41.9%;以Watson为主的IBM认知解决方案营收达182亿美元,毛利率高达81.9%。2016年,IBM股价上涨了20%。
2014-2016年,IBM犹如传统企业转型的一个缩影:借助自身在商务领域的积累,在云服务和人工智能领域大力投资,切入具体应用,商业模式逐渐明朗。
并购与合作
IBM对云服务和Watson期许甚高,Watson的十年布局也逐渐步入收获季。随着医疗、物联网、金融、零售、时尚、教育等多个行业标志性样本的出现,Watson的商业版图正在扩张。
Watson成为全球医疗健康第一人工智能系统,其秘籍是不断吸收大量非结构化数据并加以学习。为了“喂饱”Watson, IBM不断收购医疗健康领域的公司,两年间花费超40亿美元。除了加大并购,IBM为拓展商务版图同时也采用了更实际的方式:与垂直领域巨头合作,补充基础数据和垂直行业领域的专业知识。
2016年10月,IBM宣布与通用汽车合作,Watson为其新版车机系统OnStar提供技术支持;与全球教育机构培生合作,Watson为其学生提供自然语言下的学习指导。今年3月19日,IBM认知商业战略在中国正式落地一年之际,万达网络科技集团与IBM在北京签订战略合作协议。万达网络科技集团正式进军公有云业务领域,万达也将成为Watson在中国落地的重要基础设施。
从另一方面来看,万达选择IBM,很大程度上是由于IBM这部分业务的体量。IBM云业务在2016年实现137亿美元营收。亚马逊AWS 2016年营收122亿美元;微软未透露Azure云业务的实际营收,摩根大通分析师估算约26亿美元;谷歌也未披露云计算业务营收,外界估算在10亿美元左右。从总体营收规模来看,IBM云计算业务其实并不输于AWS、微软云和谷歌云。
据统计,2017年中国人工智能核心产业规模超过700亿元,随着各地人工智能建设的逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,年复合增长率将达31.7%。
随着人工智能技术的不断成熟,人工智能创业的难度逐步降低,越来越多的创业公司加入人工智能的阵营。
2018年被称为人工智能爆发的元年,人工智能技术应用所催生的商业价值逐步凸显。人工智能逐步切入到社会生活的方方面面,带来生产效率及生活品质的大幅提升。智能红利时代开启!资本、巨头和创业公司纷纷涌入,将人工智能拉到了信息产业革命的风口。
如何把握产业动向,抓住风口机会?创业邦研究中心凭借在人工智能等前言科技领域持续研究、洞察的能力,在对国内人工智能创业公司进行系统调研的基础上,推出《2018中国人工智能白皮书》,对人工智能的核心技术、主要应用领域、巨头和创业公司的布局、未来发展态势和投资机会进行了深度解析。
第一部分人工智能行业发展概述
1.人工智能概念及发展
人工智能(Artificial Intelligence, AI)又称机器智能,是指由人制造出来的机器所表现出来的智能,即通过普通计算机程序的手段实现的类人智能技术。
自1956年达特茅斯会议提出“人工智能”的概念以来,“人工智能”经历了寒冬与交替的起起伏伏60多年的发展历程。2010年以后,深度学习的发展推动语音识别、图像识别和自然语言处理等技术取得了惊人突破,前所未有的人工智能商业化和全球化浪潮席卷而来。
人工智能发展历程
2.人工智能产业链图谱
人工智能产业链可以分为基础设施层、应用技术层和行业应用层。
A基础层,主要有基础数据提供商、半导体芯片供应商、传感器供应商和云服务商。
B技术层,主要有语音识别、自然语言处理、计算机视觉、深度学习技术提供商。
C应用层,主要是把人工智能相关技术集成到自己的产品和服务中,然后切入特定场景。目前来看,自动驾驶、医疗、安防、金融、营销等领域是业内人士普遍比较看好方向。
人工智能产业链
资料来源:创业邦研究中心
第二部分人工智能行业巨头布局
巨头积极寻找人工智能落地场景,B、C 端全面发力。
资料来源:券商报告、互联网公开信息,创业邦研究中心整理
第三部分机器视觉技术解读及行业分析
1.机器视觉技术概念
机器视觉是指通过用计算机或图像处理器及相关设备来模拟人类视觉,以让机器获得相关的视觉信息并加以理解,它是将图像转换成数字信号进行分析处理的技术。
机器视觉的两个组成部分
资料来源:互联网公开信息,创业邦研究中心整理
2.发展关键要素:数据、算力和算法
数据、算力和算法是影响机器视觉行业发展的三要素。 人工智能正在像婴儿一样成长,机器不再只是通过特定的编程完成任务,而是通过不断学习来掌握本领,这主要依赖高效的模型算法进行大量数据训练,其背后需要具备高性能计算能力的软硬件作为支撑。
深度学习出现后,机器视觉的主要识别方式发生重大转变,自学习状态成为视觉识别主流,即机器从海量数据里自行归纳特征,然后按照该特征规律使图像识别的精准度也得到极大的提升,从70%+提升到95%。
3.商业模式分析
