前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇数控机床工作原理范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:PLC技术;数控机床;故障诊断;维修策略
在数控机床的控制系统中,PLC系统能够有效实现CNC(Com⁃puterNumericalControl)与机床间的可靠连接,从而确保机床可以及时、稳定的接受CNC发出的控制指令。由数控机床的维修实践经验可知,PLC系统发生故障的表现形式多种多样,且发生故障的原因也比较多,无论是机械方面的原因还是电气方面的原因,都有可能导致故障的产生,此外操作人员的不良习惯和机床保养工作不到位等原因也会引发故障。为确保PLC数控机床能够稳定、高效的运行作业,我们必须确保故障诊断的及时、准确性,这也是本文对PLC数控机床故障诊断及维修展开探讨的根本原因。
一、PLC数控机床简析
数控机床中的PLC系统是一个自动控制装置,其通常由CPU、I/O接口、存储器以及电源等共同组成。由于数控机床的设计和制造方法不尽相同,所以PLC系统在数控机床中一般有两种存在方式:一是内装型,即生产厂家将PLC系统与数控机床的控制系统充分融合了在一起;二是独立行,即PLC系统独立于数控机床的控制系统之外,其具备较为完善的软硬件功能,且可以单独完成控制工作任务。PLC系统是数控机床信息交换的中枢,其能够实现控制系统与机床装置的无缝交流,这中间不仅包括从PLC系统向机床发出的各类指令信息(比如说S、T功能的应答信息),还包括机床向PLC系统发出的各类信息(比如说各项功能代表),这种双向的信息交流让PLC数控机床更加的智能化、高效化。
二、基于PLC的数控机床故障诊断方法
(一)基于PLC的数控机床故障表现形式基于PLC的数控机床在发生故障时,通常会有以下三种表现形式:1、通过CNC报警能够直接发现故障,并且系统会显示出故障产生的原因。2、通过CNC报警能够直接发现故障,但却无法反映出故障产生的根本原因。3、故障在CNC中并没有任何提示,这时诊断和维修故障就需要进行专门的检测了。(二)基于PLC的数控机床故障诊断方法PLC数控机床发生故障的几率非常低,即便发生故障往往也能通过自诊断检测显示出来。一般情况下,其故障多发生在PLC的外部输入或输出环节,发生故障时数控机床通常不会停机,大多情况下是在故障发生后才发现的,故障的发生会造成机床损坏、加工件报废或者是生产事故等不良后果。因此,我们必须加强PLC数控机床的故障诊断,常用的方法主要有以下几点。1、经报警信号进行故障诊断当发生故障时,通常数控系统的自诊断功能便可以诊断故障并在CRT上将相关信息显示出来,然后维修工作人员就可以根据CNC系统所提供的机床运行状态信息并和各运行标准指标进行比对,便可以迅速完成故障诊断和故障排除了。2、经机床动作顺序进行故障诊断数控机床在运行过程中,刀具、托盘、模具等装置的自动交换动作,都有标准的动作顺序和工作程序,因此发生故障时,我们可以通过观察各部分装置的运动过程,看其是否在动作顺序和工作程序上的异常,以此来判定PLC数控机床是否发生了故障,然后再根据故障查明原因,并采取针对性的故障排除措施。3、经PLC梯形图进行故障诊断维修工作人员还可以在充分了解数控机床工作原理、连锁关系以及动作顺序的基础上,通过使用CNC系统的自诊断功能或者采用外部编程器,经过PLC梯形图来检验系统的输入/输出状态,并实时查看PLC系统和机床的运行状况,以此来综合判定故障及其发生的原因。4、经PLC系统的输入/输出接口进行故障诊断PLC数控机床输入/输出接口出的信号状态能够通过CRT来显示,如果发生故障时可以初步确认是输入/输出信号存在故障问题,在具体诊断时,便可以通过查看接口处的信号状态来判定故障发生的部位,也可以藉此判定到底是数控装置方面发生了故障还是机床方面产生了故障。