首页 > 文章中心 > 大学计算机学科评估

大学计算机学科评估

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇大学计算机学科评估范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

大学计算机学科评估

大学计算机学科评估范文第1篇

关键词:大学计算机;现状;基础课;计算思维;改革;

作者:赵宏等

一、大学计算机课程现状

大学计算机课程是指在大学中为非计算机专业学生开设的,以计算机相关基础知识为主要内容,使大学生具备使用计算机解决专业和生活问题基本能力的一系列通识基础课程。

1.大学计算机课程目前面临危机

虽然大学计算机课程的重要性得认可,但目前的种种现象表明,我国传统的大学计算机课程教学已陷入了危机之中。在各高校的大学计算机课程中,无论是重点高校还是普通高校,如下现象普遍存在:

(1)学校方面。一些高校的教学主管部门直接质疑设置大学计算机基础课程的必要性。很多学校都已经缩减了大学计算机基础课程的学时和学分,有的学校只保留了程序设计类课程,或者将“大学计算机基础”课程从必修改为选修,个别院校甚至取消了计算机基础课程。

(2)学院方面。专业学院对大学计算机教学效果不满意,认为对专业的学习和研究帮助不大。对于将计算机基础知识与专业知识相结合的大学计算机课程教学改革,也没有表现出积极配合的态度和意愿。在制订教学计划时,往往倾向于取消大学计算机课程。

(3)教师方面。在很多大学中,大学计算机课程事实上已沦为鸡肋,没有专门从事大学计算机课程教学的老师,临时安排计算机专业教师或研究生来完成教学任务。由于许多学校基础课教学改革任务繁重,但成果与职称评定条件不挂钩,导致大学计算机课程的教师不愿意投入更多的时间和精力。

(4)学生方面。大学生普遍对大学计算机课程不感兴趣,逃课率相对较高。有些学生就直接质疑大学计算机课程的必要性,教师经常被问到的问题就是“我是XX专业的学生,为什么要学习编程?”各种问卷调查也表明,学生认为计算机对学业和生活很重要,但大学计算机课程则不是他们想要的。

2.危机的主要原因分析

大学计算机重要的基础课地位与我国目前大学计算机课程教学危机现状之间的矛盾,已经摆在教育工作者面前。如何解决这一矛盾,是需要长期深入研究和探讨的问题。

分析造成大学计算机危机的主要原因,可以归结为以下三点:

(1)无论是国家层面、教育界还是各高校、各专业学院,对大学计算机课程的重要性认识不足,对计算对各学科发展的促进作用还缺乏明确、统一的认识。因此,大学计算机在根本上没有得到应有的重视和投入,其改革也没有真正全面深入地开展。大学计算机课程更像是公共计算机基础课教师的“自娱自乐”,由于得不到在人力、财力以及成果认定上的有力支持,教师不愿意投入更多精力,在教学内容、教学方法上不可能有根本性的改变。

(2)大学计算机是培养非计算机专业学生具备应用计算手段进行学科研究和创新的能力的系列课程。但目前,在“大学计算机”与“专业计算机”的关系和区别方面也缺乏明确的理解,从而导致目前大学计算机课程知识体系和课程体系的不合理,大学计算机课程逐渐演变成计算机学科知识体系的一个“浓缩版”。由于学时的限制,计算机学科的一门专业课,在大学计算机课程中,只能作为一章来介绍,浅尝辄止。导致教师无法讲明白,学生听不懂。这也是学生不感兴趣、老师不愿意教的主要原因。

(3)在“什么是大学计算机”这个问题上还没有形成共识。计算机中的基本概念和方法是什么?如何将计算机的基本概念和方法与专业课进行有机的结合,培养学生充分利用计算机及相关技术,去理解问题、抽象问题和解决问题的能力和素质?“计算思维”能力的培养如何落实到日常的教学中?这些问题一直没有得到很好的回答。因此,目前的大学计算机课程教学在一定程度上已经演变成教一些空洞抽象的理论、编程训练或者是几个工具软件的使用。这种训练仅仅使学生临时记住几个名词、暂时掌握一门可能永远不再使用的高级语言或几个软件工具。

在大学计算机基础课地位和内涵快速提升的新形势下,改革大学计算机课程教学使其适应计算机科学技术发展,满足各专业掌握相关信息技术和大学生日常工作生活的需求,是历史赋予大学计算机课程的使命。

