前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇机电系统论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
电子技术之所以在人类生产生活的方方面面得到广泛推广与应用,主要是因为其具有明显的优势,本文经过研究分析,总结出其存在的优势具体表现在以下几个方面。第一,全控化。该性能主要是针对自关断器件来讲的,传统的电器件是半自动控制的,这种电子器件的换相电路非常复杂,而通过电子技术的发展与应用,使自关断器件的电路得到了进一步优化,实现了全自动控制操作。第二,集成化。这种集成化主要是将全部的全控型电子器件用很多的单元电子器件连接在一起,放在一个基片上,与以前的电子器件分立方式相比,节约了很多的时间;再次,高频化。这个优势主要是因为电子技术实现了集成化,这就大大提高了电子器件的工作速度;最后,高效率化。这个优势主要体现在电子器件和变换技术上,这是因为电子器件在运行时,通过电子技术能够降低导通压降,从而就减少了导通消耗;电子技术的应用提高了电子器件开关上升与下降的速度,这样又减少了开关的消耗;电子技术的应用使得电子器件的运行状态更加平稳,这样又提高了运行的效率;软开关技术在变换器中的广泛应用,对提高强电系统的运行效率也起着重要的作用。其次,电子技术在强电系统中有以下几个方面应用的意义。第一,电子技术在强电系统中的广泛应用,有效的提高了电力能源的应用效率。先进的电子技术可以提高强电系统运行的安全与稳定,并且实现了对电力资源的优化配置,这样就降低了电力企业的投入成本,提高了电力企业的经济效益。第二,对于我国社会主义现代化建设具有重要的推动作用。伴随着高端科学技术的发展以及新型产业的研发与应用,越来越多的产业需要在投入使用前进行全面的电子技术处理与加工工作,并以此保障互联网网络下电力系统的运行安全与稳定。
2电子技术在强电系统中的应用
研究电子技术作为信息时展下的一项新技术,是强电技术与弱电技术结合的重大突破,其在生产生活中的广泛应用有效的推动了我国经济社会的快速发展。第一,在发电系统中的应用。电子技术在发电系统中的应用,主要是对发电系统所使用到的机械设备的运行特性进行改善,从而调节发电系统中的功率。如果对大型发电机的静止励磁进行控制时,水力和风力发电机的变速恒频励磁,从而对风机水泵的变频进行调速,在结构较为简单的静止励磁中,使用了晶闸管整流提高了静止励磁的可靠性,且需要花费的资金成本较低,在电力系统中以极快的速度发展。在控制水力和风力发电机时,对转子中的励磁电流产生的频率进行调整,提高水力和风力发电的功率,可以有效地降低水力和风力的频差。电力系统中的风机水泵的耗能极大,占了整个系统中的65%,且工作效率极低,只需要在系统中安装变频调速就可以解决这些问题,但是我国能够运用高压大容量的变频器的实力的系统不多,更何谈是能够精确的控制。第二,电子技术在输电环节的广泛应用。直流输电技术的研究与应用。高压直流输电,其送电端的整流和受电端的逆变装置都是采用晶闸管变流装置,它从根本上解决了长距离、大容量输电系统无功损耗问题。直流输电技术不仅具备了稳定性强、控制性强、操作性强、灵活度高、电容量大等特点,并且在不同地质地貌下远程输电工程中发挥着至关重要的作用。
3结语
该技术主要是通过电子器件对工业中的大功率的电能进行控制和交换的技术。其主要的作用是通过器件的开关,实现对电能的控制。其中开光的状态必须是可控的,并且是可以通过信号来进行控制。换句话说,就是通过为变换器中的开关器件提供信号,然后器件按照相关的指令,按照设定的规律与控制方式进行操作,从而实现对电能的控制。控制电路则主要包含时序控制、保护电路、电气隔离和功率放大。
2电力电子技术的应用
2.1电力电子技术在电力系统中的应用