如果数控系统的各硬件部分不存在故障,不需要查看电路图或梯形图,只需要通过查询输入/输出接口的信号状态便能够查明故障及其发生的原因。此外,也可以通过分析数控机床的输入/输出状态历史记录,比较故障状态和正常状态的差异之处,也能够迅速查明故障所在;但采用这种方法必须对控制对象输入/输出接口的故障状态和正常状态都非常熟悉才行。5、经控制对象的工作原理进行故障诊断数控机床中的PLC控制系统都是基于控制对象的工作原理进行设计和制造的,所以说PLC控制系统发生故障时,我们可以通过分析控制对象的工作原理,然后结合信号的输入/输出状态对故障进行分析和诊断,并采取相对应的故障排除措施。6、经动态跟踪PLC梯形图进行故障诊断在PLC数控机床实际检修过程中,往往还会存在这样一种问题,那就是部分数控机床发生了故障,但查看输入、输出信号以及其它标志均显示正常。这类故障的诊断就需要对PLC梯形图进行动态实时跟踪了,通过连续观察信号输入/输出状态及各项标志的瞬间变化,然后再根据PLC系统的工作原理分析并诊断故障,同时采取针对性的故障排除措施。
结语
总的来说,基于PLC的数控机床在日常运行过程中难免会因为电气方面原因、机械方面原因或者人为原因等发生故障。因此,为了确保数控机床的正常运行和生产活动的效率效益,我们必须及时进行故障诊断和维修。在故障诊断和维修过程中,除自诊断技术外,信号状态检测和按照控制对象工作原理进行故障诊断是最为有效的两种方式,值得我们推广应用。
参考文献:
[1]甘斌达.巧用综合编程方式提高数控铣加工效率初探[J].中国高新技术企业.2016(02)
[2]王茂凡,张圣文,赵中敏.数控设备的故障预测与健康管理技术[J].中国设备工程.2013(03)
[3]雷晓松.PLC在数控机床故障诊断中的应用[J].黑龙江科技信息.2012(29)
关键词:说课;高职;数控机床控制技术;教学
一、引 言
“说课”是教师从教育理论和教学实践相结合的高度与同行和专家作交流的一种科研活动形式,它不仅要说“教什么”、“怎么教”,更要说“为什么这样教”。笔者参加过多种场合展示的高职说课观摩,发现有的说课没能说明设计的理论依据,仅是叙述教学的过程;有的没能把过程和依据整合在一起,理论与实践两张皮。笔者在多年的高职教学过程中也发现,《数控机床控制技术》课程的教学效果不尽人意,主要是受传统教学思想与教学模式的影响,加上这门技术课程本身的特点所致。
对于高职教育,笔者认为教育工作者要树立“高职教育要为社会实践服务,要实现学校与企业的零对接”,把“需要工作的人,变成工作需要的人。”的教育教学理念。下面以“说课”的形式谈谈自己对高职《数控机床控制技术》课程所进行的建设、改革及教学设计的理念与做法等,以期为同行进行高职说课提供参考模板,并对高职《数控机床》课程教学提供一些参考。
二、课程整体设计
本课程是数控技术专业的一门专业核心课程,我校在第三学期开设,计划课时90学时。首先从课程定位、课程设计、内容选取、内容组织四个方面阐述这门课程的整体设计。
1.课程定位(主要回答“这是一门怎样的课程,为什么要教这门课程”)。从数控技术专业课程体系看:我校数控专业面向的岗位为6个,通过对这6个岗位的典型工作任务分析得出4项专业核心能力,每项能力都有相应的专业核心课程支撑,《数控机床电气控制》是一门支撑“数控机床装调与维修能力”的专业核心课程。
