首页 > 文章中心 > 化学工程与工艺的前景

化学工程与工艺的前景

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇化学工程与工艺的前景范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

化学工程与工艺的前景

化学工程与工艺的前景范文第1篇

传统化学工程使用处理工艺对有毒污染物的处理滞后性较强,通常是在污染物产生之后再另外做针对性处理,不仅增加了处理成本,且治标不治本。比如传统工艺烟气除尘,虽然净化了气体,但是污染物直接转化为废渣废水,还需要另一道工序做清洁处理,无疑工序和成本的增加都使得效果不那么理想。绿色化学工艺的介入,可以直接在生产或排放阶段就完成清洁使命,通过化学反应达到预防、控制和消毒污染的目的。

化学原料是化学工程的源头,原料决定了生产流程和工艺的选择,绿色工艺的介入可以从源头上改变原料生产带来的各类化学污染,同时绿色工艺与化学工程的结合还可高效利用各类自然资源,实现深度开发利用,兼顾无污染、节能、环保的生产方式必然会掀起一轮新的工业革命。绿色原料的典型开发应用比如甘蔗渣、稻草、麦秆以及木屑、树枝、芦苇等可加工成为酮类、酸类与醇类化学品。

在化学反应中使用选择性高的试剂也是绿色工艺应用的一个途径。以石油化工为例,生产过程中烃类选择性氧化反应较为普遍,作为一种强方热性反应,具有生成物不稳定、易进一步氧化等特征,所以,催化反应中此反应并非最佳选择,生成物的不稳定也不利于提取最终产物,所以,为改善这种情况,使用选择性高的试剂是最佳途径。如此一来,不仅可以降低成本,节约资源,还能够降低分离产品的难度提升纯度,无疑实现了提升效益和减少污染的双赢,所以,绿色化学工程在这方面的研究实践也非常热门。随着越来越多的化学反应被应用到工业生产中,催化剂对提升反应速率效果显着,所以目前化学工艺领域积极研究无毒无害的高效催化剂成为主流发展方向不一,不仅有利于工业的发展,对于推动化学分子深入研究也有助益,分子筛催化剂和烷基化固相催化剂就是其中较为典型的代表。

2。绿色化学工程工艺应用

分析绿色化学工艺是实现节能减排的重要途径,对绿色工艺的重视与开发也彰显了当前世界范围内节能减排的重要性。长达两百余年的工业化路程,使得人类活动对自然资源环境的危害越来越大,尤其中国作为当前世界最大的工业国,“三废”问题十分突出,PM2。5问题也成为了悬在人们头上的一把利剑,将资源枯竭、环境污染、生态失衡、人口问题等推到了台前更加显着的位置。大型化工企业作为与人们生存发展息息相关的企业,石油化工与煤炭除去提供能源之外,还提供多种衍生化工产品为人们衣食住行服务,生产过程中产生的废水废渣废气、消耗的大量原材料都警示着当前必须积极发展绿色化工工艺,以达到节能减排、实现可持续发展的目的。就目前而言,节能减排的实现途径主要以下几种:研发新科技、新工艺全过程控制污染;利用先进清洁工艺从源头控制污染;利用技术和工艺创新打造可循环绿色生态产业链;发展循环经济等。绿色化学工程与工艺作为节能减排目标得以实现的重要保障,广泛应用于多个领域,就目前来说,主要以三种表现为主,分别是清洁生产技术、生物技术的应用及生产环境友好型产品。

绿色化学工程与工艺使用生物技术服务可再生能源的合成,像有机化合物原料的应用经历了从动植物到石油煤炭的发展过程,现如今已经开始广泛应用各类再合成的有机化合物。在绿色化工中,所使用的催化剂多以工业酶和自然界中存在的酶,酶与其他化学催化剂相比,具有反应条件温和、生成物优良、污染少等优势,对于当前化工领域而言,生物酶的利用和研发就成为了绿色化工的重要发展方向。像丙烯酰胺的制备,最早使用丙烯晴,在环城生物酶催化后,不仅能耗与成本大幅度减低,且反应完全无副产物,对工业生产而言有多重积极意义。

除此之外,绿色化工工艺还广泛应用于生产环境友好型产品领域,生活中有众多具体应用实例。比如空调制冷多使用氟利昂,会造成臭氧层空洞、紫外线增多、温度升高,目前正积极寻求替代品且朝着低能耗方向发展,无磷洗衣粉减少对河流水域污染和人体健康的危害,可降解塑造制品对土地、水源危害都将进一步减轻,清洁汽油的使用可对大气污染降低,以上种种尝试都说明了在生产环境友好型产品领域,绿色化工工艺所发挥的积极作用。尤其是近年来无污染汽油的研发与应用,像低硫柴油、乙醇、二甲醚等,不仅经济环保,发展前景好,且制备生产对自然资源的消耗、对环境的危害都不断降低,证实了绿色工程化工应用的优越性。

化学工程与工艺的前景范文第2篇

关键词:化学工程技术;反应技术;应对策略

0 引言

化学工程技术是一门主要研究化工生产过程中研究和开发以及过程装置的设计、制造和管理的综合性技术。化学工程技术在化学生产中的应用已涉及到各行各业,化学工程技术的发展对于强化化工生产过程,提高产品质量,降低原料和能量消耗,对于企业的技术改造以及新技术的开发起着重要作用。