机器视觉包括软件平台开发和软硬件一体解决方案服务。整体用户更偏向于B端。软件服务提供商作为技术算法的驱动者,其商业模式应以“技术层+场景应用”作为突破口。软硬件一体化服务供应商作为生态构建者,适合以“全产业链生态+场景应用”作为突破口,加速商业化。
(1)软件服务:技术算法驱动者—“技术层+场景应用”作为突破口
这种商业模式主要是提供以工程师为主的企业级软件服务。有海量数据支撑,构建起功能和信息架构较为复杂的生态系统,推动最末端的消费者体验。
此类商业模式成功关键因素:深耕算法和通用技术,建立技术优势,同时以场景应用为入口,积累用户软件。视觉软件服务按处理方式和存储位置的不同可分为在线API、离线SDK、私有云等。
国内外基础算法应用对比
资料来源:互联网公开信息,创业邦研究中心整理
(2)软硬件一体化:生态构建者—“全产业链生态+场景应用”作为突破口
软硬一体化的商业模式是一种“终端+软件+服务”全产业链体系。成功的因素是大量算力投入,海量优质数据积累,建立算法平台、通用技术平台和应用平台,以场景为入口,积累用户。亮点是打造终端、操作系统、应用和服务一体化的生态系统,各部分相辅相承,锐化企业竞争力,在产业链中拥有更多话语权。
4.投资方向
(1)前端智能化,低成本的视觉解决模块或设备
从需求层面讲,一些场景对实时响应是有很高要求的。提供某些前端就本身有一定计算能力的低成本的视觉模块和设备将有很大市场需求。前置计算让前端设备成为数据采集设备和数据处理单元的合体,一方面提升了处理速度,另一方面可以处理云端难以解决的问题。
机器视觉在消费领域落地的一个障碍是支持高性能运算的低功耗、低价位芯片选择太少。从低功耗、高运算能力的芯片出发,结合先进的算法开发模块和产品,这类企业将在机器视觉领域拥有核心竞争力。
(2)深度学习解决视觉算法场景的专用芯片
以AI芯片方式作为视觉处理芯片有相当大的市场空间。以手势识别为例,传统的识别方案大都基于颜色空间,如 RGB,HSV ,YCrBr,无法排除类肤色物体及黑色皮肤对识别精度的干扰。借助深度学习,如通过 R-CNN 训练大量标注后的手势图像数据,得到的模型在处理带有复杂背景及暗光环境下的手势识别问题时,比传统方案的效果好很多。
(3)新兴服务领域的特殊应用
前沿技术带来的新领域(如无人车、服务机器人、谷歌眼镜等),对机器视觉提出了新要求。机器视觉可以让机器人在多种场合实现应用。服务机器人与工业机器人最大的区别就是多维空间的应用。目前国内的机器视觉,涉及三维空间、多维空间,其技术基本上处在初始阶段,未来存在较大市场增长空间。
(4)数据是争夺要点,应用场景是着力关键
机器视觉的研究虽然始于学术界,但作为商业应用,能解决实际问题才是核心的竞争力。当一家公司先天能够获得大量连续不断的优质场景数据,又有挖掘该数据价值的先进技术时,商业模式和数据模式上就能形成协同效应。创业公司要么通过自有平台获取数据,要么选择与拥有数据源的公司进行合作,同时选择一个商业落地的方向,实现快速的数据循环。
第四部分智能语言技术解读及行业分析
1.语音识别技术
(1)语音识别技术已趋成熟,全球应用持续升温
语音识别技术已趋成熟,全球应用持续升温。语音识别技术经历了长达60年的发展,近年来机器学习和深度神经网络的引入,使得语音识别的准确率提升到足以在实际场景中应用。深度神经网络逐步找到模型结构和调参算法来替代或结合高斯混合算法和HMM算法,在识别率上取得突破。根据Google Trends统计,自2008年iPhone及谷歌语音搜索推出以来语音搜索增长超35倍。百度人工智能专家吴恩达预测,2020年语音及图像搜索占比有望达到50%。Echo热销超过400万,带动智能音箱热潮。
(2)语音识别进入巨头崛起时代,开放平台扩大生态圈成主流
语音识别即将进入大规模产业化时代。随着亚马逊Echo的大卖,语音交互技术催生的新商机,吸引大大小小的公司构建自己主导的语音生态产业链。各大公司纷纷开放各自的智能语音平台和语音能力,欲吸引更多玩家进入他们的生态系统。
(3)语音识别技术发展瓶颈与趋势
低噪声语料下的高识别率在现实环境使用中会明显下降到70-80%,远场识别、复杂噪声环境和特异性口音的识别是下一个阶段需要解决的问题。
麦克风阵列类前端技术不仅是通过降噪和声源定位带来识别率的提高,带环境音的语料的搜集、标注可用于模型的训练,有助于打造更新一代的语音识别引擎技术。语音巨头已经在布局。
在IOT包括车载领域,云端识别并非通行的最优方案,把识别引擎结合场景进行裁剪后往芯片端迁徙是工程化发展的方向。
2.自然语言处理(NLP)发展现状
(1)多技术融合应用促进NLP技术及应用的发展
深度学习、算力和大数据的爆发极大促进了自然语言处理技术的发展。深度学习在某些语言问题上正在取得很大的突破,比如翻译和写作。2014年开始LSTM、Word2Vec以及Attention Model等技术研究的进展,使DL有了路径在语义理解领域取得突破,并且已经有了明显的进展。对话、翻译、写作新技术成果里都开始逐渐混合入DL的框架。2014-2015年,硅谷在语义理解领域的投资热度剧增。