在数控技术人才培养目标中,本课程的主要任务是介绍数控机床的电气控制原理与数控系统的应用,实现相关的知识目标、技能目标、态度目标。知识目标为熟悉数控机床机械部件、常用检测装置的结构与工作原理,掌握CNC系统硬件和软件的组成、特点、功能、结构,掌握步进、交直流伺服驱动装置的结构与工作原理,掌握机床参数及PLC在数控机床控制中的作用。技能目标为会正确使用和熟练操作各类数控机床:能识读数控机床连接图和电气控制图,能识别数控机床的主要结构与电器元件,能正确分析数控机床各个功能的实现原理,能熟练查阅机床说明书和相关文件。态度目标为培养良好的行为习惯和职业道德:培养学生的沟通能力和团队协作精神;培养学生工作、学习的主动性;培养学生的创新能力;培养学生爱岗敬业的工作作风;培养学生表达能力;培养学生自我发展能力;培养学生效率观念;培养学生的安全意识与环保意识。
图1 我院数控技术专业课程体系
与相关课程的衔接:在修本课程前需要有电工电子基础、机械基础、PLC基础和数控机床操作基础,本课程为后续的《数控机床故障诊断与维修》课程起支撑作用。
2.课程设计(主要回答“怎么教这门课程”)。本课程是基于工作过程的设计理念:根据职业能力确定教学目标,根据工作任务整合教学内容,根据工作岗位设计教学情境,根据工作流程设计教学过程,根据职业标准设计评价标准。
具体的设计思路是:针对课程所面向的岗位进行企业调研,调研分析后确定岗位所需的职业能力与职业素养,再按照职业成长规律与学习规律确定课程的学习目标与内容。
本课程所面向的岗位是数控机床装调维修员岗位和数控设备的销售与售后服务岗位,本课程所支撑的就是这两个岗位所需的部分职业能力和职业素养。
3.课程内容选取(主要回答“这门课程教什么”)。根据数控行业的发展需求和职业岗位所需要的知识能力素质要求,打破传统学科体系课程内容结构,解构本专业原设的《数控原理》、《电气控制》等课程,按照“行动导向”的认知规律,以情境教学的形式,对课程进行重构。教学内容的选取以实际数控机床设备或机床配件为载体。
本课程根据数控机床装调工作设计了6个学习情境,即认识数控机床,数据机床结构,数控系统,数控机床检测装置,数据机床伺服系统,数据机床电气控制系统;每个情境选取数控机床设备为载体。
4.课程内容组织与安排(主要回答“怎么教这门课程”)。课程内容组织原则是课程内容与职业标准相结合,以数控机床安装调试的工作过程序化教学内容,载体选取突出服务面向的行业特色,载体及时更新,吸纳新知识、新技术、新标准。根据这个原则我们将课程内容分到6个学习情境中,选取典型的载体以29个学习性工作任务驱动,计划总课时是90学时。
三、教学实施
1.教学组织。教学组织过程中坚持学生主体、教师主导的原则,根据课程单元内容的难易程度与特点分别选用导向性、自主性、工作情境实战性教学模式。
2.教学方法与手段。在教学手段上充分利用学院教学资源,突出实践体验,采用“理实一体化”的形式,将教、学、做在一个综合职业环境下完成。本课程常用的教学方法有:项目教学法、任务驱动教学法、仿真教学法、现场教学法、小组讨论教学法。
3.教学资源。为保证以上教学方法与教学手段的实施,本课程的实训项目条件有理实一体化专用多媒体教室、数控机床操作与结构仿真机房、数控原理与数控维修实训室、数控机床操作与装调实训车间。
关键词:数控机床 脉冲编码器 精度检测装置
1 引言
数控机床的定位精度和加工精度在很大的程度上取决于检测装置的精度。它的作用是检测位移量, 是将系统发出的指令信号位置与实际反馈位置相比较,用其差值去控制进给电动机。在数控伺服系统中,通常有两种反馈系统:一种是速度反馈系统,用来测量和控制运动部件的进给速度;另一种是位置反馈系统,用来测量和控制运动部件的位移量。而实际反馈位置的采集,则是由位置检测装置来完成的。这些检测装置有脉冲编码器、旋转变压器、感应同步器、光栅、接近开关等。
2 精度检测装置原理简述
检测装置种类较多,现以绝对式脉冲编码器的接触式四位绝对编码盘为例,简述其工作原理。图a是绝对式光电编码器的结构图。图b是一个四位二进制编码盘,涂黑部分是导电的,其余是绝缘的,码盘上有四条码道。四个码道并排装有四个电刷,电刷经电阻接到电源正极。码盘最里面的一圈是电源负极。