1 新型反应技术的研究

1.1 超临界化学反应技术

超临界液体是指在温度和压力都处于临界点之上时,此时状态处于液体和气体之间,具有这两种状态的双重性质。这种状态的流体不仅在化学工业、生物化工、食品工业有广泛的应用,而且还在医药工业等领域应用很广泛,已经显示出巨大的魅力,极具发展前景。近年来,化学界将超临界水氧化法应用到保护环境的领域,但是都处于初级发展阶段,很不成熟。

1.2 绿色化学反应技术

绿色化学是指对环境不会造成污染的,有利于保护环境的化学工程。绿色化学简单说就是采用化学的技术和方法来减少或消除那些对人类有害的、妨碍社区安全的、对生态环境会产生不利影响的原料或溶剂等。绿色化学是将污染从源头进行消除的工程,因此很彻底,这主要包括原子经济性和高选择性的反应,生产出对环境有利的材料,并且回收废物循环利用的一门科学技术。

1.3 新的分离技术

研究从广义上说,分离强化首先是对设备的强化,然后是对生产工艺的强化,综合起来说就是只要能将设备变小、将能量转化效率提高的技术都是化工分离技术强化的结果,有利于实现可持续发展,这也是化工分离技术的主要趋势之一。古老的化工分离技术原理:利用沸点的不同,将不同的组分从分离塔里分离出来。随着科技的发展及国内外的分工合作共同研究除了大量新的分离技术,具有广阔的发展前景,但是这些在应用中同样也存在着很多问题,那就是:此项研究对相关分子蒸馏的基础理论探究比较少,没有在理论上充分说明和指导,对设计刮膜式分子蒸馏器也没有深入的研究。随着信息技术的不断进步,分离技术也不断得到改善,取得了长足的进步,逐渐信息技术引入到分离技术的研究与开发上,例如在研究热力学和传递的性质、多相流等方面,这些都是信息技术发生功效的主要分离技术,再如分子模拟大大提高了预测热力学平衡和传递性质的水平。对分子的设计加速了可以加速分离,因此对研究和开发新的高效的分离剂有深远的意义。信息技术的引进有利于新的分离过程的深入,提高工作效率。

2 化学工程学科发展动态

2.1 将化工过程与系统过程研究相结合

化学变化是一个复杂的过程,这是因为性质决定的,其非对称性和不平衡性打破了人们的惯性思维,使其控制因素增多,结构尺度变多,其中结构是对过程工程研究的中心问题,主要解决办法是简化其结构,使复杂的结构变得简单,更具有使用价值;首先研究特殊系统,然后推理出一般性的结论,进而推而广之,这些都为解决结构问题打下了良好的基础,解决了复杂系统不容易被分析的问题,采用整体法和还原法研究复杂的系统有利于把握系统的主要变换方向,多尺度的思考问题的方式可以将过程问题转换成平时的时间和空间问题,对研究化学工程的复杂结构有好处。化学工程的这一转变趋势预示着化学正在向着应用领域进行扩张,更加注重其实用性和价值性,而非学科本身理论的研究。这也在化学课堂上出现了明显的改革,从只有实验和理论两个过程的化学转换成有实验、有计算最后才产生结论的过程,这就需要化学与数学物理等相结合,甚至与计算机技术相结合,进而实现化学过程的更好研究。

2.2 将化学工程与材料科学研究相结合

科学的进步使大量新的技术和产品能源不断涌现,并且在先进技术的引导下得到了广泛的应用,这就为化学工程的研究提出了新的问题那就是如何为新的产业的形成和发展提供良好的服务并不断形成新的完整的理论,化学工程的发展就此进入老人一个新的发展阶段。在学科研究的方法上更多的注重学科的交叉,更多的研究材料其中包括信息和化学、生物与化学、能源与化学、环境与化学相结合的工程学科,这些都为化学工程的发展提出了新的发展方向和研究课题,为化学的发展做了良好的铺垫。

2.3 将化学工程与信息工程研究相结合

化学工程技术的热点是将化学工程与信息工程研究相结合,随着信息技术的发展,信息技术已经深入各行各业,通过计算机技术可以收集大量信息,并对此进行精细的计算,随着大量的数据的统计和分析,可以得出很多重要的规律和结论,这些规律可以用来作为提高效率和生产效益的理论依据,同时可以预见,将化学工程和材料科学结合起来进行分析必将是化学工程领域的重点研究课题,必将成为引领化学研究的主要方向。

3 促进化学工程技术发展的对策

3.1 着眼全局提高化学工程技术水平

化学工程科学近年来的发展趋势已经明显地呈现与多学科交叉的现象,要进一步促进化学工程技术的进步,就要从全局出发综合考虑与化学工程交叉的各个领域的情况。要统筹考虑各个领域的运用,做好整体的规划,协调各项科学的开发利用。并且统筹现有领域的同时积极开拓新的研究领域,使各个学科领域相互促进,最后实现共同发展。

3.2 提高化学工程机械设备研究水平

机械设备是提高一项技术必须具备的,先进的机械设备能为更高水平的技术研究硬件支持。但是相对而言,目前化学工程技术方面的机械设备还比较落后,应该加强研究力度,向世界化学工程技术研究的机械水平靠近。有了这些高科技水平的机械设备,在化学工程技术领域赶超世界水平指日可待。

3.3 做好化学工程技术的教育工作

任何一项技术的发展都不能离开高水平的人才,所以要促进化学工程技术进一步发展需要加强化学工程领域的教育培训工作。不仅需要培养化学工程技术方面的知识,与其相关的学科的教育与培训也要加强。不仅仅培训理论知识,更要加强学生的实践能力,为化学工程技术的发展储备人才。

3.4 积极开拓化学工程技术的应用市场

当今化学工程技术的应用领域已经很广泛,但是如果想要进一步的发展还要积极研究开发新的工艺、新的产品,寻找新的市场。市场是产品开发的动力,有了市场的需求才会带动产品的生产,也就会促进技术水平的提高。

4 结语

化学工程技术是一门主要研究化工生产过程中研究和开发以及过程装置的设计、制造和管理的综合性技术。我们要加强研究,针对发展特点采取相应的措施,提高化学工程技术水平。

参考文献:

[1]陈惜明,彭宏.化学工程技术的几个热点与发展趋势[J].安徽化工,2012,01:3-6.