交流技术的典型应用以现在新型三相Z源逆变器为代表。三相Z源逆变器被广泛的应用于风能发电,通过对电能的控制和调节,改善了风能系统运行的性能。而起主要的交流电路控制方式则分为两类:1)不可控整流后接Z源逆变器控制方式传统的不可控的整流逆变器控制方式主要包括两种,一种是以电压源型逆变器为主的控制方式,该控制方式在在风流发电中没有考虑到风力比较小的时候,其整流后的电压往往较小。面对这种情况,往往通过加强调制的深度来减小逆变部分的运行功率;另外一种是以直流侧电压稳定的逆变器为主要控制方式,但是该控制方式的缺点在于不能双向控制,而只能进行简单的升压,同时在操纵中,受到死区时间的影响,导致控制受到限制。与传统的逆变器控制技术相比,新型的风力发电中,在Z源逆变器增加的基础上增加了一个Z源网络,从而允许上下桥臂能够同时道统,以此更好的防止因器件损坏而导致直通状态改变的事故发生,从而更好的使得电路具备升降功能。具体的拓扑分析图如图1所示。通过计算可以得出Z源网络输出的直流母线电压为:V’PN=2VC-VDC=1/(1-2d0)*VDC=BVDC(1)通过计算可以得出逆变器在交流侧所输出电压的峰值:B‘VAC=M*1/2*VPN=M*1/2*VDC(2)通过上述的公式,我们可以得出,可以通过对公式中的升压因子B和调制比M的调节,从而达到自动调节电压的目的。因此,通过三相逆变器的调节作用,可以在风速比较小的时候,调节占空比,灵活进行升降压,从而达到电力中的并网要求,高效的捕获风能。2)Z源矩阵变换器控制方式传统的矩阵变换器的作用是实现能量的双向的流动,但是其最大的缺点在于其矩阵变换器的电压传输比不高,从而导致可靠性降低。因此,在控制方式中加入Z源网络,以此可很好的而解决上述的问题。具体如图2和图3所示。通过对电路进行拓扑分析,可得到图3的拓扑结构。而要实现交-交变化,只需要对电路中的9个开关进行控制即可实现电压的自动升降,从而最大限度的提高利用风能的效率。
2.2电力电子技术在交通运输中的应用
电力电子技术在电气化的铁道中以DC/DC变换技术为代表,该变换技术被广泛的应用在了地铁、电动车中的无级变速等领域。如现代汽车中,随着汽车中的用电的不同,其设备的种类也就不同,对电源的型号的要求也就不同。而这些电源都是采用的是由蓄电池所提供的+12VDC或+24VDC的直流电压,在经过DC-DC变换器转变成+220VDC或+240VDC,后再经过DC-AC变换器转变成工频交流电源或者是变频调压电源。如采用推挽逆变-高频变压器-全桥整流方案,设计了24VDC输入-220VDC输出、额定输出功率600W的车载高频推挽DC-DC变换器。该方案中最重要的是采用AP法设计推变变压器。查看经过简化后的变压器主电路图,在输入24V的直流电源之后,经过大电容的滤波作用后,被接到了推挽变压器的原边的中间抽头部位。而变压器的另外的两个抽头则分别接全控型号的电力电子器件IGBT,并在这中间加入RC吸收电路,从而构成了推挽逆变电路。变压器的输出端在经过全桥整流之后,大电容的滤波便得到了220伏的直流电压,并通过分值得到电压的反馈信号为UOUT.而该主电路,主要是以CA3524芯片为核心,从而构成了整个控制电路。通过对图中的6和7中的管脚间的电阻、电容的大小来调节开关的频率。在12、13的管脚出输出PWM的脉冲信号,从而驱动电路,分别对两全控型开关进行交替控制。反馈信号经1管脚,通过P2对2管脚参考,并和9中的COM端、CA3524构成调节器,从而通过调节占空比,以此达到稳定电压的目的。
3电力电子技术未来的发展趋势
随着科技的发展,材料的创新,未来电力电子技术的应艳红将凸显出高频化(20kHz以上)、硬件结构集成模块化(单片集成模块、混合集成模块)、软件控制数字化和产品性能绿色化(无电磁干扰和对电网无污染)四大发展方向。
3.1电力电子器件的未来发展