二、“计算思维”理念下的大学计算机课程教学改革

“计算思维”理念的提出及其对国外计算机基础教学带来的变化,为我国陷入危机之中的大学计算机课程教学带来了曙光。

1.改革历程

在我国,计算思维的重要性也已引起了科学家和教育界的高度重视,教育部高等学校计算机基础课程教学指导委员会也认识到了计算思维能力的重要性。在“计算思维”理念下,我国也开始了大学计算机课程教学改革的进程。

从2008年开始,当时的教育部高等学校计算机基础课程教学指导委员会在陈国良院士的带领下,组织了将近20场各种类型的专题研讨,从计算思维的基本概念出发,就哲学层面、科学层面以及教学层面的表达形式进行了深入的讨论,逐步实现计算思维从哲学的表达体系向教学表达体系的过渡,以提高国内计算思维领域的科学研究和计算机教育的水平[1]。

2010年7月,北京大学、清华大学、西安交通大学等9所“985工程”高校在西安召开了首届“九校联盟(C9)计算机基础课程研讨会”,了《九校联盟(C9)计算机基础教学发展战略联合声明》,正式拉开了我国大学计算机课程改革的序幕。该声明明确了要旗帜鲜明地把“计算思维能力的培养”作为计算机基础教学的核心任务[2,3]。

2012年8月,教育部高教司设立以计算思维为切入点的大学计算机课程改革项目[4,5]。该项目通过3项“大学计算机课程系统性规划研究项目”和19项“大学计算机系列课程及教材建设项目”的研究和建设,进一步提高计算思维在大学计算机基础课程教学中的教学理论水平和实践水平。

2013年4月,包括北京大学、清华大学、厦门大学等43所院校在厦门召开研讨会,并达成“大学计算机研讨43院校厦门会议共识”。该共识旗帜鲜明地提出了“建设大学计算机体系”、“进一步确立大学计算机基础课程的基础地位”和“在坚持面向应用的过程中培养计算思维”等大学计算机课程改革方向。

2013年5月,教育部高等学校大学计算机课程教学指导委员会了旨在大力推进以计算思维为切入点的《计算思维教学改革宣言》。宣言明确了“科学思维能力的培养是教育的最重要和最基本的目标之一”,“通过以计算思维为切入点的计算机课程改革,大胆扬弃现有的教学观念和方法,建设适应时代要求的新的教学体系”以及“在这项改革中,我们面临的最大挑战就是构建培养计算思维能力的教学体系”等问题。

2013年7月,在第二届“计算思维与大学计算机课程教学改革研讨会”上[6],来自全国各高校的360余名教师参加了此次研讨会。会上进行了成果分享,同时,陈国良院士等众多与会代表在大会上也表达了“计算思维是潜移默化地培养,不应该为计算思维而计算思维”等观点。

2.标志性成果

在计算思维理念下,我国大学计算机相关课程的改革取得了一系列的标志性成果。

2011年,陈国良院士等认为大学第一门计算机基础课程是计算思维培养的一个关键[7],初步构建了以计算思维为核心的“计算思维导论”课程,并给出了该课程任务、基本要求,教学内容和教学方法。2012年,陈国良、王志强等出版了《计算思维导论》教材[8],并在深圳大学开设了“计算思维导论”课程。唐培和也出版了《计算思维导论》教材[9]。

2012年,李晓明教授在全国多个高校开设了“网络、群体与市场”课程[10],并于2013年开始开设了相应的MOOC课程[11]。该课程从交叉学科的角度出发,综合运用经济学、社会学、计算与信息科学以及应用数学的有关概念与方法,研究网络行为原理及其效应机制。课程讲解了一些社会学和经济学的经典问题实例是如何转变为计算机可以解决的形式,完全脱离了传统的计算机教材里面对系统讲述计算机专业知识的讲授路线。该课程是培养计算思维的一个有益的尝试。

2013年2月,战德臣教授等通过构建计算思维教育空间——计算之树[12],从计算技术与计算系统的发展角度阐述了“核心”的计算思维,给出了大学计算机所面对的知识空间,进而通过分析非计算机专业学生未来对计算思维能力的需求,给出了大学计算机课程教学的一个内容体系方案。

