前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇高数指数函数范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
【关键词】高中数学;幂函数;指数函数;对数函数;课程标准;国际比较
1研究问题
幂函数、指数函数、对数函数是三类重要的基本初等函数,因此也是高中数学课程中的基础内容之一.近年来,我们对中国、澳大利亚、芬兰及法国、美国、英国等国家数学课程标准、教科书进行了量化比较研究[1-3].本文是这一系列研究的一部分,主要针对高中数学课程标准中的幂函数、指数函数和对数函数内容,以课程标准中的内容主题及认知要求为切入点,对澳大利亚、加拿大、芬兰、法国、德国、日本、韩国、荷兰、南非、英国、美国、中国这十二个国家高中阶段的数学课程标准进行比较分析.具体来说,本文主要研究以下问题:各个国家幂函数、指数函数、对数函数内容的广度和深度分别是多少,有何特征?这些国家是如何对幂函数、指数函数、对数函数的内容进行设置的?1.1研究对象与方法
研究国家和数学课程标准版本的选取
本文主要选择了五大洲以下12个国家的数学课程标准作为研究对象,具体国别分别是:(亚洲)中国、日本、韩国;(欧洲)法国、芬兰、英国、德国、荷兰;(美洲)美国、加拿大;(非洲)南非;(大洋洲)澳大利亚.这12个国家来自不同的洲,拥有着不同的人文背景和社会环境,经济发达程度也不尽相同,可以很好地展示不同国家数学课程标准的共性与差异.所选取的高中数学课程标准文本材料主要来源于曹一鸣、代钦、王光明教授主编的《十三国数学课程标准评介(高中卷)》[4],选择国际比较样本的主要依据是大部分高中生升学时所必须要求的内容,其别关注理科、工程类学生.具体所选择的版本如下:
1.2研究工具及方法
本文采用定量分析和定性分析相结合的方法,具体的研究方法有定性分析中的个案研究法和比较研究法,以及定量分析中的统计分析法.按照课程论学者泰勒的思想,主要从“内容主题”和“认知要求”两个方面进行研究.
(一)广度
课程广度是指课程内容所涉及的领域和范围的广泛程度.为了便于统计结果,本文利用下面的公式计算课程标准的广度.
G=aimax{ai}
,其中ai表示各个国家的知识点数量总和,即广度值,max{ai}表示所有国家的课程标准广度值中的最大值.
广度的统计涉及到对知识点的界定,由于我国对幂函数、指数函数、对数函数知识点的处理比较系统和详细,本文以我国高中数学课标中幂函数、指数函数、对数函数内容为主,并结合其他国家数学课程标准中的幂函数、指数函数、对数函数内容,逐步形成完善的知识点框架,并统计各个知识点的平均深度值.
(二)深度
课程深度泛指课程内容所需要达到的思维深度.我国课标对知识与技能所涉及的行为动词水平分为了解、理解和掌握三个层次,并详细说明了各个层次对应的行为动词.很多国家的课标并未对教学内容的具体要求上做出明确的划分层次.综合我国对教学内容要求层次的划分方式,并参考新修订的布卢姆教育目标分类学[11],本文提出认知要求维度的分类为:A.了解;B.理解;C.掌握;D.灵活运用.将每个知识点的深度由低到高分为四个认知要求层次:了解、理解、掌握、灵活运用,并规定水平权重分别为 1、2、3、4.然后,利用下面的公式计算课程标准的深度.
S=∑4i=1nidin∑4i=1ni=n;i=1,2,3,4
其中,di=l,2,3,4 依次表示为“了解”、“理解”、“掌握”和“灵活应用”这四个认知要求层次;ni表示儆诘di个深度水平的知识点数,ni的总和等于该课程标准所包含的知识点数总和n,从而得出课程标准的深度.
3高中课标中函数内容比较研究结果
3.1幂函数内容的广度、深度比较结果
3.3对数函数内容的广度、深度比较结果
中国、澳大利亚、日本、韩国和荷兰在对数函数的广度统计中排名靠前.这些国家课标都提及对数的概念及运算,对数函数的概念、图象、性质,反函数的概念.另外,中国还要求反函数的定义域、值域、图象以及对数函数的应用,而澳大利亚、日本、韩国、荷兰对反函数的定义域和值域不作要求.法国、南非处于中间层次.这两个课标都不涉及对数的概念和运算、对数表、对数的应用.在反函数方面,法国只讲解其概念和图象,南非还讲解其定义域、值域.美国、芬兰、德国在对数函数部分的知识点数相差不多,但侧重点不一样.美国侧重于反函数内容,德国侧重于对数的概念和运算,芬兰侧重于对数函数的概念和性质.加拿大和英国排在最后,加拿大只提到了对数函数的概念,而英国在对数函数部分的知识点数为零.