[2]房鼎业.化学工程的技术进展与化学工业的发展态势[J].化工生产与技术,2011,02:1-8.

[3]叶庆国,周传光.化学工程技术的发展动向及对策[J].山东化工,2012,01:21-25.

作者简介:

1.白清搏(1992-),辽东学院化学工程学院化学工程与工艺 B1201班学生。

化学工程与工艺的前景范文第3篇

关键词:应用化学 化学工艺学 理论教学

应用科学是研究和说明特定的设备运用于特定的生产和生活领域的具体方法和具体程序的科学。应用科学是理论科学和技术科学在生产和生活中的具体化和实际应用[1]。

化学工艺学是一门综合性、实践性很强的课程,是应用化学专业在学习了化学基础理论后所开设的一门应用性课程。该专业培养具备化学基本理论、基本知识和较强实验技能,能在科研机构、高等学校及企事业单位从事科学研究、教学工作及管理工作的专门人才。根据本专业的特点,在开设化学工艺学课程时应能充分将化学基础理论、基本技能与实践有机的结合起来,实现理论科学、技术科学对应用科学的指导。通过对本课程的学习使学生对化学工艺学所研究的内容有较为系统的认识。能将基础化学所学的知识与化学工艺学较好的衔接和运用起来,实现理论与实践的结合。对化工生产的基本原料、工艺过程、设备、环保要求有全面的了解。

一、根据专业特点安排教学内容

1.教学内容与基础化学密切相联系

应用化学专业与化学专业相比,增强了应用背景,是化学与化工的衔接,是化学学科在应用方面的拓展,培养的是理工结合的应用型人才[2]。本专业学生受到基础研究和应用基础研究方面的科学思维和科学实验训练,具有较好的科学素养,具备运用所学知识和实验技能进行应用研究、技术开发的基本技能。因此,化学工艺学课程教学内容的选择应满足专业的特点。在教学内容安排时,选择典型工艺进行较详细的介绍。无机化工工艺部分以合成氨为教学重点。合成氨在化学工业发展中具有里程碑式的意义,它在几大化学领域都有突出的发展。是化学理论与实践结合的成功典范。“正是由于对氮、氢、氨体系化学平衡的研究,把热力学理论推进到了真实气体高压化学平衡的研究领域,在研究氨合成催化反应速率方面,推动了反应动力学的发展。这些理论的形成直接指导了氨的合成。”[3]同时,合成氨在催化技术的应用方面也为现代催化理论奠定了基础,许多重要的催化理论概念如催化剂的活性中心、催化剂表面的非均一性、毒物作用及催化机理等都是在研究合成氨的反应过程中确立下来的。有机化工工艺部分以烃类裂解为重点。以“三烯”(乙烯、丙烯、丁二烯)和“三苯”(苯、甲苯、二甲苯)总量计,约65%来自乙烯装置,因此,常常将乙烯生产作为衡量一个国家石油化工生产水平的标志。[4]烃类裂解工艺在反应设备、分离系统、能量利用等方面都代表着最先进的世界化工发展水平,这对于培养学生工程理念,了解世界化学工业发展方向是非常重要的。

2.注重基础理论与应用相结合

将基础理论与实践应用相结合不仅仅是基础理论知识的简单应用,对学生来讲首先带来的是思维模式的改变。基础理论是由概念、定律等建立起来的具有严密逻辑结构的知识体系。学生更擅长从概念到概念,从公式到公式的思考模式。但实践中有更为复杂的因素对工艺过程的选择、工艺条件的确立、产品的分离等产生影响。在化工生产中对反应的化学热力学和化学动力学的研究是决定工艺条件的最重要的化学基础理论。反应的温度、压力、浓度、催化剂或其他物料的性质以及反应设备的技术水平等各种因素对产品的数量和质量有重要影响[5]。在课堂教学中应充分把化学热力学、化学动力学知识与实践中的应用结合起来。例如在合成氨的生产中平衡氨含量是一个非常重要的参数,从平衡常数KP=PNH3/P0.5N2P1.5H2开始分析,到最终确立平衡氨含量XNH3/(1-XNH3-Xi)2=KPpr1.5/(1+r)2,分析此式不难看出总压强P,平衡常数KP氢氮比r以及惰气的含量都对平衡氨X的含量有影响。如不考虑组成对平衡常数的影响,当氢氮比r=3时平衡氨含量具有最大值。考虑到组分对平衡常数KP的影响,具有最大XNH3的氢氮比略小于3,随压力而异,约在2.68~2.90之间[6]。因此惰性气体对平衡氨含量的影响必须考虑进去。这是实施合成氨工业生产的一个重要理论依据,理论上的定性讨论与实验上取得的定量数据完全吻合,满足了定性与定量的统一,理论与实践的统一[7]。在对化学反应的速率分析中,基础化学理论中对动力学方程式的描述学生很熟悉,但在实践的工业生产中,反应动力学方程式与反应控制步骤的研究、反应温度、催化剂等因素有密切的联系,反应所用的催化剂不同,反应条件不同,则动力学方程式也不相同,这使实际的动力学方程式与基础化学中所学习到的相差甚远。因此,通过课堂教学让学生了解化工过程的复杂性。在实践中,实现一个化工过程对基础化学理论不是一个简单的应用。这也是工艺课程本身所具有的特点。