深度学习能最大程度发挥对大数据和算力资源的利用,语义理解的发展还需要深度学习、搜索算法、知识图谱、记忆网络等知识的协同应用,应用场景越明确(如客服/助理),逻辑推理要求越浅(如翻译),知识图谱领域越成熟(如数据饱和度和标准性较强的行业),技术上实现可能性相对较低。在各种技术融合应用发展的情况下,具备获取一定优质数据资源能力并可结合行业Domain knowledge构建出技术、产品、用户反馈闭环的企业会有更好的发展机会。
(2)NLP主要应用场景
问答系统。问答系统能用准确、简洁的自然语言回答用户用自然语言提出的问题。基本工作原理是在线做匹配和排序。比如 IBM 的 Watson,典型的办法是把问答用FAQ索引起来,与搜索引擎相似。对每一个新问题进行检索,再将回答按匹配度进行排序,把最有可能的答案排在前面,往往就取第一个作为答案返回给用户。
图像检索。同样也是基于深度学习技术,跨模态地把文本和图片联系起来。
机器翻译。机器翻译的历史被认为与自然语言处理的历史是一样的。最近,深度学习被成功地运用到机器翻译里,使得机器翻译的准确率大幅度提升。
对话系统。对话系统的回复是完全开放的,要求机器能准确地理解问题,并且基于自身的知识系统和对于对话目标的理解,去生成一个回复。
(3)创业公司的机遇
1)机器翻译方面:经过多年的探索,机器翻译的水平已经得到大幅度提升,在很多垂直领域已经能够在相当大程度上替代一部分人工,机器翻译技术的商业化应用已经开始进入大规模爆发的前夜。
2)应用于垂直领域的自然语言处理技术
避开巨头们对语音交互入口的竞争,以某一细分行业为切入点,深耕垂直领域,对创业公司也是一个不错的选择。
第五部分人工智能在金融行业的应用分析
人工智能产业链包含基础层、技术层、应用层三个层面。基础层的大数据、云计算等细分技术被应用到金融征信、保险、理财管理、支付等金融细分领域;技术层的机器学习、神经网络与知识图谱应用于金融领域的征信与反欺诈、智能投顾、智能量化交易,计算机视觉与生物识别应用于金融领域的身份识别,语音识别及自然语言处理应用于金融领域的智能客服、智能投研;应用层的认知智能应用于金融领域的智能风控。
人工智能在金融行业的典型应用情况
资料来源:创业邦研究中心
第六部分人工智能在医疗行业的应用分析
1.人工智能在医疗行业的应用图谱
人工智能在医疗行业的应用潜力巨大,目前在健康管理、辅助诊疗、虚拟助理、医学影像、智能化器械、药物挖掘和医院管理等领域均有企业在布局,其中医学影像、药物挖掘、健康管理,辅助诊疗、虚拟助理的应用发展速度较快。
图 人工智能在医疗行业的应用图谱
资料来源:创业邦研究中心
2.人工智能在医疗行业的具体应用场景
医学影像。人工智能应用于医学影像,通过深度学习,实现机器对医学影像的分析判断,是协助医生完成诊断、治疗工作的一种辅助工具,帮助更快的获取影像信息,进行定性定量分析,提升医生看图/读图的效率,协助发现隐藏病灶。 人工智能通过影像分类、目标检测、图像分割、图像检索等方式,完成病灶识别与标注,三维重建,靶区自动勾画与自适应放疗等功能,应用在疾病的筛查、诊断和治疗阶段。目前较为火热的应用有肺部筛查、糖网筛查、肿瘤诊断和治疗等。
药物挖掘。人工智能在药物研发上的应用可总结为临床前和临床后两个阶段。临床前阶段:将深度学习技术应用于药物临床前研究,在计算机上模拟药物筛选的过程,包括靶点选择、药效和晶型分析等,预测化合物的活性、稳定性和副作用,快速 、准确地挖掘和筛选合适的化合物或生物,提高筛选效率,优化构效关系。临床后阶段:针对临床试验的不同阶段,利用人工智能技术对患者病历进行分析,迅速筛选符合条件的被试者,监测管理临床试验过程中的患者服药依从性和数据收集过程,提高临床试验的准确性。
虚拟助理。医疗虚拟助理是基于医疗领域的知识系统,通过人工智能技术实现人机交互,从而在就医过程中,承担诊前问询、诊中记录等工作,成为医务人员的合作伙伴,使医生有更多时间可以与患者互动。医疗虚拟助理根据参与就医过程的功能不同,主要有智能导诊分诊,智能问诊,用药咨询和语音电子病历等方向。
第七部分智能驾驶行业分析
1.智能驾驶行业产业链
智能驾驶行业的中心业务是以Google、百度为代表的智能驾驶操纵解决方案提供商和以特斯拉、蔚来为代表的成车厂商。该类厂商,上接上游软硬件提供商,下接公司和消费者,在整个业务链中扮演至关重要的一环。
产业链上游厂商多为细分技术提供商,如深度学习、人机交互、图像识别和新材料、新制造新能源等。
智能驾驶产业链图谱
资料来源:创业邦研究中心
2.智能驾驶市场分析
伴随着 ADAS 技术的不断更新,推断全球 L1-L5 智能驾驶市场的渗透率会在接下来 5年内处于高速渗透期,然 后伴随半无人驾驶的普及进入稳速增长期。在未来的 2025 年无人驾驶放量阶段后,依赖全产业链的配合而进入市场成熟期。预测到2030年,全球 L4/5 级别的自动驾驶车辆渗透率将达到 15%,单车应用成本的显着提升之 外,从 L1-L4 级别的智能驾驶功能全面渗透为汽车产业带来全面的市场机会。