电力电子器件的发展在未来的几年中将凸显出集成化、标准模块化、高频化以及智能化的特点。这主要因为以下四个原因:第一,随着我国与世界的不断融合,特别是和发到国家的不断融合,同时在技术应用发展中,对电子器件的性能和指标的要求也越来越严。具体的说未来的电子器件将需要更大的散热能力、更高的工作的温度、更大的电流密度等,而对于航空和航天方面的来讲,还注重更好的抗辐射和抗振动能力,特别是在军事中的装甲车、坦克、火箭等。第二,在未来的几年发展中,管以硅为半导体材料的双极功率器件和场控功率器件的研发也趋于成熟,同时各种不同的结构和新的生产工艺的加入,仍可有效的提升其性能,各种不同型号的期间仍然具有市场竞争力。第三,随着信息化等方面的提高,智能化的研发和应用也在不断地成果。在美国、以色列等国家已经相继制造出了结构更简单,功能更强大的IPM智能化功率模块,有效的提高了运行的效率。
3.2电力电子设备与系统的未来发展
关键词:DSPFPGA3/3相双绕组感应发电机
1系统简介
3/3相双绕组感应发电机带有两个绕组:励磁补偿绕组和功率绕组,如图1所示。励磁补偿绕组上接一个电力电子变换装置,用来提供感应发电机需要的无功功率,使功率绕组上输出一个稳定的直流电压。
图1中各参数的含义如下:
isa,isb,isc——补偿绕组中的励磁电流;
usa,usb,usc——补偿绕组相电压;
ipa,ipb,ipc——功率绕组电流;
upa,upb,upc——功率绕组相电压;
udc——二极管整流桥直流侧输出电压;
uc——变流器直流侧电容电压。
电力电子变换装置由功率器件及其驱动电路和控制电路两部分组成。功率器件选用三菱公司的智能功率模块(IPM)PM75CSA120(75A/1200V),驱动电路使用光耦HCPL4502。控制电路由DSP+FPGA构成。
图2控制电路的接口电路
2EPM7128与TMS320C32同外设之间的接口电路
图2所示为控制电路的接口电路。控制电路使用的DSP是TMS320C32,它是TI公司生产的第三代高性能的CMOS32位数字信号处理器,其凭借强大的指令系统、高速数据处理能力及创新的结构,已经成为理想的工业控制用DSP器件。其主要特点是:单周期指令执行时间为50ns,具有每秒可执行2200万条指令、进行4000万次浮点运算的能力;提供了一个增强的外部存储器配置接口,具备更加灵活的存储器管理与数据处理方式。控制电路使用的FPGA器件为ALTERA公司的EPM7128,它属于高密度、高性能的CMOSEPLD器件,与ALTERA公司的MAXPLUSII开发系统软件配合,可以100%地模仿高密度的集成有各种逻辑函数和多种可编程逻辑的TTL器件。采用类似器件作为DSP的专用集成电路ASIC更为经济灵活,可以进一步降低控制系统的成本。
电压检测使用三相变压器,电流检测使用HL电流传感器。电平转换电路用来将检测到的信号转换为0~5V的电平。A/D转换器选用ADS7862。保护电路使用电压比较器311得到过压/过流故障信号。
DSP完成以下四项工作:数据的采集和处理、控制算法的完成、PWM脉冲值的计算和保护中断的处理。
FPGA完成以下三项工作:管理DSP和各种外部设备的接口;脉冲的输出和死区的产生;保护信号的处理。
图3FPGA与A/D转换器和DSP之间的接口
3使用FPGA实现DSP和ADS7862之间的高速接口
ADS7862是TI公司专为电机和电力系统控制而设计的A/D转换器。它的主要特点是:4个全差分输入接口,可分成两组,两个通道可同时转换;12bits并行输出;每通道的转换速率为500kHz。控制方法为:由A0线的值决定哪两个通道转换;由Convst线上的脉宽大于250ns的低电平脉冲启动转换;由CS和RD线的低电平控制数据的读出,连续两次读信号可以得到两个通道的数据。
系统中使用了两片ADS7862,它们的控制线使用同样的接口,数据线则分别和DSP的高/低16位数据线中的低12位相连接。这样DSP可以同时控制两片A/D转换器:4通道同时转换;每次读操作可以得到两路数据。
如图3所示,将A/D转换器的控制信号映射为DSP的三个外部端口:A0、ADCS(和ADRD使用一个端口)和CONVST。在FPGA中使用逻辑译码器对端口译码。利用AHDL语言编写的译码程序如下:
TABLE
A[23..12],IS,RW=>A0,ADCS,CONVST,PWM1,PWM2,PWM3,PWM,PRO,CLEAR;