2013年4月的厦门会议上,桂林电子科技大学的董荣胜教授做了“计算思维的表述体系(草案)”的报告;2013年7月,陈国良、何钦铭等在第二届“计算思维与大学计算机课程教学改革研讨会”上,公布了《计算思维教学改革白皮书(征求意见稿)》(以下简称白皮书)[13]。他们构建了具有8类基本计算原理(计算、抽象、自动化、设计、通信、协作、记忆和评估)的计算思维的表述体系。

同时,白皮书也将这8类基本计算原理的关注点及涉及的核心概念进行了梳理,如下表所示。

该计算思维表述体系参考了CC1991的12个核心概念和周以真的计算思维的基本概念,借鉴了Denning在“伟大的计算原理”的分类方法。其创新点在于:(1)白皮书在Denning的7类计算原理基础上增加了“抽象”,更好地描述了计算思维的本质;(2)Denning的7大计算原理是并列关系,白皮书将8大计算原理划分为3类,更好地描述了各原理的抽象层次和相互关系。

白皮书还以理工科计算机基础教学知识体系为研究对象,构建了4×3的知识体系结构。

还有一些在计算思维理论、计算机方法论、深化大学计算机课程改革具体方案等方面进行的研究和尝试[14-20],在此不一一阐述。

三、讨论

“计算思维”是一种以抽象、算法和规模为特征的解决问题之思维方式,是信息时代和知识经济所需要的思维[21]。现代社会通过“计算思维”来促进自然科学、工程技术及社会各领域产生革命性的成果。因此,培养大学生计算思维的大学计算机课程的基础课地位不容忽视和动摇。

针对我国大学计算机课程处于危机的现状,我国已经开展了3年多的以“计算思维能力培养”作为计算机基础教学核心任务的大学计算机课程教学改革,作为培养大学生“计算思维”的大学计算机课程的基础性地位得到了共识,也涌现出了一些研究成果。2012年以来,在教育部高教司设立以计算思维为切入点的大学计算机课程改革项目的推动下,新一轮“计算思维”理念下的大学计算机课程改革取得了阶段性的成果,对大学计算机进一步深化改革具有理论上的指导意义。

但总体来说,目前我国在大学计算机课程中培养“计算思维”的改革仍处于摸索阶段。在内容和方法上的突破性改革成果还不明显,还没有形成一套或几套科学的、得到普遍认可的、操作性强的大学计算机课程体系,更缺少将计算思维能力培养与学科专业发展紧密融合的研究成果,真正全方位进行大学计算机课程深化改革的高校数量较少。

最为重要的是,大学计算机课程改革还没有得到国家层面的有力支持。例如2012年设立的大学计算机课程改革项目,一个项目几万元的经费是由高校和合作出版社共同承担,这与美国CPATH计划几千万美元的投入相去甚远。

正如李廉教授所言[1],随着云计算、社会网络、物联网、普适计算、移动通讯这些新技术的迅速发展,使得人们去编制一个程序的任务将会被寻找一个程序的任务所替代。对于大多数人所从事的工作而言,理解问题,并在云平台上找到解决问题的工具,其现实意义可能会远远大于自己动手制作解决问题的工具。目前大学计算机改革的一个重要特征是:在非计算机专业的人才培养目标中,如何更好地实现专业化和信息化相融合的模式,提升未来社会对于计算机的理解和应用的整体水平。因此在这样的时代背景下,究竟给学生讲什么、怎么讲,成为一个尖锐的问题摆在了我们面前。

大学计算机学科评估范文第2篇

【关键词】大学计算机基础;SPOCs;问题导向;课程设计

1、大学计算机基础教学存在的问题

信息化时代,大学计算机课程作为大一新生的必修课,培养本科生的计算思维能力为重点目的,但目前很多学校对计算机基础课程在大学教育中的作用认识不足,从而对课程的教学和施行也多数都流于形式。还存在不断压缩计算机基础课程的情形。因此形成了教学者要么抽象地讲计算机的理论和模型,要么就只讲简单的计算机操作。在当前的大学计算机基础课程教学中主要存在以下问题:

1.1培养模式单一、培养目标不明确

《大学计算机基础》作为各专业大一新生的一门必修课程,培养目标不明确,一些非计算机专业的培养目标与计算机专业设置的培养目标相同或相近,然而,非计算机专业在教材建设、师资队伍、学生现有知识背景等方面都达不到专业化水平,致使这样的培养目标成为一纸空谈。培养模式模糊,有学者认为要注重教授学生计算机思维能力,也有学者认为是着重培养大学生实际动手能力才是为他们今后进入社会打下基础的关键。因此,选择更合适的培养模式,更准确的培养目标现已成为高校计算机基础教育急需解决的一个问题。