按照 IHS Automotive 保守估计,全球 L4/L5 自动驾驶汽车产量在 2025 年将接近 60 万辆,并在 2025- 2035 年间获得高速发展,年复合增长率将达到43%,并在2035年达到2100万辆。另有接近 7600 万辆的汽车具备部分自动驾驶功能,同时会带动产业链衍生市场的大规模催化扩张。
根据独立市场调研机构 Strategy Engineers 的预测,L4 高度自动驾驶等级下,自动驾驶零部件成本约在 3100 美元/车,其中硬件占比 45%,软件占比 30%,系统整合占比 14%,车联网部分占比 11%。按照全球 1 亿辆量 产规模计算,理想假设所有车辆全部达到 L4 高度自动驾驶水平,那么全球自动驾驶零部件市场规模在 2020 年 将达到 3100 亿美元。
第八部分中国人工智能企业画像分析
随着人工智能技术的不断成熟,人工智能创业的难度逐步降低。创新的大门吸引众多创业企业进入。为了观察行业风向,助力创新企业发展,创业邦研究中心对国内200多家人工智能创业公司进行了系统调研,从发展能力、创新能力、融资能力等多维度指标,评选出“2018中国人工智能创新成长企业50强”。
地域分布
全国88%的人工智能企业聚集在北京、上海、广东和江苏。其中,北京人工智能企业最多,占比高达39.66%;其次是上海,人工智能企业占比达21.55%;位列第三的是广东,人工智能企业占达15.52%。北京以领先全国其他地区的政策环境、人才储备、产业基础、资本支持等,成为人工智能创业首要阵地;华东地区的上海、江苏、浙江均有良好的经济基础和科技实力,人工智能应用实力雄厚,也聚集了一批人工智能垂直产业园;广东互联网产业发达,企业对数据需求强烈,依靠大数据产业链推动人工智能产业发展。
行业分布
从行业大类分布来看,行业应用层的企业占比最大,为56.03%;其次是应用技术层的企业,占比达31.04%;基础技术层的企业占比最小,仅为12.93%。随着人工智能技术的发展,人工智能与场景深度融合,应用领域不断扩展,行业应用公司比重不断提升。在基础层技术方面,国际IT巨头占据行业领先地位, 国内与国际差距明显,中小初创企业很难进入。
从行业应用来看,智能金融企业占比最大,为16.92%;其次是机器人企业,占比达15.38%;位列第三的是智能驾驶和智能教育,占比均为12.31%。金融行业的强数据导向为人工智能的落地提供了产业基础,智慧金融被列入国家发展规划中,庞大的金融市场为人工智能落地带来了发展前景。机器人作为人工智能产业落地输出, 目前市场需求较大,商业机器人占据较大份额。中国智能驾驶市场在资本推动下进入者较多,企业积极推动应用落地,百度、北汽等大型企业尝试商业化落地智能驾驶汽车。人工智能推动教育个性化落地,相关初创企业涉入教育蓝海,推动智慧教育的发展。
收入情况
收入分布在500-10000万之间的企业最多,占比达49.14%;500万以下的企业位居其次,占比达 26.72%;位列第三的是10000-100000万之间的企业,占比为17.24%。
最新估值
企业最新估值均在亿元级别,且分布较为均衡。三成企业估值超过15亿元,还有企业估值达到百亿级别,如优必
选科技、达闼科技和商汤科技等,将来或将跻身人工智能独角兽企业。(备注:分析样本量剔除一半未披露企业)
第九部分典型企业案例分析
1.Atman
企业概述
Atman由来自微软的人工智能科学家和产业经验丰富的产品团队创办,提供专业领域机器翻译、机器写作、知识图谱、大数据智能采集挖掘等语言智能产品,致力于成为医学、新闻、法律等专业领域语言智能专家,为专业领域用户赋能,推动专业领域用户进入人工智能时代,助力专业领域文字智能水平实现跨越式提升。Atman已为强生、新华社参考消息、北大法宝、君合律师事务所等世界领先药企、新闻媒体、法律服务机构开发机器翻译、机器写作、知识图谱、大数据智能采集挖掘等语言智能产品。
目前Atman在北京和苏州两地运营,能快速响应全国各地客户需求。
企业团队
创始人&CEO:马磊
清华大学计算机系毕业,曾先后在微软研究院和工程院担任研究员和架构师,机器学习专家、多次创业者、曾主导多项人工智能重大项目,和申请国际专利共计15+项。
Atman公司核心团队由来自微软、百度、法电等领域高端人才和资深技术人才组成,公司员工40人,其中硕士以上学历占比60%,技术开发人员占比70%,一半以上来自微软亚洲研究院和工程院。
核心技术与产品
技术方面,擅长机器学习(深度学习、强化学习、群体智能)在复杂问题的应用,和国际专利15项,Atman神经网络机器翻译系统于2016年9月首秀,早于谷歌的GNMT,专业领域翻译效果在公测标准和行业客户测试中均持续领先。核心产品为垂直领域机器翻译、机器写作、知识图谱抽取构建、大数据智能挖掘等语言智能产品。
Atman的机器翻译产品可自动翻译编辑专业文献、报告、音视频和网页,支持私有部署和云端混合部署,提供包括数据隐私安全以及自学习的端到端解决方案。