二、以化工生产过程及工艺流程为教学重点

应用化学专业的学生已学习了化工原理,对主要化工单元操作的基本原理、过程、计算方法等有了系统的掌握。但对实际生产过程相对比较陌生,通过对具体工艺单元的介绍结合所学的化工原理知识,学生能归纳出工艺单元的共性,对工艺过程的结构有一个概括的了解,并能对工艺流程有一定深度的认识。

1.掌握通用反应单元工艺的特点

化学反应单元是根据化学反应类型来分类的。反应单元仅是生产中的一个环节。在教学中根据学科需要有选择的介绍一些典型反应单元。由于同一反应单元有不少共性,通过对具体反应单元工艺的学习使学生自觉的找出规律性的东西,这样便于学生掌握所学的知识,也能很好的指导今后的科研、生产,做到触类旁通。例如在学习了二氧化硫催化氧化制硫酸、乙烯环氧化制环氧乙烷等后学生很快发现氧化反应是强放热反应,生成的副产物较多,对于烃类氧化还要防止造成深度氧化等特性。在找出反应的共同点后,针对反应单元的特点,对实际生产中设备的要求、流程的选择就有清晰的认识。如氧化反应器的设计必须从安全的角度出发,对易深度氧化的反应应选择有良好性能的催化剂以防止深度氧化的发生,等等。通过对反应单元的学习比较使学生能更加灵活的运用反应单元工艺。

2.以化学反应为核心,探索工艺流程的内在联系

工艺流程指工业品生产中,从原料到制成成品各项工序安排的程序。对于不同的化工产品其生产工艺流程也各不相同。但各流程都是围绕着化学反应这一核心问题展开的。如烃类裂解流程。根据裂解反应吸热、体积增大、裂解产物组成复杂、二次反应的影响等特点,裂解反应在高温、短停留时间条件下有较高的产品收率。这一反应特点,也决定了在对核心设备管式裂解炉设计时应满足传热面积大、裂解管变径,裂解管程数减少等的要求。从流程上来看,由于裂解产物组成复杂因此后续分离系统非常的庞大。从能量的利益来看,乙烯装置的节能技术关键是使用最少的裂解原料和燃料得到最大收率的目标产品,最大限度地回收裂解余热,并将回收热量合理分配到压缩、深冷、精制各工段。优化装置蒸汽系统,合理利用蒸汽等级,节约能量,并可向界区外输送能量[8]。因此,从化学反应性质入手充分发现流程中各单元的内在联系,把握好问题的主线,这样才能真正的对工艺过程有一个清晰的认识。在实际生产中还要充分考虑如何以最少的消耗、最低的成本得到最高的生产效率制。在教学中要让学生明确一个具体工艺流程安排不仅仅是生产实际对理论的检验,更多的还要从社会的、经济的角度去作全面的考虑。虽然一般工艺过程的组成大致相同,但每种产品的生产还有特殊性。在讲课时,抓住主要矛盾以展开,并着重于基本原理、基本知识和基本规律的讲解,力求达到清晰、严格和准确。

三、结束语

应用化学专业是介于化学与化学工程之间的一个应用理科专业,其任务是培养理工结合型的“用”化学的人才[9]。理论课的教学仅仅是学好这门功课的一个环节。要真正的掌握好这门课程还需要加强实践环节的学习。通过采用将多媒体、化工仿真实验、生产实践教学与化学工艺学课程教学相结合的教学方式,强化学生的化学工程意识,提高分析和解决化工生产实际问题的能力。同时,结合本地区化学工业发展的特点,对应用化学人才的需要不断调整教学内容。在科技发展迅猛的今天,应让学生了解更多化学的理论前沿、应用前景、最新发展动态,以及化学相关产业发展状。

参考文献

[1]杨玉辉,现代自然辩证法原理[M].北京:人民出版社,2003,257

[2]李水清,梅平.应用化学专业人才培养模式改革探索[J].长江大学学报:社会科学版,2008,31(6):253-254.

[3]张家治,化学史[M].太原:山西教育出版社,2004,124.

[4]何细藕,烃类蒸汽裂解制乙烯技术发展回顾[J].乙烯工业,2008,20(2):59-60

[5]米镇涛,化学工艺学[M]. 北京:化学工业出版社,2006, 24.

[6]陈五平,无机化工工艺学,化学工业出版社,北京,2007, 207.

[7]石启英,合成氨的热力学浅析[J].商洛师专学报(自然科学),1996年第2期(第7卷,总第9期),37-38.