H″810″,0,0=>0,1,1,1,1,1,1,1,1;
H″811″,0,1=>1,0,1,1,1,1,1,1,1;
H″812″,0,0=>1,1,0,1,1,1,1,1,1;
H″813″,0,1=>1,1,1,0,1,1,1,1,1;
H″814″,0,0=>1,1,1,1,0,1,1,1,1;
H″815″,0,0=>1,1,1,1,1,0,1,1,1;
H″816″,0,0=>1,1,1,1,1,1,0,1,1;
H″817″,0,1=>1,1,1,1,1,1,1,0,1;
H″817″,0,0=>1,1,1,1,1,1,1,1,0;
ENDTABLE
其中,0表示低电平,1表示高电平。RW=1表示读,RW=0表示写。
DSP对这三个端口进行操作就可以控制A/D转换器:写CONVST端口可以启动A/D转换器;读ADCS端口可以从A/D转换器中读到数据;写数据到A0端口可以设置不同的通道。
使用上述方法可以实现DSP和A/D转换器之间的无缝快速连接。
4使用FPGA实现PWM脉冲的产生和死区的注入
FPGA除了管理DSP和外设的接口外,还完成PWM脉冲的产生和死区的注入。将PWM芯片和死区发生器集成在FPGA中,就可以使DSP专注于复杂算法的实现,而将PWM处理交给FPGA系统,使系统运行于准并行处理状态。
5使用FPGA实现系统保护
为了保护发电机和IGBT功率器件,励磁控制系统提供了多种保护功能:变流器直流侧过压保护;变流器交流电流过流保护;变流器过温保护;发电机输出过压保护;IPM错误保护。
图5稳态时励磁绕组电压电流及系统直流电压波形
论文摘要随着我国改革开放的不断深化,全面进入小康社会的步伐越采越快,居民的居住环境有了很大的改善,与此同时对用电服务也提出了更高的要求。通过对集中抄表系统进行设计改进,使其实现信息交互,提高供电企业的电力营销信息化程度。
1概述
集中抄表系统是一个结构化的开放式系统,采集器通过电能表的通信接口采集电量数据,并通过一定的网络设备传输到供电企业数据库中,做为电费结算的依据。目前大多数居民集中居住区都已经安装了集中抄表系统,并投入使用,大大降低了抄表人员的劳动强度,和人为因素造成的抄表误差。本文对集中抄表系统提出一些设计改进,使其能增加实时电压监测、故障报修、信息、电费控制等功能,提高电力营销信息化程度。
2集中抄表系统结构和工作原理
2.1系统结构图
2.2系统的组成
从上面的结构图可以看出集中抄表系统是一个结构化的开放式系统,主要有三个部分:分别是硬件部分、软件平台、数据传输。各个部分都具有较强的兼容性、移置性、升级性和可维护性,方便进行二次开发和性能改进。同时各个部分的升级换代和功能扩充都很方便,无需对整个系统做大的改动。
2.3硬件部分
原来的集中抄表系统硬件部分只有数据采集器和数据集中器,我扩充设计了电压监测模块、控电模块和显示模块。
数据采集器:数据采集器能通过485总线与电能表建立数据通信连接,并针对不同的电能表型号,自动选择合适的通讯规约,实时自动采集各个用户的用电数据,并将采集到的信息发送到数据集中器。
数据集中器:数据集中器的主要功能就是将采集器采集到的电能信息数据,和其他硬件模块采集的数据传输到数据库,并对传送的数据进行校验,防止数据在传输中发生改变。
电压监测模块:电压监测模块通过传感器和电压采样线对用户电能表的电压实施实时监铡。并经模数电路转换为数据信息,然后将采集的电压数据发送到数据集中器内。可以监测相对地、相对相、相对零等电压,以及电压的异常波动。电压采样由于采用了光电隔离措施,能有效的避免强电串入弱电对人身安全带来的威胁,和防止设备的损坏。
控电模块:控电模块是带复式控制功能的开关组合模块,主要功能是对用户的电源实现远程控制,能根据系统操作员的指令自动切断或投入用户的电源。要求切断容量适合,并且带失电自动复位功能。
显示模块:显示模块是能显示点阵汉字的信息显示屏,可以安装在数据采集器上,它的主要功能是显示各种用电信息,如电费金额、电压信息、欠费信息、停电通知和故障信息等等。
2.4软件平台