3.4幂函数、指数函数和对数函数的内容设置
从整体上来看,幂函数、指数函数和对数函数是高中阶段要学习的比较重要的基本初等函数,也是刻画现实世界的几类重要模型,另外,幂函数、指数函数和对数函数的学习有助于加深学生对函数概念的理解和应用.有些国家并未把幂函数、指数函数、对数函数作为连续内容出现在课程标准中,说明它们之间并无必要的逻辑关系.
对于幂函数这部分内容,除澳大利亚、芬兰、荷兰、英国、中国提及“幂函数”以外,有些国家并没有提到幂函数,如加拿大、印度、俄罗斯、新加坡、南非、德国.有些国家则以其他函数形式代替:法国以多项式函数出现;日本没有专门的幂函数概念,则是以分式函数、无理函数形式出现,安排在《数学Ⅲ》中,而且三角函数安排在指对数函数之前;韩国也没有专门的幂函数概念,则是以分式函数、无理函数形式出现;美国以根式函数出现.对于幂函数的处理,一直存在着争议,中国之前删除了幂函数的内容,现在又把这部分的内容加回来,有利于完善高中涉及的函数模型,便于学生在利用函数模型解决实际问题时考虑更全面,所以中学生需要对幂函数有初步的认识.像美国以根式函数、法国以多项式函数、日本以分式函数和无理函数、韩国以分式函数和无理函数等其他具体函数形式代替幂函数内容,这样处理的好处不仅在于具体实用,便于数学模型的建立,而且与高等数学的联系紧密,这一点值得我们借鉴.
指数函数和对数函数部分的概念原理无论在表述上还是数量上,各国都不尽相同.除芬兰是单独讲解指数函数和对数函数以外,大部分国家都是先学习指数函数,然后利用反函数或互逆关系来引出对数函数,这样使得对数函数的学习变得容易了.其中,澳大利亚把指数函数和对数函数进行对比学习,没有利用互为反函数来解释;法国在指对数函数上求导数等.还有一些国家注重和生活情境相联系,如德国、荷兰.英国在名称上有所不同,以“指数型函数”名称出现.美国强调利用指对数函数进行建模.针对指对数函数的具体说明如下.
4结束语
我国从2003年进行高中数学课程改革,到目前已经进行了十余年的实践,并取得显著成效,通过国际比较研究来审视我国高中数学课程改革的特色和不足,从而为接下来我国高中数学课程改革的推进提供参考.虽然中国在课程的基本理念中提到要发展学生的数学应用意识,但落实在具体的函数模型应用方面,只强调“体会”层次.如对于幂函数的处理,美国以根式函数、法国以多项式函数、日本以分式函数和无理函数、韩国以分式函数和无理函数等其他具体函数形式代替幂函数内容,这样处理的好处不仅在于具体实用,便于数学模型的建立,而且与高等数学的联系紧密,这一点值得我们借鉴.
参考文献
[1]康h媛,曹一鸣,XU Li-hua,David Clarke. 中、澳、芬数学课程标准中内容分布的比较研究[J]. 教育学报,2012(1):6266.
[2]康h媛,曹一鸣. 中英美小学初中数学课程标准中内容分布的比较研究[J]. 课程・教材・教法,2013(4):118122.
[3]宋丹丹,曹一鸣.高中课程标准中函数内容的国际比较研究[J].数学通报,2014(12):17,16.
[4]曹一鸣, 代钦,王光明. 十三国数学课程标准评介(高中卷)[M]. 北京:北京师范大学出版社,2013.
[5]董连春,Max Stephens. 澳大利亚全国统一高中数学n程标准评述 [J]. 数学教育学报,2013(4): 1620.
[6] 康h媛,Fritjof Sahlstrm. 芬兰高中课程改革及高中数学课程标准评介[J]. 数学教育学报,2013(4):1115.
[7]金康彪,贾宇翔. 韩国高中数学课程标准评介[J]. 数学教育学报, 2013(5): 4246.
[8]李娜,曹一鸣,Lyn Webb. 南非国家高中数学课程与评价标准评介 [J]. 数学教育学报, 2013(4): 610.