化学工程与工艺的前景范文第4篇

关键词:石灰石;湿法;二氧化硫;烟气脱硫

0前言

二氧化硫是主要大气污染物之一,严重影响环境,威胁人们的生活健康。削减二氧化硫的排放量,保护大气环境质量,是目前及未来相当长时间内我国环境保护的重要课题之一。目前,国内外处理低浓度SO2烟气的方法有许多,钙法是采用石灰石水或石灰石乳洗涤含二氧化硫的烟气,技术成熟,生产成本低,但吸收速率慢、吸收能力小、装置运行周期短。针对传统脱硫方法存在的缺陷,本文阐述了主要钙法在处理低浓度二氧化硫烟气脱硫工艺的影响因素分析,这些影响因素分析解决资源合理利用问题。获得了良好的社会效益和经济效益。

1常用湿法烟气脱硫技术介绍

1.1石灰石―石膏湿法烟气脱硫工艺原理

该法是将石灰石粉磨成小于250目的细粉,配成料浆作SO2吸收剂。在吸收塔中,烟气与石灰石浆并流而下,烟气中的SO2与石灰石发生化学反应生成亚硫酸钙和硫酸钙,在吸收塔低槽内鼓入大量空气,使亚硫酸钙氧化成硫酸钙,结晶分离得副产品石膏。因此过程主要分为吸收和氧化两个步骤:

(1)SO2的吸收 石灰石料降在吸收塔内生成石膏降,主要反应如下:

CaCO3+SO2+1/2H2O=CaSO3・1/2H2O+CO2

CaSO3・1/2H2O +SO2+1/2H2O=Ca(HSO3)2

(2)亚硫酸钙氧化 由于烟气中含有O2,因此在吸收过程中会有氧化副反应发生。在氧化过程中,主要是将吸收过程中所生成的CaSO3・1/2H2O氧化生成CaSO4・2H2O。

2CaSO3・1/2H2O+ O2+3H2O =2CaSO4・2H2O

由于在吸收过程中生成了部分Ca(HSO3)2,在氧化过程中,亚硫酸氢钙也被氧化,分解出少量的SO2:

Ca(HSO3)2+1/2O2+ H2O=CaSO4・2H2O+ SO2

亚硫酸钙氧化时,其离子反应可表达为:

CaSO3・1/2H2O+H+ Ca2++ HSO3―+1/2H2O

HSO3―+1/2O2 SO42―+H+

Ca2++ SO42―+2H2O CaSO4・2H2O

由以上反应可见,氧化反应必须有H+存在,浆液的PH值在6以上时,反应就不能进行。在吸收SO2过程中,一般石灰石的PH值为5~6,石灰石的PH值为6~7,吸收剂的粒度越细越好。

2影响石灰石―石膏湿法烟气脱硫工艺的因素分析

湿法烟气脱硫工艺中,吸收塔循环浆液的PH值、液气比、烟速、浆液洗涤温度、钙硫比、石灰石浆液颗粒细度、浆液停留时间等参数对烟气脱硫系统的设计和运行影响较大。

2. 1吸收塔洗涤浆液的pH值

料浆的pH值对SO2的吸收影响很大,一般新配制的浆液PH值约在8~9之间。随着吸收进行,PH值迅速下降,当pH值低于6时,下降变得缓慢,而当pH值小于4时,吸收几乎不进行。

pH值除了影响SO2吸收外,还影响结垢、腐蚀和石灰石粒子的表面钝化。因此,浆液pH值应控制适当。采取消石灰石浆液时,pH值控制为5~6,采用石灰石浆液时,pH值控制为6~7。

2.2吸收塔内的液气比

(1)液气比(L/G,L/G)。是指与流经吸收塔单位体积烟气量相对应的浆液喷淋量,在吸收塔内,除了PH值,对于吸收效率影响较大的另一操作参数是液气比。对于吸收操作液气比越大吸收越完全,而且液气比越大,氧化槽不易结垢,但是液气比太大,液体停留时间有所减少,而且循环泵流量增大,塔内气体流动阻力增大使风机耗能增大,投资和运行费用相应增加。石灰石法喷淋塔的液气比一般在15~25 L/m3有采用这种液气比才能保证不小于95%的高脱硫效率,这正是湿法烟气脱硫工艺的关键所在。目前广泛使用的喷淋塔内持液量很小,要保证较高的脱硫效率,就必须有足够大的液气比。

2.3烟速和烟气温度

在其他参数恒定的情况下,提高塔内烟气流速可提高其液两相的湍动,降低烟气与液滴间的膜厚度,提高传质面积,增加了脱硫效率。试验表明气速在3.66-24.57逐渐增大时,脱硫效率几乎与气速变化无关。

烟速提高可增大吸收系数。烟速增大,气液两相界面湍动加强,液滴的内循环更加显著,气液相传质系数都提高;另外烟速增大可减缓液滴下降速度,使液滴分布变小,传质面积增加,气相分布也越均匀。但另一方面,烟速提高造成雾沫夹带严重,影响除雾效果。

研究表明,低洗涤温度有利于SO2的吸收。所以要求整个浆液洗涤过程中的烟气温度都在100℃以下。100℃左右的原烟气进入吸收塔后,经过多级喷淋层的洗涤降温,到吸收塔出口时温度一般为45~70℃。

目前,将吸收塔内烟气流速控制在3.5-4.5m/s较合理,少数塔型如水平(卧式)塔,其空塔气速可达到9m/s以上。

2.4 钙硫比

钙硫比(Ca/S)是指注入吸收剂量与吸收二氧化硫量的摩尔比,它反应单位时间内吸收剂原料的供给量,通常以浆液中吸收剂浓度作为衡量度量。

如果煤中的含硫量为s(%),达到一定的脱硫效率所需的钙硫摩尔比为Ca/S,则需要加入流化床中的脱硫剂量G(kg/h)可用下式计算:

G=100CaS(%)B/32SCaCO3(%)