软件部分由应用软件、数据库、硬件支撑平台组成。其中应用软件负责对系统进行日常管理操作;数据库负责采集数据的交换、引用、索引;支撑平台负责硬件部分的运行、维护。我主要在应用软件中增加了故障报警功能、信息功能、控电操作功能。
应用软件:系统管理软件已封装成标准的ActiveX控件,可以方便的与供电公司电力营销管理系统连接。
数据库:通过采用CIGS中间层可以使应用系统结构清晰,维护简单易行。CICS其全称是CustomerInformationControlSystem,即客户信息控制系统。CICS通过关系数据库从主数据库中获得资源,建立在操作系统、1SO的分布式计算环境和Encina服务上。
硬件支撑平台:硬件支撑平台采用了固化核心和远程程序下载技术,基于BIOS的硬件结构,使得软件功能的升级扩充都无需进行现场维护,可以在远程操作端自动完成。
2.5数据传输
数据传输部分主要负责建立硬件设备之间的数据链路,将采集到的数据传输、发送,并确保传输快速准确。原先的设计有PLC、485、以太网和手机无线网络。根据技术发展,我对3G技术在集中抄表系统中的应用,做了简单的介绍和预想。
电力载波:电力线载波PowerLineCarrier,简称PLC是电力系统特有的通信方式,它是利用现有电力线,通过载渡方式高速传输模拟或数字信号的技术。优点是使用电力线作为传输介质,不需要线路投资。但是缺点是由于配电变压器对电力载波信号有阻隔作用,所以PLC只能用在同一配变的供电区域内。
RS-485:RS-485是串行数据接口标准,具有接线简单,传输距离长(最大传输距离约为1219米)的优点,但是传输速度低,只能用于抄表采集模块之间的通信。
以太网:以太网采用拓扑总线结构,具有传输速度高,连接方便,通用性强的特点。缺点是在电缆供电的小区内只能在地下电缆管线内走线,施工难度大,日常维护困难。
无线方式:主要有GPRS、CDMA两种技术,GPRS、CDMA都是无线通信网络,利用移动手机的本站发射信号。所以在构建集中抄表系统时。不必重新建设机站,也不需要中继器,组网简单,建设费用低,可以适合各种施工地形,减少网络设备的维护。
3G是英文3rdGeneration的缩写,指第三代移动通信技术。相对1G和2G主要是提升了传输速度,3G技术在室内、室外和行车的环境中能够分别支持至少2Mbps(兆字节/每秒)、384kbps(千字节/每秒)以致144kbps的传输速度。目前3c技术蓬勃发展,将来极有可能代替GPRS和CDMA成为尤线数据传输的主力,所以现在也应当对网络传输模块预留3G升级接口,一旦技术成熟就可以立即向3G过渡。超级秘书网
3集中抄表系统在电力营销管理的应用
随着人民生活水平的不断提高,人们对电力的需求已经不仅仅满足于有电用,良好的供电质量和服务水平,成为社会对供电企业的新要求。在电力营销的发展过程中,原来以用电管理为主的职能正逐渐向用电服务为主的方向过渡,供电企业为提高供电质量和服务水平,必需要有一套完善的电力营销管理系统,对用户的用电状态进行实时监测,及时掌握低压配电网的运行情况,发现异常供电和异常线损、定位电网故障,杜绝供电隐患。但是目前用电监控装置只是以低压电网中的配变和单位用户专变为监测对象,对广大的居民用电状况没有实时监测、控制的能力。
现阶段集中抄表系统的建设相当于在居民用户端与供电企业之间架设起一条信息高速公路,但这条信息高速公路设计是单向的,只能将数据信息从用户端上传至供电企业。但是通过对该系统进行设计改进,我们完全可以把它建设成双向传输的信息高速公路,利用这条数据链路来实现双向的信息交换,从而为居民用户提供丰富的用电服务。对集中抄表系统的设计改进主要通过增加硬件组合模块和软件分析操作模块,使其能实现以下几种功能:
自动分辨故障类型,发生缺相、接地、缺零、电表烧坏等故障时。弹出报修信息,自动生成报修单。
自动控制用户欠费,对欠费用户远程操作停电,发送欠费通知信息。
自动停电通知,告知用户最新的用电信息。