四位二进制编码盘
由于制造精度和安装质量或工作过程中意外因素,易于引起阅读错误。为此绝对式光电编码盘大多采用格雷码编码盘,图c为4位格雷码盘。其特点是任何两个相邻数码间只有一位是变化的, 这样即使制作和安装不太准确,产生的误差最多也只是最低位的一位数。还可消除非单值性误差。
3 精度检测装置
3.1脉冲编码器检测装置
脉冲编码器,是一种旋转式脉冲发生器,能把机械转角变成电脉冲。是数控机床上使用最多的角位移检测传感器。编码器除了可以测量角位移外,还可以通过测量光电脉冲的频率。经过变换电路也可用于速度检测,同时作为速度检测装置。
脉冲编码器可分为光电式、接触式和电磁感应式三种。从精度和可靠性来看,光电式较好,光电式脉冲编码器可以用于角度检测,也可用于速度检测。所以在数控机床上通常使用光电式脉冲编码器。
(1) 光电式脉冲编码器
光电式脉冲编码器可分为增量式脉冲编码器和绝对式脉冲编码器。
光电脉冲编码器是按它每转发出的脉冲数的多少来分,有几种型号,数控机床最常用的脉冲编码器有2000脉冲/r,每转脉冲位移量/mm有2,3,4,5,8;2500脉冲/r;每转脉冲位移量/mm有5,10;3000脉冲/r,每转脉冲位移量/mm3,6,12。
增量式脉冲编码器由光源、光敏元件、透光狭缝、码盘基片、光板、透明镜、A/D转换线路及数字显示装置组成。绝对式光电编码器是一种直接编码式的测量元件,通过读取编码盘上的图案确定轴的位置没有积累误差。
(2) 混合式绝对值编码器
混合式绝对值编码器是把增量制码与绝对制码同做在一码盘上。圆盘的最外圈是高密度的增量制条纹, 其中间分布在4圈圆环上有4个二进制位循环码,每1/4圆由4位二进制循环码分割成16个等分位置。在圆盘最里圈仍有发一转信号的窄缝条。由循环码读出的4×16个位置/转,代表了一圈的粗计角度检测,它和交流伺服电机4对磁极的结构相对应,可实现对交流伺服电机的磁场位置进行有效的控制。
3.2其它检测装置
旋转变压器,是一种控制用的微电动机,将机械转角变换成与该转角呈某一函数关系的电信号,工作原理和普通变压器基本相似。结构简单, 抗干扰能力强,工作可靠,动作灵敏,对环境没有特殊要求,一般用于精度要求不高机床的粗测及中测系统。
感应同步器和旋转变压器均为电磁式检测装置,二者工作原理相同,其输出电压随被测直线位移或角位移而改变。主要部件包括定尺和滑尺,定尺和滑尺分别安装在机床床身和移动部件上。感应同步器分成直线式和旋转式两大类,分别用于长度测量和角度测量。
光栅主要由标尺光栅和光栅读数头两部分组成,光栅传感器测量精度高、动态测量范围广、可进行无接触测量、易实现系统的自动化和数字化。
接近开关类型有电感式、电容式、霍尔式、光电式、干簧管式等多种形式。它具有体积小、无抖动、无触头、无接触检测等特点。
数控机床精度检测装置通常有模拟式和数字式,数字式检测装置能够直接将非电量转换为数字量,不需要A/D转换,直接用数字显示。数字式检测装置与模拟式检测装置相比优点有测量精度和分辨率高,稳定性好,抗干扰能力强,便于与微机接口,适宜远距离传输等。数字式检测装置可以测量线位移,也可以测量角位移,常用的数字位置检测装置有编码器、旋转变压器、感应同步器、光栅等。
4 结语
综上所述,位置精度检测装置非常重要,它是数控机床伺服系统的重要组成部分,其作用是检测位移和速度,发送反馈信号,构成闭环或半闭环控制环节。检测系统决定了数控机床的加工精度。了解数控机床位置检测元件的工作原理,掌握了数控机床的位置测量装置的作用与特点,就能正确选用位置检测元件,从而保证数控机床的加工精度。
参考文献:
[1] 刘祖其主编.机床电气控制与PLC[M].北京:高等教育出版社,2009.3.
[2] 廖兆荣主编.数控机床电气控制[M].北京:高等教育出版社,2005.1.