Ca/S=32 CaCO3(%)G/100S(%)B

式中G――达到一定脱硫效率需向流化床加入的脱硫剂量(kg/h);

Ca/S――达到一定脱硫效率所需的钙硫摩尔比值;

S――燃料中含硫量的重量百分数(%);

CaC03――脱硫剂中CaC03含量的重量百分数(%);

B――燃料消耗量(kg/h)。

实践也证明吸收塔的浆液浓度选择在20%~30%为宜,Ca/S在1.02~1.05之间。

2.5石灰石浆液颗粒细度

吸收剂原料。脱硫系统对吸收剂(CaCO3)有一定的要求,首先是吸收剂的纯度,高纯度的吸收剂将有利于产生优质脱硫石膏,其次是吸收剂的粒度,粒度越小,单位体积的表面积越大,利用率相对较高,有利于脱硫。通常要求的吸收剂纯度在90%以上,粒度控制在300~400目。过高的吸收剂纯度和过细的粒度会导致吸收剂制备价格的上升,使系统运行成本增加。

2.6浆液停留时间

浆液在浆液池内停留时间长将有助于浆液中石灰石颗粒与二氧化硫的完全反应,并能使反应生成物压硫酸钙有足够的时间完全氧化成硫酸钙,形成颗粒度均匀、纯度高的优质脱硫石膏。但浆液在浆液池内停留时间长会使浆液池的容积增大,氧化空气量和搅拌机的容量增大,将增加土建设备费用。

3结语

发电厂进行脱硫工程建造,在降低SO2排放,增大液气比,增加气体流速,同时也给烟囱运行带来了一些问题,如:除雾器脱水效果不好,烟速过高将烟气带入烟囱,减少烟囱使用寿命。这些都为需要脱硫新建的电厂提供了一定的参考经验。石灰石―石膏湿法作为目前最成熟、效率最高的脱硫技术,我国应加快技术消化吸收,推广已经运行的石灰石―石膏湿法系统的经验。

参考文献

[1]肖文德,吴志泉.二氧化硫脱除与回收[M].北京:化学工业出版社,20015

[2]高子忠.环境保护及三废处理[M].沈阳:华中理工大学出版社,1990,7

[3]蒋思国.石灰石―石膏湿法烟气脱硫技术及其应用[J].工程科技1辑,2008,06........

[4]边小君.石灰石/石膏湿法烟气脱硫系统的运行优化及其对锅炉的影响[J].工程科技1辑,2006,11.

化学工程与工艺的前景范文第5篇

关键词:费托合成 钴基催化剂 油基础油

中图分类号:TQ529 文献标识码:A 文章编号:1672-3791(2013)04(b)-0088-04

我国是一个富煤、缺油、少气的国家,资源禀赋的特点决定了煤炭在我国能源结构中的重要性,在我国一次能源的消费结构中,煤炭占有70%左右的份额,同时从长期来看,国际油价上升趋势不可避免。在此情况下,出于国家能源安全与经济利益的双重考虑,寻找符合中国国情的石油补充和替代方案是我国的战略选择。

煤炭的间接液化(CTL)技术是当前煤化工的重要发展方向,主要包括煤炭气化、合成气变换/净化、费托合成及合成产品提质等工艺过程,其中费托合成技术是最为关键的核心技术。典型的费托合成煤间接液化工艺流程见(图1)[1,2]。

1 费托合成(Fischer-Tropsch Synthesis)技术

1.1 费托合成技术发展历史

费托合成技术合成油品的历史可追溯到20世纪20年代,1923年,德国科学家F·Fischer和H·Tropsch发明了利用合成气(H2+CO)和铁催化剂在15 MPa、400 ℃的反应条件下制取液态烃的技术,被称为费托合成法[3]。1934年德国鲁尔(Ruhrchemie)公司开始建造以煤为原料的费托合成油工厂,1936年投产。1936年至1945年期间,德国共建有9个费托合成油厂,总产量达到67万吨/年,其中汽油占23%、油占3%、石蜡和化学品占28%。同期,法、日、中、美等国也建设了7套以煤为原料的费托合成油装置,重生产能力达到69万吨/年。之后,由于石油工业的兴起和发展,致使大部分费托合成油装置关闭停运[4]。

1.2 主要费托合成技术

(1)国外费托合成技术现状。

南非Sasol公司,即南非煤油气公司(South African Coal,Oil and Gas Corp,简称“Sasol”)于1950年成立。1955年建成第一座由煤间接液化生产燃料油的Sasol-I厂。70年代石油危机后,于1980年和1982年又相继建成了Sasol-Ⅱ厂和Sasol-Ⅲ厂。目前三个厂年处理煤炭总计达4590万t,是世界上规模最大的以煤为原料生产合成油及化工产品的化工厂。主要产品为汽油、柴油、蜡、氨、乙烯、丙烯、聚合物、醇、醛、酮等113种,总产量达760万t/a,其中油品占60%左右[5]。

Sasol公司在F-T合成技术基础上开发了先进的工艺和设备。Sasol-I厂建厂初期选择了德国的Arge固定床和美国Kelloge公司的Synthol流化床F-T合成反应器。目前Sasol-I厂仍有6台Arge固定床反应器[6]。Sasol公司另一种应用较多且较成熟的是循环流化床反应器,该反应器最初是由美国Kelloge公司设计的,后经多次技术改进及放大,现称为“Sasol Synthol”反应器[7]。为进一步提高单台费托合成反应器的产能,Sas

ol公司在原有循环流化床反应器(Synthol)的基础上又开发了固定流化床反应器(SAS)。20世纪70年代中期,Sasol公司又开展了浆态床反应器的研究工作。1991年,完成100 bbl/d的三相浆态床费托合成中试装置试验工作。1993年5月,开工建设了生产能力2500 bbl/d的三相浆态床费托合成工业装置,该装置于1995年投入运行。与此同时,Sasol公司还开发成功了浆态床馏分油合成工艺(SSPD)[8,9]。