[9]曹一鸣,王立东,PaulCobb. 美国统一州核心课程标准高中数学部分述评[J]. 数学教育学报, 2010(5): 811.
[10]中华人民共和国教育部. 普通高中数学课程标准(实验)[S]. 北京:人民教育出版社,2003.
[11](美)L・R・安德森. 学习、教学和评估的分类学 布卢姆目标分类学(修订版)[M]. 上海:华东师范大学出版社,2008.
1推广肉羊经济杂交
从别的地区引进优良品种父系的肉羊,并且使其和当地的羊去杂交,能够将地区杂种的优势扩大,发挥杂交一代产生杂种优势是目前我国所推行的先进的经验,同时也是目前我国肉羊产业进行发展主要的趋势。由于陶赛特及其杂交后代比较适应该地区。并且,这一品种的羊可以自行游走进行采食,且发育正常。另外,陶赛特羔羊其增重以及发育速度相对与其他羔羊快,其平均日增重量可以达到110g,同时具有较强的抗病能力。
2育肥羔羊的技术
羔羊的育肥可以选择放牧加上补饲这两种方法,在羔羊出生后的一个月左右,其对于营养方面的需求急速增大,并且母羊的泌乳量已经不能满足羔羊地需求,这一阶段属于羔羊开食关键的阶段。一般情况下,羔羊在出生之后的15 ̄20d之内,应该给羔羊提供一些容易消化且营养丰富的这种优质的饲料,可以选用胡萝卜进行饲喂。在25d之后可以混合饲料喂食。使羔羊消化器官能够正常的发育。其颗粒配方是:16%麸皮和14%小麦以及46%玉米和5%棉粕,还有10%菜粕和5%大豆与4%预混料。
3高产饲料的种植技术
养殖藏羊必须要有优质的饲料作为重要的支撑,只有把人工草地和草地集约化的经营相结合,并且对饲料进行处理并加工,这样才能有效提升饲料的质量,使羊的养殖更加向现代化的养殖发展,从而才可以从根本上使养殖业优质和高产以及高效,这一产业化的目标才能得以实现。可以选择箭笞豌豆与高产燕麦混播这种饲料种植的技术,由于这一饲料种植的技术较为理想,能够满足养殖户对于饲料的种种需求,因此应该选择并大力推广该技术,使每一个养殖户都能通过该种技术养殖好高寒地区的藏羊,使其更加高效。通过相关的试验能够证实,这种方式产鲜草的量能够达到80050kg/hm2,而单一燕麦和鲜草产量22500kg/hm2,相当于每公顷高出了57550kg。
4寒冷季节暖棚保温技术
高一数学必修一函数图像知识点
知识点总结
本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。所以理解了前面的几个知识点,函数的图象就迎刃而解了。
一、函数的单调性
1、函数单调性的定义
2、函数单调性的判断和证明:(1)定义法 (2)复合函数分析法 (3)导数证明法 (4)图象法
二、函数的奇偶性和周期性
1、函数的奇偶性和周期性的定义
2、函数的奇偶性的判定和证明方法
3、函数的周期性的判定方法
三、函数的图象
1、函数图象的作法 (1)描点法 (2)图象变换法
2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。
常见考法
本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。选择题、填空题和解答题都有,并且题目难度较大。在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。
误区提醒
1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。
2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。
3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。
函数连续性是高等数学的一个基本概念,把握好这个概念有助于理解和掌握一元函数微积分中导数、定积分等概念。高职学生在学习这个概念时,感觉很抽象不易理解,特别对函数连续本质特征的把握不到位,疑惑为什么函数的连续性要取决于函数在一个个点上的连续,为什么函数y=f(x)在点x0满足了y=0或f(x)=f(x0)或时,函数在该点就连续了等等。