1.2课程设置不合理、师资力量薄弱

由于学校领导对计算机这门课程的重要性认识不够。有些高校针对计算机类基础学科课时安排不合理,缩减非计算机专业这门课程的课时量,由原来的2+2压缩为1+1。随着高校学生人数逐年递增,师资力量短缺,部分基础课教师的年课时量高达400学时,不平衡的师生比导致很多教师缺乏良好的教学设计。

1.3重科研,轻教学

科研水平往往被看作是一所高校综合水平高低的表征,很过高校以研究为主,学校为了鼓励教师多做研究,在教师评估时将科研水平权重加大,相对忽略了教学成果,这就容易造成教师看重科研而轻视教学,他们全身心的投入科研而疏于精心的教学设计,最终造成课堂师生互动少,甚至频繁出现“一言堂”的现象,这极大的违背了大学“育人为本”的初衷。

1.4教材内容陈旧、教学方法不当

教材内容陈旧。计算机科学是随时代变化而变化较大的一个学科,但课程中的内容却显得很落后于当前发展,更是与国际先进水平存在巨大的差距。计算机课程的讲授是非常庞大的教学任务,因为科技的发展使得它的内容繁多且强大,从基础理论、抽象程序代码到人机交互界面、软件的设计与运用,其各个模块都有众多且相对于学生们之前所学习的知识点完全不同。因此,采用的教学方法不当,会使整个教学过程显得分外的复杂,同时也使学习者不仅没有学习到计算机相关的知识,反而会把它拒之门外,尤其是针对非计算机专业的学习者们,更是如此。如果这样一来,还怎样运用计算科学的方法来处理问题和培养学习者的计算思维能力?所以,如何深化改革大学计算机基础课程相关的教学方法,把计算思维方法和计算思维能力培养运用到计算机基础课程教学当中去,乃是当前探索和研究的重点和难点。

2、基于计算思维导向的大学计算机基础教学改革

2.1培养学生的信息素养,调整计算机基础教学目标

改变大学计算机基础课程教学中教师的教学观念、学生学习观念。大学计算机基础课程的教学目的是培养学生的信息素养,大学生应具备计算机学科基本思维能力。利用计算机相关知识进行创新的能力,要具有使用计算机和网络等相关技术分析问题、解决问题的能力,让学生站在一定高度,提升能力,根据不同情况下把问题转化成易于用计算机及相关技术解决形式的能力,为计算机在其他学科、行业的应用奠定基础。

2.2以层次化课程体系为基础,促进学生全体发展

由于新生的计算机学习基础不同,根据学生个体之间的差异,通过知识技能测试等方法,可以对学生进行分层次,在大学计算机基础课程教学中,教师对学生进行合理分层教学模式。在教学内容组织上,以“1+X”课程体系为基础构建大学计算机基础课程层次化课程体系,与分层教学方法相互呼应,从课程层面入手分步实施相关教学改革。促进学生全体发展。

2.3以问题驱动的教学方式,培养向创新能力

在大学计算机基础课程教学中,以计算思维培养为切入点,应积极推行问题驱动教学方式,先由教师设定情境、将知识分解成一个个问题模块,给出问题,学生通过自主学习、相互合作,教师及时引导学生进行归纳总结。最终解决问题。在问题解决的过程中,学生不仅掌握了知识与技能,也获得了搜索、存储、分析和递推信息的能力,同时养成了创新思考的习惯。从而达到创新能力的培养目标。

2.4充分利用网络平台,丰富教学环境

计算机及网络的普及,丰富我们的教学环境,也为学习者提供了良好的学习环境。微博客、论坛、QQ等良好的网络平台可以方便地用来辅助教学,例如,在讲授“EXCEL表格函数使用”这部分内容时,教师提前在微博上时间安排,这样方便自主学习,利用网络同学们按照自己兴趣自主搜索相应的资源,来获取相关的知识。教师要在理论讲解和实验课程之外,分出时间给同学们在课下自由学习,学生通过网络与老师、同学们进行交流。这种学时安排,一方面使同学们有了预习环节,提高了课堂上的学习效率;另一方面,可为在课堂上没有掌握这部分内容的同学提供一定的时间在课后进行知识补充,减轻了学生负担。