关键词:数控车床 故障 诊断方法
数控车床应用的越来越广泛,效利用率的要求也越来越高,要求其可靠性高的同时当数控车床出现故障要尽快维修,所以要求其维修人员要有扎实的理论基础和丰富的实践经验。以下有关数控机床的维护和常见故障的常用排除方法。
1. 数控车床的组成
数控车床由:程序编制及程序载体、输入装置 、 数控装置、伺服驱动、位置检测装置、辅助控制装置、车床本体等几部分组成。
在传统的金属切削机床上,加工零件时操作者根据图样的要求,通过不断改变刀具的运动轨迹,运动速度等参数,使刀具对工件进行切削加工,最终加工出合格零件。
2.工作原理
数控车床的加工其实质是应用了“微分”原理。其工作原理与过程可简述如下:
2.1. 只要数控车床的最小移动量(脉冲当量)足够小,所用的拟合折线就完全可以等效代替理论曲线;
2.2.只要改变坐标轴的脉冲分配方式,即可以改变拟合折线的形状,从而达到改变加工轨迹的目的;
2.3. 只要改变分配脉冲的频率,即可改变坐标轴(刀具)的运动速度。这样就实现了数控车床控制刀具移动轨迹的根本目的。
2.4.只要改变坐标轴的脉冲分配方式,即可以改变拟合折线的形状,从而达到改变加工轨迹的目的;
2.5. 只要改变分配脉冲的频率,即可改变坐标轴(刀具)的运动速度。这样就实现了数控车床控制刀具移动轨迹的根本目的。
3.数控车床故障诊断的方法
3.1.直观检查法
维修人员在故障诊断时首先使用的方法是直观检查法。首先要咨询,向出现故障的现场人员详细咨询故障产生的经过、故障现象和故障后果,而且要在整个的分析、判断过程中多次询问;第二是认真检查,依据故障诊断原则从外向内逐步进行排查。整体检查机床各电控装置(如装置、数控系统、温控装置等)有无报警指示,各部分工作状态是否处于正常状态(比如机械手位置、主轴状态、各坐标轴位置、刀库等),机床局部要观察电路板上是否有短路、断路,电路板元器件及线路是否有裂痕、烧伤等现象,芯片是否接触不良等现象,对维修过的电路板,更要检查有无缺件、错件及断线等情况;第三是触摸,在整机断电条件下可以通过触摸各主要电路板的安装状况、各插头座的插接状况、 各功率及信号导线(如伺服与电机接触器接线)的联接状况等来发现可能出现故障的原因。
3.2. 仪器检查法
仪器检查法是使用常规的电工仪表,对相关直流及脉冲信号及各组交、直流电源电压等进行测量,从而找出可能的故障问题。例如:拿万用表来检查各电源情况,和对其中一些电路板上布置的相关信号状态监测点进行测量,拿示波器观察其脉动信号的幅值、相位或者有、无,拿PLC 编程器检测PLC程序中的故障点及原因。
3.3. 功能程序测试法
功能程序测试法是把数控系统的G、M、S、T、F功能用编程法编成一个功能试验程序,并存储在相应的介质上。运行这个程序来完成故障诊断,可快速判定故障发生的起因。功能程序测试法可以适用于以下场合:
3.3.1.当机床加工造成废品时,难以确定是数控系统、还是由于编程操作不当故障引起的。
3.3.2.当数控系统出现随机性故障时,无法判断是系统稳定性差,还是外来干扰的。
3.3.3.当对数控机床进行定期检修或闲置很长时间的数控机床在投入使用前时。
还有接口状态检查法、信号与报警指示分析法、试探交换法、参数检查法、 诊断备件替换法、特殊处理法、测量比较法等。
4.数控机床故障诊断实例
数控机床最容易发生问题的部分是驱动部分,因为它是强弱电一体的。驱动部分有伺服驱动器和主轴驱动器,驱动模块和电源模块两部分构成,电源模块是把三相交流电通过变压器升压为高压直流,而事实驱动部分是个逆变换,把高压支流转换为三相交流,而且驱动伺服电机是完成主轴的运转和伺服轴的运动。所以这部分最容易出现故障。以802S数控系统和CJK6136数控机床的故障现象为例,分析一下控制电路与机械传动接口的故障诊断与维修。