其中故障报修功能、信息功能属于电力用户服务的增强,欠费信息通知、控电操作功能是电费管理的增强,从而实现对居民用电状况进行实时管理,达到提高电力营销管理信息化的目的。
电力系统可靠性是指电力系统按可接受的质量标准和所需数量不间断地向电力用户供应电力和电能量的能力的量度。研究发电可靠性的主要目标是确定电力系统为保证有充足的电力供应所需的发电设备容量。其分析方法有确定性的和概率性的2种,国内目前通常采用的是确定性方法,而概率性方法能较好地综合各种因素的影响,其评估技术在国际上已经成熟。现阶段,我国发电系统可靠性指标标准还没有统一的规定,处于一种研究探索阶段。本文结合湖北电网“十一五”规划,对其发电可靠性进行评估和分析。
1可靠性指标计算
预计2010年湖北省统调最大负荷为18200MW,用电量为93TW•h;统调主要电源装机容量为20222.7MW(不含三峡电站和恩施州)。可靠性指标计算结果如下:2010年湖北电力系统电力不足期望值HLOLE为33.61h/a,电量不足期望值EENS为26332.8MW•h/a。
2敏感性分析
为分析各相关因素对发电可靠性指标的影响程度,特从以下几方面进行敏感性分析计算。
2.1负荷变化在其它各条件不变的情况下,最大负荷上下浮动,2010年湖北电力系统HLOLE值与负荷大小关系见图1所示。图1负荷敏感性分析图由图1可见,负荷变化对发电可靠性指标有着明显的作用,当最大负荷从推荐水平的120%减少时,HLOLE迅速降低,若负荷达到推荐负荷的105%,则HLOLE增加至基准负荷水平时的1.83倍;若负荷未达到推荐负荷水平(95%),则HLOLE仅为基准值的56.9%,HLOLE随负荷变化趋势减缓。由上可知,当负荷越处于高水平时,其变化对HLOLE的影响越大。由于负荷发展水平受多方面因素的影响,负荷预测不可能与实际一致。随着社会的发展,负荷越来越高,其较小的变化相对值,也会导致较大的绝对值变化,而且电源建设存在一定的周期。因此,更应重视负荷的中长期预测,使之更接近实际水平,另一方面也说明在电源规划中应确定合理的HLOLE的取值范围,使之具有一定的适应能力。
2.2电源装机由于电源建设项目受各方面因素影响较多,特别是在电力市场改革正在进行的今天,电源项目的投产期存在更多的不确定性。减少电源装机对HLOLE有一定的影响,但略低于负荷变化的影响;而增加电源装机对降低HLOLE的影响幅度小于因减少电源装机导致电力不足期望值增加的幅度,即系统装机容量越少,其变化对HLOLE的影响越大。从这一点也说明确定电力不足期望值的合理范围的重要性。
2.3等效可用系数通过提高现有机组的等效可用系数,相当于增加系统的可用容量,经济性方面优于新增机组方案。2005年湖北省火电机组的等效可用系数为91.90%,还具备一定的提高潜力。通过机组等效可用系数的浮动计算可知,随着等效可用系数的提高,HLOLE不断下降,在基准值上,可用系数平均降低4个百分点,相当于减少600MW的装机容量,而增加1个百分点,其效果接近于增加300MW的装机容量。因此加强技术水平和提高管理水平,提高机组的等效可用系数,在同样装机容量下,能有效地提高发电可靠性指标。
2.4强迫停运率2005年湖北省属机组等效强迫停运率为2.18%。由于各机组的强迫停运率本身不高,因此其变化时对可靠性指标的影响相对要小些。机组强迫停运率在基准值基础上,上下浮动30%对HLOLE的影响并不大,仅相差10%左右。即使机组强迫停运率增加一倍,对HLOLE的影响界于减少一台300MW机组和减少一台600MW机组之间;机组强迫停运率为零时,效果相当于增加一台300MW机组和增加一台600MW机组之间。
2.5电源结构湖北电力系统一个重要特点就是水电比重大,截止2005年底,湖北电力系统统调水电装机比重高达65.8%,随着三峡电站的建设投产以及水布垭等水电的开发建设,湖北电力系统水电比重仍将维持较高的比重。下面通过拟定不同的电源结构方案,其可靠性指标计算结果见表1。由表2可见,不同的电源构成对电力不足期望值HLOLE有影响,一般来看,相同装机容量下,火电装机容量比重高的系统其HLOLE要低一些,主要是因为水电存在受阻容量。从逐月计算结果看,火电装机容量比重高的系统枯水期HLOLE明显低于火电装机容量比重少的系统,主要是因为水电枯水期空闲容量的增加,使其可用装机减少。水火电的替代容量在0.875左右。当然,水电出力受各方面因素影响较多,计算结果与各个水电站有关,也与水电站的设计保证率有关。