究其原因有以下几点;一是学生抽象概括能力欠缺。从客观世界的现实中抽象概括出数学概念,对接受过高中教育的人而言,应该初步具备了这种能力。但目前高职学生这方面能力普遍较差。二是学生对极限思想和方法的不适应。由于高等数学是建构在极限理论的基础上、以极限为基本工具研究函数的一门数学学科,因此,研究问题的思维方式总体上由“静态”变成了“动态”。而函数的连续性是运用极限理论定义的第一个概念,学生对于运用极限思想刻画函数的这种动态特性,需要一个适应过程。三是教材的简化。现在选用的高职高专《高等数学》规划教材,在“必需、够用”原则的指导下,降低了理论难度、简化了知识内容。多数教材的“函数连续性”一节直接给出函数在点连续的定义,缺少必要的例证加以辅助。学生很难通过阅读教材理解函数连续的概念。针对上述原因,教师在教学时应着重抓住以下几点,帮助学生建立起函数连续性的概念。
函数连续性的本质特征
要理解函数连续的概念,首先要抓住连续的本质特征。自然界中植物的生长、河水的流动、温度的变化等等现象,都是连续变化着的,把这种现象进行抽象,反映在函数关系上就是函数的连续性。如果只是这样概括,学生对连续本质特征的把握是不到位的。此时可再从以下现象分析:两个人几天不见,再次见面时并没有感觉到彼此的变化,难道这几天俩人真是都没有变化吗?显然不是。人从出生到衰亡,时时刻刻都处在连续变化之中,尽管这种变化很微小,不宜察觉,但它是不间断的。如果我们从函数的角度分析,上述现象就相当于函数的自变量在某一区间段上连续变化时,因变量也随之连续变化,即使自变量的变化很微小,因变量也会随之有微小的变化。经过的这样分析,学生就能较好地把握函数连续性的本质特征了。
函数连续性的研究方法
函数的连续性反映了现实世界中连续的动态变化现象,如同一个动点能够沿着一条延绵不断的曲线运动。如何才能使学生认识到,研究函数的连续问题必须先从研究函数在一点上的连续开始呢?我们从自然界的连续现象中很容易认识到一个断点就能打破一条连续链。同样,观察函数的图像也会发现函数的曲线也呈现这个规律,如动点在曲线y=sinx上可以顺畅地移动,而在曲线y=tanx或f(x)=x2,x<0x+2,x≥0上移动时,会在点x=kπ+,(k∈Z)或x=0处被“卡住”。通过这样的观察分析,学生就很容易归纳出:曲线上一个点便可决定一个函数在某个定义区间上的连续性。这样,函数连续的问题就归结到了研究函数在一点上的连续。
用什么方法确定函数在一点上的连续呢?函数在一点上的连续是一个局部概念,反映了函数在一点处两个变量增量间的变化关系,即当函数的自变量有一微小变化时,因变量也随之有一微小变化。如果利用初等数学的方法刻画这种关系,显然是行不通的,只有借助于极限工具进行深入的分析研究。通过教师适当引导,学生便会知道要想解决函数在一点上的连续的问题必须运用极限的思想方法。
函数连续性的定义
一个数学概念的形成过程,是人们对客观现象进行探索归纳、抽象概括的过程。教学上如果对这一过程进行情境再现,不仅可以使学生了解概念的形成背景,而且对学生理解掌握概念的本质及其应用大有益处。若只是“填鸭式”传授,把概念直接灌输给学生,效果可想而知,也失去了通过数学教学过程对学生进行观察分析、抽象概括能力培养的作用。
讲授“函数连续性”一节时,可以先借助多媒体给学生播放植物的生长、河水的流动、汽车在高速路上奔跑等连续现象,再播放一棵大树被拦腰截断、一条大坝截住河水流动、一座断裂的桥梁造成车辆停滞不前等不连续现象,与学生一起分析探索上述现象引出函数连续尤其是在一点上的连续的问题,并形成定义。
通常,关于函数y=f(x)在点x0连续的定义有两种形式:
定义1:设函数y=f(x)在点x0的某一邻域内有定义,如果当自变量的增量x=x-x0趋于零时,对应的函数的增量y=f(x0+x)-f(x0)也趋于零,即y=0,那么就称函数y=f(x)在点x0连续。
定义2:设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当xx0时的极限存在,且等于它在点x0处的函数值f(x0),即f(x)=f(x0),那么就称函数y=f(x)在点x0连续。
不同的教材,给出两个定义的顺序不同。无论哪种顺序,关键是使学生理解并掌握函数y=f(x)要在点x0连续,必须满足条件f(x)=f(x0)或y=0。为了使学生搞清楚条件的含义,教学时可以从反例入手,借助函数的图像加以分析。
若先讲定义2可以列举以下实例:
例1:考察函数y=在点x=1处的变化情况。
如图1所示,函数y=的图像是直线y=x+1去掉了点(1,2),显然函数y=在点x=1处就像一条绳子被剪断为两截不再连续,究其原因是函数在此点没有定义。