机器写作可对海量数据进行快速搜索、过滤、聚类,根据行业需求自动生成专业文档,适用于所有专业写作场景,可大幅减少专业报告写作过程中的繁复工作,大幅提升专业领域写作效率。
知识图谱可实现海量数据的语义检索、长链推理、意图识别、因果分析,形成一个全局知识库。大数据智能采集挖掘系统为专业领域用户提供智能数据源管理、海量专业数据获取和非结构化数据自动解析并结合知识图谱提供auto-screening、知识重构、专业决策辅助,帮助用户建立强大的以专业大数据为基础的业务辅助能力。
2.黑芝麻
企业概述
黑芝麻智能科技有限公司是一家视觉感知核心技术与应用软件开发企业,2016年分别在美国硅谷和上海成立研发中心,主攻领域为嵌入式图像、计算机视觉,公司核心业务是提供基于图像处理、计算图像以及人工智能的嵌入式视觉感知平台,为ADAS及自动驾驶提供完整的视觉感知方案。
目前公司和博世、滴滴、蔚来、上汽、上汽大通、EVCARD、中科创达、车联天下和云乐新能源等展开深入合作,提供基于视觉的感知方案;除此之外,公司还在消费电子、智能家居等领域布局为智能终端提供视觉解决方案。目前公司已经完成A+轮融资。
企业团队
团队核心成员来自于OmniVision、博世、安霸、英伟达和高通等知名企业,平均拥有超过15年以上的产业经验,毕业于清华、交大、中科大和浙大等知名高校。
创始人&CEO:单记章此前在硅谷一家全球顶尖的图像传感器公司工作近20年,离职前担任该公司的技术副总裁一职,工作内容覆盖了图像传感器研发和设计、图像处理算法研发和图像处理芯片设计。
核心技术和产品
在汽车领域,黑芝麻可提供车内监控方案(DMS),自动泊车方案(AVP),ADAS/自动驾驶感知平台方案。黑芝麻智能科技提供的解决方案包括算法和芯片两个核心部分:黑芝麻感知算法从基础的控光技术,到面向AI的图像处理技术出发来提高成像质量,以及应用深度神经网络训练,结合视频处理和压缩技术,形成从传感器端到应用端的处理过程;黑芝麻芯片平台采用独有的神经网络架构,包括独有的图像处理,视频压缩和计算机视觉模块,与黑芝麻视觉算法结合,采用16nm制程,设计功耗2.5w,每秒浮点计算达20T。
3.乂学教育
企业概述
乂学教育,成立于2014年,是一家网络教育培训机构,采用人工智能和大数据技术,为学生提供量身定制学习解决方案和个性化学习内容。核心团队来自美国Knewton、Realizeit、ALEKS等人工智能教育公司,销售团队有全国40亿toC销售额的经验。
企业自主研发了针对中国K12领域的学生智适应学习产品,其核心部分是以高级算法为核心的智适应学习引擎“松鼠AI”,该产品拥有完整自主知识产权,能够模拟真实特级教师教学。企业发表的学术论文得到了全球国际学术会议AIED、CSEDU、UMAP认可,并在纽约设计了人工智能教育实验室,与斯坦福国际研究院(SRI)在硅谷成立了人工智能联合实验室。
主要产品
学生智适应学习是以学生为中心的智能化、个性化教育,在教、学、评、测、练等教学过程中应用人工智能技术,在模拟优秀教师的基础之上,达到超越真人教学的目的。该产品性价比高,以人工智能+真人教师的模式,做到因材施教,有效解决传统教育课时费用高,名师资源少,学习效率低等问题。
智适应学习人工智能系统
智适应学习人工智能系统模拟特级教师,采用图论、概率图模型,机器学习完成知识点拆分和个人学习画像,采用神经网络、逻辑斯蒂回归和遗传算法为学生实时动态推荐最佳学习路径,实现个性化教育。
业务模式
线上与线下,2B和2C相结合。以松鼠AI智适应系统教学为主,真人教师辅助,学生通过互联网在线上学习课程。开创教育新零售模式,授权线下合作学校,已在全国100多个城市开设500多家学校。
4.云从科技
企业概述
云从科技成立于2015年4月,是一家孵化于中国科学院重庆研究院的高科技企业,专注于计算机视觉与人工智 能。云从科技是人工智能行业国家队,是中科院战略先导项目人脸识别团队唯一代表,唯一一家同时受邀制定人 脸识别国家标准、行业标准的企业。2018年,云从科技成为祖国“一带一路”战略实行路上的人工智能先锋,与 非洲南部第二大经济体津巴布韦政府完成签约。
云从科技奠定了行业领导地位: 国家肯定,国家发改委2017、2018年人工智能重大工程承建单位;顶层设计,唯一同时制定国标、部标和行标的人工智能企业;模式创新,三大平台解决方案,科学家平台、核心技术平台和行业应用平台。
企业核心团队
创始人
周曦博士,师从四院院士、计算机视觉之父—ThomasS.Huan黄煦涛教授,专注于人工智能识别领域的计算机视觉 研究。入选中科院“百人计划”,曾任中国科学院重庆研究院信息所副所长、智能多媒体技术研究中心主任。
周曦博士带领团队曾在计算机视觉识别、图像识别、音频检测等国际挑战赛中7次夺冠;在国际顶级会议、杂志 上发表60余篇文章,被引用上千次。
核心技术团队
云从科技依托美国UIUC和硅谷两个前沿实验室,中科院、上海交大两个联合实验室上海、广州、重庆、成都四 个研发中心组成的三级研发架构。目前研发团队已经超过300人,80%以上拥有硕士学历。