数控机床在加工过程中,主轴经常不能回参考点。则在数控操作面板上,主轴转速显示也不确定主轴运转是否正常。经分析,由于该机床采用的是变频调速,其转速信号由编码器提供,可以排除编码器损坏的可能,因为这样根本就无法传递转速信号,只有是编码器与其连接单元出现问题。从两个方面考虑,一是数控系统连接的ECU连接有可能松动,二是和主轴的机械连接有可能出现问题。然后着手解决故障。第一检查编码器与ECU的连接。如果不存在问题,就拆卸编码器检查是否是主传动与编码器之间的连接键脱离键槽,结果发现就是这个故障。维修恢复并重新安装问题就解决了。
产生数控机床故障的原因有很多,有数控系统本身的问题、驱动元件的问题、机械问题、传感元件的问题、线路连接的问题、强电部分的问题等。检修过程中,重要的是分析故障产生原因的可能性和范围,然后逐一排除,直到找出故障点,千万不可盲目的下手,否则,不但问题解决不了,还可能造成故障范围的扩大。总之,在解决数控机床故障和维修问题时,第一要防患于未燃,在数控机床出现问题之提早去发现解决问题,要了解机床本身的结构和工作原理,做好日常的维护保养工作,这样就能做到有的放矢,更好的解决问题。
参考文献:
[1] 全国数控培训网络天津分中心.数控机床[M].机械工业出版社,2002.
[2] 林宋. 现代数控机床[M]. 北京:化学工业出版社出版,2002.
[3] 张俊生.金属切削机床与数控机床[M].北京:机械工业出版社,2005.
[4] 彭晓南.数控技术[M].北京:机械工业出版社,2003.
关键词:数控机床;进给伺服系统;原理:常见故障
数控机床的进给伺服系统是以机床移动部件的位置和速度为控制量,接受来自插补装置或插补软件生成的进给脉冲指令,经过一定的信号变换及电压、功率放大、检测反馈,最终实现机床工作台(即工件)相对于刀具运动的控制系统。因而,它是实现数控机床加工目的的关键环节,也是数控机床故障的高发区域。数控机床常见故障有三分之一以上发生在机床的进给伺服系统。现将我在使用数控机床过程中经常遇到的进给伺服系统故障的分析和排除方法写于此,希望本文能为我国数控技术的推广应用有所帮助。
数控机床进给伺服系统按照其有无检测装置以及检测装置的位置可分为开环、闭环、半闭环三类伺服系统,本文以闭环伺服系统为例。首先,我们先了解一下数控机床闭环进给伺服系统的构成及工作原理。
一、构成
数控机床的伺服系统一般由驱动单元、机械传动部件、执行件和检测反馈环节等组成。驱动控制单元和驱动元件组成伺服驱动系统,机械传动部件和执行元件组成机械传动系统,检测元件和反馈电路组成检测装置,亦称检测系统。可参看下图:
二、原理
伺服系统是一个反馈控制系统,它以指令脉冲为输入给定值与反馈脉冲进行比较,利用比较后产生的偏差值对系统进行自动调节,以消除偏差,使被调量跟踪给定值。
进给伺服系统的任务是完成各坐标轴的位置和速度控制,在整个系统中它又分为:位置环、速度环、电流环。
在数控机床运行中进给伺服系统出现故障有三种表现形式:一是在CRT或操作面板上显示报警内容或报警信息;二是进给伺服驱动单元上用报警灯或数码管显示驱动单元的故障;三是运动不正常,但无任何报警。机床的操作及维修人员可以根据报警信息以及该机床进给伺服系统的工作原理查找原因,排除故障。在数控机床运行中进给伺服系统常出现故障有:超程,过载,窜动,爬行,振动,伺服电机不转,位置误差,漂移,回基准点故障等。下面我们逐一叙述这些故障的成因及排除方法。
三、超程