除南非Sasol公司外,长期以来,世界上其他国家的著名石油化工公司也对费托合成技术进行了大量研究开发工作。

壳牌(Shell)公司经多年开发,已拥有世界先进的工业化费托合成油技术,即中间馏分油合成技术(Shell Middle Distillate Synthesis,简称SMDS)。该工艺将传统的费托合成技术与分子筛裂化或加氢裂化相结合生产高辛烷值汽油或优质柴油。该工艺采用多管式滴流床反应器、钴基催化剂,单台反应器产能可达8000 bbl/d[10]。壳牌(Shell)公司有关费托合成技术的专利大部分为催化剂及SMDS工艺流程改进,还有部分专利集中在浆态床工艺过程上[11]。

此外,Statoil公司[12]、Syntroleum公司[13]及Exxon公司也相继开发出各自的费托合成技术。

(2)国内费托合成技术现状。

根据国家科委在“六五”期间的分工,国内的间接液化研究主要由中国科学院山西煤炭化学研究所进行。他们在消化、吸收了国外的经验后,提出了将传统的F-T合成与沸石分子筛特殊形选作用相结合的两段法合成(简称MFT)工艺。从80年代开始先后完成了实验室小试、工业单管模试中间试验(百吨级)和工业性试验(2000 吨/年)。此外,山西煤化所还开发了浆态床—固定床两段法工艺,简称SMFT合成。2000年中科院山西煤化所开始筹划建设千吨级浆态床合成油中试装置,2001年6月完成中试装置设计,7月开始施工,2002年4月建成,到2004年6月累计运行3000 h,目前,各个技术环节已运转畅通,实现了长周期稳定运转,为工业装置的建设提供工程数据和积累运行经验。

兖矿集团下属公司上海兖矿能源科技研发有限公司自2002年下半年起开始费-托合成煤间接液化的研究开发工作,目前已成功开发出具有自主知识产权的低温费-托合成煤间接液化制油技术,并于2004年11月完成4500 t粗油品/a低温F-T合成、100 t/a催化剂中试装置试验,装置连续平稳运行4706 h,累计运行6068 h。与中石化石科院(RIPP)合作进行了中试产品的提质加氢开发工作,2005年8月“煤基浆态床低温费-托合成产物加氢提质技术”通过了中国石油与化学工业协会组织的技术鉴定。

近些年脱颖而出的还有亚申科技研发中心(上海)有限公司的钴基固定床费托合成工艺。与其他工艺不同的是,亚申费托合成是由一氧化碳和氢气在低温、低压下通过适当的催化剂合成烃类产物的过程,基本反应如下:

烷烃 nCO+(2n+1)H2CnH2n+2+ nH2O

烯烃 nCO+2nH2CnH2n+nH2O

费托合成产物中90%~95%为直链烷烃,其余为带分支的甲基烃。其中碳数在20以下的烷烃可细分为溶剂油、液蜡、合成柴油等产品,碳数在20以上的重质烷烃可细分为软蜡、硬蜡、超硬蜡等产品,也可经异构生产高级油基础油。

(3)费托合成技术应用进展。

南非Sasol公司是世界上规模最大的以煤为原料合成油及化工产品的公司,目前3个工厂年处理煤量可达4590万t;壳牌石油公司在马来西亚建有75万吨/年固定床费托合成装置,与卡塔尔石油工资在当地合资建设了珍珠(Pearl)项目,产能在14万bbl/d(约500万吨/年)。

我国费托合成技术开发已进入工业示范阶段,近年来已取得重要进展[14,15]。其中:中科油费托合成技术已建成伊泰16万吨/年、潞安16万吨/年和神华18万吨/年三大煤间接液化装置,神华宁煤400万吨/年煤炭间接液化装置也在紧张施工中;兖矿榆林100万吨/年煤间接液化商业化示范装置目前处于建设阶段,项目采用自主开发的大型费托合成浆态床反应器;亚申科技费托合成技术已建成中试装置,并通过上海科委组织的专家鉴定,装置采用钴基固定床反应器,投资小、生成的产物以无硫无芳烃高纯度正构烷烃为主,适合生产高端油基础油和高品质合成蜡。

1.3 不同费托合成技术产物对比分析

按反应器类型的不同,费托合成可分为固定床费托合成、流化床费托合成、浆态床费托合成;按催化剂的不同,可分为铁基催化剂费托合成、钴基催化剂费托合成;按反应温度的差异,可分为高温费托合成、低温费托合成。

高温费托合成工艺的反应温度为300℃~350 ℃,反应压力为2.0~2.5 MPa,采用循环流化床反应器或固定流化床反应器。催化剂可采用熔融法铁基催化剂或沉淀法铁基催化剂,主要产品为汽油、柴油、含氧有机化学品和烯烃等。高温费托合成工艺产品中的含氧有机物主要是乙醇、丙醇、正丁醇、C5以上高碳醇、丙酮和乙酸等[16]。低温费托合成工艺的反应温度为200℃~250 ℃,反应压力为2.0~5.0 MPa,采用固定床管式反应器或浆态床反应器,可采用铁基或钴基催化剂,钴基催化剂更适合于以天然气为原料的低温费托合成油技术[17],传统主要产品为柴油和石脑油,亦可根据市场需求生产高端油基础油和高品质合成蜡。