技术优势
全方位多维智能学习模块适应不同场景要求;模块化设计为在工业视觉、医学影像、自动驾驶AR等领域扩展打下良好基础。
云从科技具有高技术壁垒:世界智能识别挑战赛成绩斐然,在CLEAR、 ASTAR、 PASCAL VOC、 IMAGENET、FERA以及微软全球图像识别挑战赛上共计夺得7次世界冠军;在银行、公安等行业智能识别技术 PK实战中,85次获得第一;2018年,云从科技入选MIT全球十大突破性技术代表企业。
在跨镜追踪(ReID)技术上取得重大突破。Market-1501,DukeMTMC-reID,CUHK03三个数据同时集体刷 新世界记录, Market-1501上的首位命中率达到96.6%,首次达到商用水平。
正式在国内“3D结构光人脸识别技术”,可全面应用于手机、电脑、机具、设备、家电。相较以往的2D人 脸识别及以红外活体检测技术,3D结构光人脸识别技术拥有不需要用户进行任何动作配合完成活体验证的功能, 分析时间压缩到了毫秒级以及不受环境光线强弱的影响等诸多优点,受到国际巨头公司的关注。
行业应用
目前国内有能力自建系统的银行约为148家。截止2018年3月15日,已经完成招标的银行约为121家,其中云从科 技中标了88家总行平台,市场占有率约为72.7%;在安防领域推动中科院与公安部全面合作,通过公安部重大课题研发火眼人脸大数据平台等智能化系统,在民航领域,已经与中科院重庆院合作覆盖80%的枢纽机场。
5.Yi+
企业概述
北京陌上花科技是领先的计算机视觉引擎服务商,为企业提供视觉内容智能化和商业化解决方案。致力于“发现视觉信息的价值”。
旗下品牌Yi+是世界一流的人工智能计算机视觉引擎,衣+是时尚商品搜索引擎。公司在图像视频中对场景、通用物体、商品、人脸的检测、识别、搜索及推荐均达到领先水平。
目前公司和阿里巴巴、爱奇艺、优酷土豆、中国有线、CIBN、中信国安、海信、华为、360等数十家顶级机构/产品深度合作,通过提供边看边买引擎、图像视频内容分析引擎、人脸识别引擎等基于视觉识别技术的数据结构化产品服务于海量用户,同时帮助政府机构、广电系统、内容媒体、零售商、电商、视听设备等行业实现智能分析、智能互动与场景营销。目前公司已经获得B轮融资。
企业团队
团队成员来自于斯坦福、耶鲁、帝国理工、新加坡国大、南洋理工、清华、北大、中科院等名校及谷歌、微软、IBM、英特尔、阿里巴巴、腾讯、百度、华为等名企。
创始人&CEO:张默
北京大学软件工程硕士, 南洋理工大学创业创新硕士。连续创业者, 曾任华为算法工程师、微软WindowsMobile工程师、 IBM SmarterCity 架构师,北方区合作伙伴经理,主机Linux中国区负责人,中国区开源联盟负责人,年销售额数亿。 2013年创业于美国硅谷和新加坡,2014年6月在中国设立北京陌上花科技有限公司。
核心技术与产品
技术方面,在国际顶级计算机视觉竞赛ImageNet中,成绩曾超过谷歌、斯坦福等,2015-2016年2年获得十项世界第一。2018年3月,人脸识别准确率位列LFW榜首。Yi+通过遵循无限制,标记的外部数据协议。 Yi+的系统由人脸检测,人脸对齐和人脸描述符提取组成。使用多重损失和训练数据集训练CNN模型,其中包含来自多个来源的约10M个图像,其中包含150,000个人(训练数据集与LFW没有交集)。在测试时, Yi+使用原始的LFW图像并应用简单的L2norm。图像对之间的相似性用欧氏距离来测量,最终取得优异成绩。
公司的核心产品主要包括视觉搜索引擎,图像视频分析引擎以及人脸识别和分析引擎:
行业解决方案
针对营销、安防、相机和电视的不同特点,推出相应解决方案。
营销+AI。场景化广告方案中,大屏AI助理信息流推荐、神字幕、物体/人脸AR动态贴图、video-out、场景化角标与广告滤镜等形式的广告内容推荐,适用于快消、汽车、电商、IT、金融、旅游服务等多个行业。
智慧城市+AI。使用计算及视觉助力智慧城市,在智慧安防、智慧交通、智慧园区等方面提供解决方案。在智慧安防实时识别上,实时处理直播摄像头信息,算法反应敏捷,相应迅速。建立智慧园区方案模型,考虑扩展性&灵活性、数据管理、松散耦合性、安全性、实时整合性以及功能性和非功能性需求等技术方案要素,从业务和技术两方面整合解决方案实现步骤。
电视+AI。电视+AI的解决方案赋予智能电视多样播放能力和营销能力。
相机+AI。相机更具交互能力。用户通过搜索关键字标签同步展示图片,打通相册和购物一站式体验。准确识别人物属性特征,动态适应表情变化,可以在视频以及图像中对人脸实时检测,基于深度学习技术,进行人脸相似度检测,实现面部关键点定位、妆容图像渲染,试用与粉底、唇彩以及眼影等多种虚拟试装方式。实时检测摄像头中出现的物品、场景和人脸等,添加AR效果,SDK支持本地检测、识别、追踪,平均检测帧率可达到25fps。