超程是机床厂家为机床设定的保护措施,一般有软件超程、硬件超程和急停保护三种,不同机床所采用的措施会有所区别。硬件超程为防止在回零之前手动误操作而设置,急停是最后一道防线,当硬件超程限位保护失败时它会起到保护作用,软件限位在建立机床坐标系后(机床回零后)生效,软件限位设置在硬件限位之内。超程的具体恢复方法,不同的系统有所区别,根据机床的说明书即可排除。
四、过载
当进给运动的负载过大、频繁正反向运动以及进给传动状态和过载检测电路不良时,都会引起过载报警。一般会在CRT上显示伺服电机过载、过热或过流的报警,或电气柜的进给驱动单元上,用指示灯或数码管提示驱动单元过载、过流信息。
五、窜动
在进给时出现窜动现象,即在切削过程中,进给谜度应均匀时,突然出现加速现象。产生的原因可能有:测速信号不稳定,如测速装置、测速反馈信号千扰等;速度控制信号不稳定或受到干扰:接线端子接触不良,如螺丝松动等。当窜动发生在由正向运动向反向运动转换的瞬间时,一般是由进给传动链的反向间隙或伺服系统增益过大所致。排除方法是逐一检查上述可能故障点,找到故障确定原因加以排除即可。
六、爬行
发生在起动加速段或低速进给时,虽然进给电机和丝杆是匀速旋转的,工作台却有可能是一快一慢或一跳一停地运动,这种现象叫做“爬行”现象。一般是由于进给传动链的状态不良、伺服系统增益过低以及外加负载过大等因素所致。尤其要注意的是,伺服电机和滚珠丝杠连接用的联轴器,如连接松动或联轴器本身有缺陷,如裂纹等,造成滚珠丝杠转动和伺服电机的转动不同步,从而使进给运动忽快忽慢,产生爬行现象。
七、振动
当发现某一进给轴振动时,首先要分析机床振动周期是否与进给速度有关。如与进给速度有关,振动一般与该轴的速度环增益太高或速度反馈故障有关;若与进给速度无关,振动一般与位置环增益太高或位置反馈故障有关;如振动在加减速过程中产生。往往是系统加减时间设定过小所致。根据上述原因,定位和排除故障。
八、伺服电机不转
数控系统至进给单元除了速度控制信号外,还有使能控制信号,使能信号是进给动作的前提,可参考具体系统的信号连接说明书。检查使能信号是否接通,通过PLC梯形图,分析轴使能的条件:检查数控系统是否发出速度控制信号;对带有电磁制动的伺服电动机应检查电磁制动是否释放;检查进给单元故障;检查伺服电机故障。
目前,闭环或半闭环数控机床常用的伺服电机有直流伺服电机和交流伺服电机两种。直流伺服电机伺服系统要定期对电刷、换向器、测速电机(速度检测装置)电刷进行检查。检查要在数控机床断电,电机完全冷却的状态下进行,步骤如下:
1、取下橡胶刷帽,用螺丝刀拧下刷盖并取出电刷。
2、测量电刷的长度,如FANUC直流电机的电刷由10mm磨损到5mm时,必须更换同型号的电刷。
3、检查电刷的弧形接触面是否有深沟或裂痕,电刷弹簧上有无打火痕迹,如果有,进一步检查电机换向器表面,并分析造成这种情况的原因,比如是电机工作条件恶劣,还是电机本身封闭不良。
4、用洁净的压缩空气导入电刷的刷孔,吹净粘在孔壁上的电刷粉末,如果难以吹净,可以用螺丝刀刀尖轻轻清理,注意不要碰到换向器的表面。
5、重新装上电刷,拧紧刷盖。如果更换了新电刷,应使电机空运行一段时间,以使电刷表面和换向器表面相吻合。
6、检查测速电机时应卸下电机后盖,露出测速电机。
7、检查测速电机电刷长度、连接是否牢固,检查铜头的表面积碳是否严重,如果严重,可使电机在低速时,用金相砂纸清理铜头积碳,之后用螺丝刀刀尖或其他类似工具将铜头槽内的积碳清理掉。
交流伺服电机不存在电刷的维护问题,所以称之为免维护电机。但这并不是说交流伺服电机绝对不出故障。交流伺服电机常见故障有接线故障,转子位置检测元件故障,电磁制动故障等。交流电机故障判断方法有:
1、电阻测量:用万用表测量电枢的电阻。看三相之间电阻是否一致,用兆欧表检测绝缘状况。