例2:考察函数f(x)=x2,x<0x+2,x≥0在点x=0处的变化情况。
如图2所示,函数f(x)=x2,x<0x+2,x≥0在点x=0处出现了“跳跃”断开了,这种断开不是因为没有定义造成的。学生要问是什么原因造成的呢?这时应引导学生从极限角度进行分析,由f(x)=0,f(x)=2,可知f(x)=0不存在,由此便知,函数在有定义无极限的点处不连续。
例3:考察函数f(x)=x2+1,x≠10.9,x=1在点x=1处的变化情况。
如图3所示,函数f(x)=x2+1,x≠10.9,x=1在点x=1处遇到了“陷阱”。直观观察,函数在处的函数值不是f(1)=12+1=2,而是f(1)=0.9。再进一步观察发现,函数在点x=1处有定义极限也存在,可是f(x)=2,与函数值f(1)=0.9不相等,所以出现了“陷阱”。
三例过后进行小结,得出函数y=f(x)在点x0处若遇到下列三种情况之一就会不连续:(1)没有定义;(2)有定义、极限不存在;(3)有定义、极限存在、但极限值与函数值不相等。这时善于思考的学生就会产生下列想法:“当函数y=f(x)在点x0处同时满足了有定义、极限存在、极限值与函数值相等三个条件时,情况会是怎样呢?”这时教师可以引导学生观察连续函数曲线在一点上的状况。
例4:考察函数y=x2在点x=2处的连续情况。
通过看该函数的图像发现,函数y=x2在点x=2处没有断开是连续的,并且同时满足上述三个条件。这样学生就可以比较充分地认识到:函数要在一点上连续,必须满足条件f(x)=f(x0),以及其中的含义。从几何角度分析,动点在经过曲线上的一点时,经历了沿着曲线无限接近于这一点的过程,如果函数在此点连续,动点就能到达此点并顺利通过,否则就会被“卡住”。
在讲解定义1时也可以采取同样的方法,使学生理解函数y=f(x)要在点x0连续,必须满足条件y=0。可以借助下列函数的图像进行直观地分析。假设函数y=f(x)在点x0处有增量x,当时x0时,由图4所示的函数中发现,其相应函数的增量yA(A≠0),即y=A≠0。从图5所示的函数中看出,相应函数的增量y不能够收敛于一个确定的常数,从而导致y不存在。在图6所示的函数中,相应函数的增量y∞,即y=∞。以上三种情况,函数y=f(x)在点x0都是不连续的,三个函数在点x0处都不满足条件y=0。而在图7所示的函数中,函数y=f(x)在点x0处连续,而条件y=0恰恰在点x0处得到了满足。这样就加深了学生对函数y=f(x)在点x0处满足条件y=0就连续的理解。而条件y=0刻画了函数连续的实质:当自变量有一微小变化时,因变量也会随之有一微小的变化。
函数连续性的整体概念
如果只将函数的连续性局限在一点上连续的层面上,还不能全面把握函数连续的概念。如当考察函数y=sinx在点x=0处的连续性时,根据函数在一点连续的定义,由等式sinx=0=f(0)便知函数y=sinx在点x=0处是连续的。而当考察函数y=sinx在其定义域(-∞,+∞)上的连续性时,该如何进行呢?这需要进一步建立起函数连续性的整体概念。
一般的,知道了怎样判定函数在一点上连续后,应给出函数在开区间(a,b)上连续的概念,即在开区间(a,b)内连续的函数y=f(x),必须在开区间(a,b)内每一点都连续。根据上述要求,在探讨函数y=sinx在(-∞,+∞)上连续的问题时,要说明y=sinx在(-∞,+∞)内的“每一点”都连续,显然逐点验证是不可能的,如果能够寻找到可以“代表”每一点的“点”,通过证明函数在此点连续,进而就可说明函数在区间上连续。
经分析发现,只要在区间(-∞,+∞)上设出任意一点,用“任一点”代替“每一点”加以证明即可使问题得到解决,这也正是数学简约美之所在。如果考察函数y=f(x)在闭区间[a,b]上的连续性,不仅要求它在区间(a,b)上连续,而且还要满足在区间的左端点a处右连续,右端点b处左连续。至此,关于函数连续性的概念就完整了,学生就会达成这样的共识:函数的连续是动态变化的,是通过函数在其定义区间上的每个点上的连续实现的。连续函数的图形呈现为一条连绵不断的曲线。
参考文献:
[1]曹之江.谈数学及其优教(名师谈数学)[M].北京:高等教育出版社,2008.
[2]罗韵蓉.浅谈函数的连续性与间断点的教学体会[J].科学咨询,2009,(4).
[3]张景中.数学与哲学[M].大连:大连理工大学出版社,2008.