新零售+AI。Yi+新零售解决方案是基于公司自主研发的人脸识别、商品识别和其他图像识别算法技术为核心,建立一整套基于人脸、商品的智能零售门店管理方案。Yi+新零售解决方案主要包含数据采集、算法模型说明和部署方案三部分,其中数据采集包括人脸数据采集、商品数据采集;算法模型说明包括识别算法训练、商品识别、识别输出;部署方案包括本地部署、云端部署、本地部署与云端部署结合。
6.擎创科技
企业简介
擎创科技成立于2016年,专注于将人工智能和机器学习赋予传统IT运维/企业运营管理,为企业客户提供智能运维大数据分析解决方案,从而取代和改善对高技能运维人员严重依赖的现状。2017年,擎创科技已实现全年2000万营收,迅速成为国内AIOps领域的领跑者和中流砥柱。2018年初,擎创科技完成了数千万人民币的A轮融资,由火山石投资领投,晨晖创投、元璟资本及新加坡STTelemedia跟投。
核心团队
擎创团队的核心成员主要由BMC、微软等美国企业服务上市公司的运维老兵,与新浪、饿了么等知名互联网公司的大数据、算法专家组成,核心团队成员至少拥有10年以上的行业经验。其中CEO杨辰是国内最顶级的B端销售,曾带领团队获得10倍的业绩增长;CTO葛晓波拥有长达15年的企业级软件开发和运维经验;而产品总监屈中泠则来自甲方,创业前为浦发硅谷银行企业架构师,深知甲方对企业运维产品的需求。这个曾经深耕于运维企业服务市场的团队,如今在智能运维企业服务赛道继续领跑,让擎创科技成为最懂企业的客户,最值得企业客户信赖的软件厂商。
主要产品
“夏洛克AIOps” 作为擎创自主研发的大数据智能运维主打产品,自2016年上线以来,已从1.0版本升级至1.9版本,可应用在金融、大型制造业、铁路民航、能源电力等涉及国家发展和民生问题的多种行业。在2017全球运维大会上,夏洛克AIOps获得由中国信息通信研究院与高效运维社区联合颁发的“年度最具影响力AIOps产品”奖。
“夏洛克AIOps”充分利用自研算法辅助客户实现IT运维价值,结合客户的现有情况,规划从传统ITOM至AIOps智能运维的一站式路径,助其运营落地,由此打破数据孤岛,建立统一的大数据智能分析平台,实现以人工智能为核心,驱动传统IT运维监、管、控三个层面,并将相关运维数据及业务数据实时展现。
“夏洛克AIOps”拥有多项自研算法,犹如运维界的福尔摩斯,能迅速发现并定位运维问题的根因,实现秒级排障,最大程度避免企业产生重大损失。更有价值的是,“夏洛克AIOps”还能通过长期的数据积累和机器学习,运用新型深度神经网络算法对企业的业务数据进行预测,帮助企业提前规划IT资源,高效预防各类黑天鹅事件的发生。
商业模式
目前,擎创科技已与多家金融和制造行业标杆客户形成稳定的合作关系,包括浦发银行、浦发硅谷银行、国家开发银行、上海铁路局、银联、海尔、浙江能源等。针对不同客户,采用个性化的商业模式进行服务,目前主要有私有模式和SaaS模式两种,都具有较强的可复制性。
核心优势
“互联网+”助推传统行业转型升级。“互联网+”正深刻改变着传统的生产方式、消费方式、商业模式和管理模式。石狮市科技局局长陈增坛表示:新形势下,植入“互联网+”思维,推进“O2O线上线下共建共融”的落地执行,是本地传统企业转型升级的大势所趋。积极推进实施“互联网+”行动计划,发展分享经济,实施大数据战略,让传统企业在新常态下具有更强的竞争力。
云计算,大数据助力在公共云上构建企业服务。本次会议上阿里云互联网事业部总经理金戈提出:大数据时代,云计算成为经济社会发展的基础设施。阿里云通过完善的产品体系、丰富的解决方案及生态体系顶级的数据中心和优良的带宽资源,赋能企业向云化、数据化和智能化企业转型。
化云为雨,助力传统零售行业拥抱互联网+。如何让云计算化云为雨,真正帮助企业有效的使用云计算和大数据,驱动和帮助中国企业向互联网+发展?驻云科技杭州分公司总经理陈峰在会上分享:零售业与混合云、零售业与大数据分析、零售业与CRM、零售业与移动支付、零售业与视频直播与点播、零售业与 ERP等方面的解决方案及相关的成功案例,对现场的零售企业家有很大的借鉴意义。
020助力实体零售门店再升级。互联网+概念兴起后,延伸出各种O2O模式,我答答华东东北区总经理卢晓江通过我答答服务几十家上市企业与上千家零售企业的O2O落地经验,并从货品流通、云店活动、人员激励、会员粉丝、资金流转、线上客服、门店营销等多个维度,让在座的各个企业家对“零售O2O”的未来有了更深层次的理解。
人工智能视觉技术助力打造智能零售商业场景。020的根本在于门店,在于更精准的消费数据分析,通过识别技术来实现的精准营销时代即将到来。旷世科技智能商业产品线商务总监宋晨带着现场零售行业的企业家们进入了人工智能场景,领略Face++人工智能视觉技术在智能零售商业场景,从相同产品、相同服务给到所有人,向相同产品、不同服务给到特定人群的转变。
网友提问:连日来,世界冠军李世石与“阿狗”力战3局,战况可谓空前激烈、惊心动魄,最终李世石以0:3不敌“阿狗”。此一战,人类遭遇完败,我们该如何看待这场人类智能与人工智能的巅峰对决?