一般,可根据目标产物的不同选择不同的组合方式:若要制取柴油、汽油等合成燃料油,可选择铁基浆态床催化剂费托合成工艺;而钴基固定床催化剂费托合成工艺更适合生产石蜡,进一步生产高端油基础油。

综上所述,通过费托合成工艺,可将合成气(H2+CO)转化为汽油、柴油等能源产品,但生产石蜡、微晶蜡、溶剂油、油基础油等高附加值产品,具有更为良好的经济效益。

2 费托合成制取高端油基础油工艺简介

油由基础油和添加剂调和而成。典型的油一般由75%~85%的基础油和15%~25%的添加剂组成。油一般指在各种发动机和机械设备上使用的液体剂,广泛用于机械、汽车、冶金、电力、国防等行业。国外各大石油公司过去曾经根据原油的性质和加工工艺把基础油分为石蜡基基础油、中间基基础油、环烷基基础油等。美国石油协会(API)于1993年将基础油分为五类(API 1509),并将其并入API发动机油发照认证系统(EOLCS)中。API基础油具体分类情况和我国油基础油系列标准见(表1)。

目前,中国的油基础油主要依赖进口,进口依存度超过55%,市场需求量较大。由此可见,将传统费托合成生产汽油、柴油转变为生产高端油基础油的前景十分乐观,且具有明显经济效益(油基础油吨产品价格平均高于汽油、柴油4000~5000元)。

以甲醇级合成气(CO+H2)为原料,经过原料气深度净化、费托合成反应、异构脱蜡和加氢精制、产品分离四个单元,得到高端油基础油(APIⅢ类基础油),可联产3号喷气燃料。反应选择钴基催化剂固定床费托合成工艺,反应温度:200 ℃~250 ℃,反应压力:4.0 MPa,原料气H2/CO比:1.9~2.1。主要流程如(图2)所示。

费托合成制取高端油基础油的主要产品为轻基础油、光亮油,联产3号喷气燃料,其规格见(表2)。

所得3号喷气燃料各指标均满足GB 6537-2006的技术要求,尤其在下表所列性质具有较大优越性,油质十分适于用作无硫无芳烃的航空燃料(表3)。

3 结语

近年来,中国油消费量呈现持续上升的势头,今后几年,仍将以4%左右的速度增长,是全球油消费的主要增长地区和油业务发展的亮点地区,也是各大油品牌竞争的焦点地区。同时,中国油的产品结构也正在向高档化发展,产品质量不断提升,经营模式也在向集约化、规模化方向发展。要在激烈的市场竞争中保持良好的发展态势,必须在科学发展观指导下,提高产品的科技含量,提升品牌价值。而提高油质量,必须依靠提高基础油的质量,才能保证我国在高端油市场上具有竞争力。

从费托合成蜡转化得到高端油基础油主要是通过异构脱蜡以及加氢精制反应实现。随着分子筛合成技术、加氢异构反应机理、催化剂制备技术等方面研究工作的不断深入,加氢异构技术生产高端油基础油(APIⅢ类基础油)在化工领域得到了越来越广泛的应用。就目前而言,异构脱蜡是油加工工艺中最先进的技术,代表了基础油加工工艺的发展趋势。通过费托合成制取高端油基础油,适用于配制节能型多效内燃机油及高档工业油,依靠其优异的产品质量指标,将会在油市场占得一席之地。

参考文献

[1] 刘峰,胡明辅,安赢,等,煤液化技术进展与探讨[J].化学工程与设备,2009(11):106-110.

[2] 郭新乐.煤的直接液化与间接液化技术进展[J].广州化工,2011,39(7):34-35.

[3] 付长亮,张晓.煤制油(CTO)技术及国内的发展现状[J].广东化工,2008,35(1):64-67.

[4] 应卫勇,曹发海.房鼎业,碳一化工主要产品生产技术[M].北京:化学工业出版社,2004.

[5] 郝学民,张浩勤.煤液化技术进展与展望[J].煤化工,2008,(4):28-32.

[6] 张结喜.煤间接液化技术的现状及工业应用前景[J].化学工业与工程技术,2006,27(1):56-60.

[7] Steynberg A P,Dry M E. Fischer-Tropsch technology[J].Elsevier Science & Technology Books,2004.

[8] 赵玉龙.浆态床费托合成技术的国内外发展概况[J].煤炭综合利用,1991(1):11-17.

[9] 罗伟,徐振刚,王乃继,等,浆态床费托合成技术研究进展[J].煤化工,2008(5):17-20.

[10] 周从文,林泉.费托合成技术应用现状与发展[J].神华科技,2010,8(4):93-97.

[11] Gerard P.Kinetics,Selectivity and scale up of the Fischer-Tropsch synthesis. Netherlands,1999.

[12] 孙予罕,陈建刚,王俊刚,等,费托合成催化剂的研究进展[J].催化学报,2010,31 (8):919-927.

[13] 王野,康金灿,张庆红,费托合成催化剂的研究进展,石油化工,2009,38(12):1255-1263.

[14] 孙启文,吴建民,张宗森,等,煤间接液化技术及其研究进展[J].化工进展,2013,32 (1):1-11.

[15] 周丽,任相昆,张希良.我国煤制油产业政策综述[J],化工进展,2012,31(10):2207-2212.