2.6火电机组检修湖北电力系统水电机组检修一般安排在枯水季节,不影响电站出力。通过缩短火电机组的检修时间,可提高发电可靠性指标。火电机组检修周期提高30%,其效果相当于减少系统一台300MW的装机;而降低30%,其效果界于增加系统一台300MW和600MW的装机之间。
2.7与电力电量平衡程序计算结果对照现阶段,电源规划软件常用的是华中科技大学编制的《联合电力系统运行模拟软件(WHPS2000)》,因此,特对该软件计算结果与发电可靠性计算指标进行对照。注:表中备用系数不包含机组检修备用。由表2可见,随着备用系数的取值不断下降,发电可靠性指标不断增大,也就表明系统的发电可靠性变差,基本上是备用系数降低0.01,发电装机可减少200MW,发电可靠性指标增加10%左右。由上述各计算结果可见,负荷水平和装机容量的变化对可靠性指标影响最大。从电源构成看,相同装机容量下,水电比重大的系统其可靠性要差些,2010年湖北省的水电替代容量在0.875左右,从这方面看,水电比重大的区域备用系数应高一些;从机组本身看,提高其等效可用系数比降低机组的强迫停运率的效果明显;另外,在可靠性指标计算中,检修是根据等备用原则安排,实际生产中,合理安排检修计划,提高机组的计划检修水平,逐步开展状态检修方法,也是提高发电可靠性的措施之一。
3技术经济综合比较
任何可靠性水平总是与经济性密切相关,当电力系统越来越复杂、电力用户对供电质量的要求不断提高时,就需要用科学的可靠性理论来进行定量的研究。我国作为一个发展中国家,受到多种因素包括经济以及政治、社会因素的影响,一般认为可靠性指标的取值宜在1~2d/a之间。
3.1停电损失与装机成本计算与发电可靠性有关的指标是由电能价格来维持的,发电可靠性并非越高越好,需综合考虑投资、停电损失及用户的电价承受能力。发电可靠性成本就是电源建设的投资成本以及运行成本,而可靠性效益计算却比较难,在进行成本-效益析时,一般将可靠性效益计算转化为对用户的缺电成本计算。缺电成本计算与国民经济发展状况、国情、电力系统发展水平等多种因素有关,目前采用的有以下几种简单的估算方法。(1)按GDP计算,即按每缺1kW•h电量而减少的国民生产总值计算平均缺电成本。(2)按电价倍数计算,根据对各类用户进行缺电损失的调查和分析,用平均电价的倍数来估算缺电成本。如英国、法国、瑞典等。(3)按缺电功率、缺电量、缺电持续时间及缺电频率计算,如美国等。以下分析仅考虑上述第一和第二种方法。2005年湖北省每kW•h电量对应的GDP为9.62元,预计2010年停电损失费可达到12.3~15.5元/(kW•h);另一方面,目前,湖北省综合电价水平在0.4元/(kW•h)左右,按50倍电价水平计算得到停电损失费用约为20元/(kW•h)。根据国产2×600MW机组的造价水平,折算到每年的发电成本约为900元/kW•a-1。据此,我们可以算出装机变化成本与停电损失费用,进行成本-效益分析。由表3可见,当停电损失费用取15元/(kW•h),装机成本始终超过停电损失;当停电损失费用取20元/(kW•h),按成本-效益分析,可减少装机容量在1800~2400MW之间;当停电损失费用取25元/(kW•h),可减少装机容量在1200~1800MW之间;当停电损失费用取30元/(kW•h),可减少装机容量在600~900MW之间;当停电损失费用取40元/(kW•h),可减少装机容量在0~300MW之间。超级秘书网
4结论和建议
本文结合湖北电网的“十一五”规划进行可靠性指标的计算以及敏感性分析,对电源装机成本与效益进行了分析,主要有如下结论。
(1)“十一五”期间,湖北省的电源装机进度与负荷水平是相适应的。