2.5建立科学的多元化评价制度,促进学习者全面发展

传统的计算机基础课程评价存在的主要问题有:评价内容过多依赖课本知识,忽视创新能力、心理素质、学习态度和学习习惯等综合素质的考察;评价过多依赖量化结果,多主体共同参与、相互作用的评价模式应用较少等。针对上述课程评价问题,提出以下评价改进思路:降低期末考试成绩在综合成绩中的比例,在实验室授课期间积极举办一些小规模的竞赛,并将成绩作为综合成绩的一部分;注重过程,将终结性评价和形成性评价结合起来,使评价更加合理;鼓励个性化发展,关注个体差异,使评价指标趋于多元化;积极尝试新的科学评价方法,强调定性与定量相结合的评价方式,使评价方法趋于多样化;强调互动和协作、相互评价,使评价主体趋于多元化。

3、基于问题导向的大学计算机基础课程SPOCs设计

3.1问题导向式教学方法

问题导向的教学法(Problem-oriented Learning)指的是以问题为导向,提倡学员的个性化以及自主学习,借助教师的从旁指导,以期实现提高学生的创新能力,合作能力及实际解决问题的能力,最终提高教学质量的教学方法。它的具体实现方式是:将学生划分成小组,每组指定一名指导教师,学生提出假设,讨论发现的问题,再通过图书馆等渠道获取解决问题的方法。整个过程中,小组成员都积极参与,而老师在整个过程中及时回答学生的疑问,并给予指点。

3.2 SPOCs

SPOCs(Small Private Online Courses),小规模限制性在线课程,它是将MOOCs(Massive Open Online Courses)课程本地化为在校生学习使用的一种教学模式。是大规模开放在线课程校园化的一种形式。SPOCs概念的提出者福克斯(Fox)认为,将SPOCs教学模式结合传统课堂实施,既可以有效地提高学生的参与度、对知识的掌握程度,还可以有效的降低老师的工作量。SPOCs教学是一种网络教学,它的学习观强调学习是一个连续的、知识网络形成的过程。是寻找构成偌大知识网络的知识点,并找到知识点之间的关联,从而正确构造我们的知识网络。将其放到一门课中,学习过程就可以被理解成是:我们不断挖掘本门课程中的知识点,找到知识点之间存在的或显性或隐形的关系,最终帮助我们形成该课程的结构脉络图。

3.3 SPOCs课程教学方案设计

针对SPOCs课程网上资源,在教学设计方案中,先由领域专家确定该门课程的知识元集合,然后校本专业任课老师凭借多年经验,按照给定的方法,并结合本校学生的实际情况,筛选并确定可以作为问题的知识元,再确定知识元的先后顺序设置问题。SPOCs 课程教学设计主要分为两个阶段、三个部分,即线上和线下阶段,课前、课中、课后三部分。在课前部分,学生根据老师提供的问题,依据教师给据每节课知识点的不同,确定合适的教学活动展开师生、生生间的交流互动;课中讨论则是课前学习的提高和升华。SPOCs网络课程教学,教师依据问题导向的教学方法,通过设计形式多样的教学活动,为学生设置一个个“知识管道”里的“节点”,学生根据教师的引导,一步步突破自己。课后,教师会布置测试题让学生及时巩固所学知识,并给出下节需要预习的问题。课后环节是课上环节的巩固和补充,课上环节则是课后环节的凝聚和提炼。学生通过课后环节对课上学习的知识及时巩固,而课上学生学习过程中的输出成果则为课后的评价提供了依据。针对每堂课学生完成的作品,都会有相对应的成果导向评价方法来检验学生是否达到培养方案要求的技能,该评价结果将作为反馈,供任课老师遴选知识元设置问题。SPOCs 教学设计中线上线下活动方案如图1所示。

针对大学计算机基础教学中存在的问题,转变教学观念,以计算思维为导向,改变教学目标,从应用能力培养向创新能力培养转变,实现分层教学方法及分层课程体系,提出了针对大学计算机基础课程教学改革的具体方案。

参考文献:

[1] 胡小勇,胡晓黎,谢丹丹.问题导向促进在线学习者认知能力发展的研究[J].远程教育杂志,2011,03:21-26.

[2] 王朋娇,段婷婷,蔡宇南,曾祥民.基于SPOCS的翻转课堂教学设计模式在开放大学中的应用研究[J].中国电化教育,2015,12:79-86.