[4]同济大学应用数学系.高等数学[M].北京:高等教育出版社,2007.
[5]盛祥耀.高等数学[M].北京:高等教育出版社,2008.
一、等差数列与函数的综合运用
我在对等差数列知识的研究中发现,由等差数列的通项公式a=a+(n-1)×d,可得a=dn+(a-d)。如果p=d,q=a-d,那么a=pn+q,其中p,q都为常数,当p≠0时,a是关于n的一次函数,即(n,a)在一次函数y=px+q的图像上。因此,在进行等差数列解题时,可以有效运用这一内在关系,进行两者之间问题知识的解答。
案例:已知二次函数f(x)=x+2(10-3n)x+9n-61n+100(n∈N)。(1)设函数y=f(x)的图像的顶点的横坐标构成数列{a},求证数列{a}为等差数列;(2)设函数y=F(x)的图像的顶点到y轴的距离构成数列{d},求数列{d}的通项公式,并求{d}中第几项最小,其值是多少?
教师可引导学生进行分析发现,此题考察的是等差数列与函数知识的综合运用。因此在解题时,可以把握数列与函数定义域的联系和区别。同时二次函数的图像是抛物线,其顶点的横坐标为x=-b/2a,由此可以写出关于n的函数表达式。
其解题过程为:
证明:(1)函数f(x)=x+2(10-3n)x+9n-61n+100(n∈N),顶点的横坐标为x=-b/2a=3n-10,数列{a}的通项为a=3n-10(n≥2,n∈N),a-a=(3n-10)-[3(n-1)-10]=3,数列{a}是等差数列。
解:(2)函数f(x)=x+2(10-3n)x+9n-61n+100,顶点的横坐标为x=3n-10,则顶点到y轴的距离为13n-101,即数列{d}的通项公式为d=13n-101。令3n-10≥0,n≥10/3(n∈N), n≥4。故通项公式为d=10-3n(1≤n≤3)和3n-10(n≥4)。设数列{d}中第n项最小,则d≤d,和d≤d, 求得51≤18n≤69, 3≤n≤3,故当n=3时,即数列{d}的第三项最小,d=10-3×3=1。
二、等比数列与函数的综合运用
等比数列用函数的眼光看待,就可以将等比数列改写成a=×q的形式,通过分析,就可以看出,等比数列{a}的图像时函数y=×q的图像上的一群孤立的点。所以在教学中,教师可以采用这种联系,进行问题的解答。
案例:已知函数f(x)=ab的图像上的点A(4,)和B(5,1)。(1)求函数F(x)的解析式;(2)设a=logf(n),n是正整数,S是数列{a}的前n项和,解关于n的不等式aS≤0。
教师要引导学生抓住函数与数列之间的内在关联点,分析出它们之间的深刻联系,进行问题的有效解答。学生在观察、思考、分析后,进行解答过程如下。
解:(1)f(x)=ab的图像上的点A(4,)和B(5,1),得出b=4,a=,f(x)=。
(2)由题意可得到:
a=logf(n)=log=2n-10,a-a=2n-10-2(n-1)+10,
{a}为等差数列。S=a+×n=(n-9)n,aS=(2n-10)×(n-9)n=2(n-5)×(n-9)n≤0,5≤n≤9,故n=5.6.7.8.9。
三、等差、等比数列与函数的综合运用
等差数列、等比数列,都可以看作是特殊的函数,因此我们在解决问题时,可以运用前移和联系的数学思想,把解决函数问题的思想融入到数列中方程、不等式等知识解决数列中的有关问题,这种形式的解题方式形式新颖、思维创新、结构巧妙,是现在高考中的热点命题形式之一。
如在数列章节知识复习时,教师可以设置这一问题。
已知数列{a}是等差数列,且a=50,d=-0.6,(1)从第几项开始有a
对于这一问题,教师在进行习题分析时,要深刻认识到,第一小题实际上是接一个不等式,但要注意n∈N。对于第二小题,实际上是研究S随n的变化规律,由于等差数列中的S是关于n的二次函数,因此在学生解答问题时,教师可以引导学生采用用二次函数的方法进行最值的求解,或可以采用由a的变化来进行推测S的变化。教师进行示范解答过程如下:
解:(1)a=50,d=-0.6,a=50-0.6(n-1)=-0.6n+50.6。令-0.6n+50.6≤0,n≥84.3。由n∈N,故当n≥85时,a
(2)d=-0.60,由(1)知a>0,a