刘慈欣:1997年IBM的超级计算机“深蓝”战胜了国际象棋冠军弗加里・卡斯帕罗夫;2015年10月“阿狗”以5:0战胜欧洲围棋冠军樊麾;这次“围棋人机大战”中“阿狗”再度力克世界冠军李世石。实际上,前两次的比赛就已经能够证明计算机在棋类方面超越人类,结果属于意料之中。虽然围棋在复杂程度和组成数量上远超国际象棋,它最多有3361种局面,这个数字大概是10170,比已观测到的宇宙中的原子数量还多。但不管怎样,计算机下棋的思维方式没有发生根本变化,可以说本质上是一样的。
计算机在很多方面超越人类已经是不争的事实,这点毋庸置疑。相较于前两次人类与计算机的对决,这次比赛的进步之处在于计算机的处理速度、数据库容量、检索和分类速度都有巨大提高。但总体来看,仍属于量变,而不是质变。对于人工智能技术而言,想要实现计算机模拟人的意识、思维以及信息判断,还需要计算机技术从本质上发生变化。举个例子,人工智能技术中包括模式识别功能,当前计算机能够识别出人的面孔,但是还不能理解表情,更无法通过人的肢体动作获取人类内心的想法。
网友提问:据谷歌公司介绍,“阿狗”已经拥有了极强的学习能力。“围棋人机大战”中,面对李世石“奇招”,“阿狗”从容应对,似乎看出它除了有超强的计算能力之外,还具备了一定的学习能力。如果它具备了这种能力,那成熟的人工智能技术离我们还远吗? 李世石(中)
刘慈欣:从“阿狗”的表现来看,它主要展示出的能力还是计算机基本逻辑推理能力,至于谷歌所说的学习能力还没有得到完全验证。从人工智能的角度来讲,计算机最需要向人类学习的能力是基于有限信息基础上所产生的想象力和判断力,当计算机的逻辑推理能力和这些能力实现完美结合时,才意味着人工智能进入成熟阶段。
当前距离实现成熟的人工智能技术还很遥远,甚至可以说,未来能不能实现还是个谜。因为有两个重要的技术屏障无法突破,一是当前冯・诺依曼型计算机还不具备模拟人脑的强大能力;二是脑科学的发展速度仍然缓慢,人类对于自身大脑详细的深层结构和运作方式知之甚少。如果脑科学无法实现重大突破,那产生真正意义上的人工智能就是天方夜谭。
如《三体》中所说,当半人马座α星人发现地球存在生命体后,派出智子将人类的基础科学锁死,因为只要基础科学不能实现重大突破,那么应用型科学的发展是有瓶颈的。同样,人工智能技术的发展也遵循这个道理,在人工智能技术之下还有更为基础的计算机科学、脑科学等领域,只有这些科学技术取得重大突破后,人工智能技术才能迎刃而解。
另外,有些网友对人工智能心怀恐惧,这是大可不必的。假如有朝一日成熟的人工智能技术真的诞生了,人类还是有很多办法可以对它进行约束的。 李世石专心参赛
网友提问:作为人工智能程序的“阿狗”还需要进一步提升、完善,谷歌公司的负责人也表示,希望通过“围棋人机大战”找出它的弱点。不过经此一战,人类已经见识到了人工智能技术的强大能量,那么未来当这种技术成熟后,人类生活会发生哪些变化呢?
刘慈欣:这个现在还无法进行预测,不过可以肯定的是,人工智能的出现,意味着人类所做的很多事情都可以完全被计算机、机器人所替代。而且可以断定,计算机、机器人能凭借它们强大的能力帮助人类做出更多出色的成绩。到那时,机器人会走入家庭,像朋友一样与人类相处,甚至还可能为成为人类家庭中的一员。
将思路拉回现实,“围棋人机大战”再次让科技成为舆论热点,并引发公众对基础科学的高度关注,对于科学推广与普及有着积极的意义,会让越来越多的人真实感受到科学技术的魅力,从而产生浓厚的兴趣。同时,对于国家一直以来倡导的科技创新理念也有助推意义,相信人工智能技术会因此受到各方面的关注,吸引更多国家、企业与个人投入力量进行研究。
延伸阅读:
AlphaGo赢了之后 人工智能的必然
20年前,IBM的计算机“深蓝”打败了国际象棋世界冠军卡斯帕罗夫,当时引起不少讨论与关注。而被视为“智力巅峰”的围棋,却是计算机所遇到的一个壁垒,一直无法攻破。如今历史终于被打破,当学习了人类职业棋手和顶尖棋手上万份的棋谱,并且进行了上千万场次自我博弈的AlphaGo出现时,不得不说这是一次质的飞跃。《自然》杂志总结了AlphaGo具备的四套重要算法,如走棋网络、快速走子、估值网络、蒙特卡罗树搜索等,已然具备了高水平的智能决策。
有人质疑AlphaGo没有情感,没有创造力,那么试想如果在比赛前不告诉人类,他对战的是AlphaGo,人类多半会肯定对方棋手的创造力。因为此前,机器的创造力一直不被人类认可,它们看上去死板而且麻烦。但是随着技术的发展,它们变得越来越简易而又快速,甚至成了必不可缺的“助手”。在大量工作中,按照固定流程处理的步骤正在变得完全自动化,而且这些自动化的流程还会像AlphaGo那样,在多种算法与自我博弈中寻求最佳优化。虽然不是每一个公司都像世界级棋手那样高超得屈指可数,但还是有大量公司对人工智能带来的智能水平优化趋之若鹜。
说到这里,不得不提一下,人类对于人工智能的恐惧也是有道理的。技术不一定带来大面积的失业,但是却会带来大量工作转移。大量的白领工作正在被人工智能优化,大量的机械生产管理有了全新的智能流程,大量的市场调查与分析具备新的智能水平,这是一种必然。