大学计算机学科评估范文第3篇

关键词:大学计算机基础课程;分层教学;个性化教育

中图分类号:G642 文献标识码:A

文章编号:1009-0118(2012)04-0115-02

一、引言

大学计算机基础课程是面向非计算机专业学生开设的一门重要公共必修课。掌握计算机的基本操作技能和常用软件实际应用能力是现代社会对大学生知识结构和能力水平的基本要求之一,是学生具备参与社会竞争应具备的一个基本条件。但是,在实际教学过程中存在着一些不容忽视的问题:学生计算机水平参差不齐,专业要求深浅不一;教学目标不明确;理论与实践脱节,忽视学生创新能力的培养;另外,面对计算机基础知识普及和计算机应用领域日渐拓宽的现实,高校新生计算机水平趋于非零起点,用人单位对大学毕业生的计算机应用能力要求越来越高,计算机应用技术后续专业课程以及与科研活动的结合更加紧密。因此,如何对大学计算机基础的课程内容体系、教学模式、教学方法与考核手段进行创新设计,并进行有效实施,是该课程教学改革必须解决的问题。

联合国教科文组织的报告《学会生存》一书指出:教育的任务是“培养一个人的个性并为他们进入现实世界开辟道路”。解放人的潜在能力,挖掘人的创造力,促进人的全面发展,培养人的个性,应该是今天和未来教育的首要任务。所谓个性化教育“就是要充分注意学生的差别,承认学生在智力、社会背景、情感和生理等方面存在的差异性,了解其兴趣、爱好和特长,并根据社会要求适应其能力水平进行教育,使之得到发展,而反对强求划一式的教育。”其实质是发现人的价值,发挥人的潜能,发展人的个性,促使个体的智力、才干、创造力得到充分自由发展。

美国教育家目标教学理论创始人布鲁姆认为,学生是具有独立人格、巨大潜能和个性差异的人,只要善于培养和提高学生的非智力因素,改善学生的兴趣、动机、情感、注意力等,智力因素相对落后的学生同样可以取得好的成绩。这为我们实施分层教学提供了理论依据,也说明了实施分层教学的必要性。

分层教学就是在承认学生差异的前提下,确立以学生为主体的意识,针对学生不同的个性特征和心理倾向、不同的知识基础、知识能力与水平,来设计教学内容,控制教学进度,变换授课方式,制定科学的评估体系,对学生进行因材施教,保证不同层次的学生都能学有所长,促使他们在最适合自己的学习环境中求得最佳发展。其次,分层教学的理念是教会全体学生,这也正体现了“以学生为本、以学定教”的原则,面向每个学生,面向学生的每个方面,让学生生动活泼地学习,让学生主动和谐的发展,是我们追求的教育理想境界。

因此,探讨以个性化创新人才培养为主线的大学计算机基础课程分层教学改革方法,对培养具有实践创新能力的新时期高素质人才具有重要意义。

二、分层教学体系构建

(一)学生分层。分层教学理论的一个基本的要求和目的就是根据不同学生的具体情况进行教学设计,为此,必须首先对学生的知识结构有一个清晰的了解。根据学生对知识的不同掌握情况,把学生分为不同的层次,并了解不同层次的学生对计算机基础知识的掌握情况和兴趣,主要从以下三方面进行考虑:

1、按学生学历层次分层:在大学计算机基础课程的教学改革中,将我校在校学生按学历分为2个层次:本科及专科授课。针对不同学历层次的学生,在教学时间和内容上均不相同。

2、按专业特点分层:根据文、理、工科及艺体类专业不同的需求特点,对不同学科制定不同的教学大纲,分开授课,以满足不同学科对计算机基础知识的不同需求。

3、按学生认知水平分层:随着中小学对信息技术的重视以及地区上的差异,学生进校时的计算机水平有了很大的差异。通过教师深入调查和学生自我评价相结合的形式,学生根据自己的实际情况、兴趣爱好、学习能力,自主选择班级,实行动态管理。

(二)教学目标分层。教学目标分层的目的在于针对学生掌握知识的不同情况来设置各个层次的学生在教学活动中所要达到不同的学习目标,从而有针对性的教给学生不同水平层次的知识,以便和学生的知识结构相适应。

(三)教学内容分层。根据文、理、工科及艺体类专业不同的需求,分别组织教学内容,制定教学大纲,确立符合各专业特色的计算机基础课程体系结构。

(四)教学方法分层。根据分层教学的实际需要,在教学过程中对不同层次的学生,采用不同的教学方法。教学大纲规定的基本内容、重点和难点,在普通班侧重于精讲细讲,而在提高班根据学生对某一部分知识掌握程度的实际情况,进行详略取舍,增强学生的相互交流,改变“教师是演员,学生是观众”的授课模式。对实用性和操作性强的内容,让学生到讲台上讲解和操作,或者直接布置任务给学生,要求其在一定时间内完成并进行汇报讲演。借助多媒体辅助教学手段,将课程课件在网上公布,学生可以上网浏览或下载进行复习或预习。在课件中体现对不同层次的要求,加强层次之间的交叉和互补,使不同层次的学生可以根据自己的兴趣自主学习,有利于教学效果的提高。

(五)练习与课后作业分层。为了巩固新知识,落实不同层次的教学目标,结合大纲要求和各层次学生的情况配置相应的课堂练习与课后作业给不同层次的学生练习。

(六)实践环节分层。由于层次划分中教学内容不同,实践课的内容和要求也必然有所区别。因此,实践课的组织也按高低层次来组织实践课。对提高班的同学进行重新编班,根据教学内容给出一些附加题和综合性的操作题,鼓励他们对同一类问题可从多种角度去考虑,这样既能拓宽他们的思路,也有利于同学们进行创新。

三、分层教学模式实施

我们在教学中采用“分层走班”的教学模式组织实施,从新生着手,在入学后开课前进行计算机基础摸底考试,根据摸底考试的结果,按照学生知识和能力水平及学生的兴趣爱好,分成2个或多个层次,组成新的教学集体(暂称之为A、B、C级教学班,即计算机提高班、普通班),并在课余设置困难班,但对各班学生可实行动态管理,学生可以根据自己的实际情况、兴趣爱好、学习能力,自主地选择。“走班”并不打破原有的行政班,只是在学习计算机基础课的时候,按各自的程度到不同的班去上课。“走班”实际上是一种运动式的、大范围的分层。它的特点是教师根据不同层次的学生重新组织教学内容,确定与其基础相适应又可以达到的教学目标,从而降低了“学困生”的学习难度,又满足了“学优生”扩大知识面的需求。

四、分层教学评价方案

在教学过程中,根据不同层次的学生教给不同水平层次的知识,对学生进行不同的评价。因此,对学生进行分层评价,以其在原有知识水平上的进步和提高大小作为评价学生是否完成教学目标的一个基准,这是进行分层教学的一个重要的方面,也是衡量分层教学法是否有效的一个重要手段。

为了科学评价学生对大学计算机基础课程的理论知识水平和实际动手与创新设计能力,结合课程理论教学和实践教学体系的建立,设计并实施课程综合考核评价手段,主要包括:注重课程教学过程性评价和绩效性评价的理论知识考核评价体系和体现学生实际动手与创新设计能力的综合评价体系。这两个评价体系相互独立,任何一个评价体系不合格均被视为成绩不合格。此外,还结合湖南省计算机等级考试进行综合评价。

五、结语

对大学计算机基础课程采用分层教学,可以有效地克服教学内容与学生兴趣爱好之间的矛盾,克服学生掌握知识水平两极分化的矛盾;可以有效地解决同一教材、同一教学目标、同一教学手段、同一教学评价的“一刀切”教学模式的班级授课制固有缺陷和因材施教之间的矛盾。可以充分体现它根据社会需求、注重专业特色与发展,在创新与实践中发展学生个性。可以真正体现“以人为本、因材施教、以学生为主体、教师为主导”的现代教学理念。经过2年多的教学实践,课题组已经探索出一套适合我校具体情况的“大学计算机基础”课程分层教学体系,针对不同学科、不同层次编写了相关的理论教材与实践教材,制定了不同层次的教学大纲与教学评价方案。从湖南省计算机等级考试情况来看,实施分层教学后的考试优秀率与合格率得到了明显地提升。

参考文献:

\[1\]张艳,姜薇,管红杰.非计算机专业“大学计算机基础”课程分类分层次教学改革探索\[J\].计算机教育,2010,(16):14-16.

大学计算机学科评估范文第4篇

人才培养是高校的一项核心任务,国家教育“十二五”规划纲要第七章(高等教育)第十九条中明确指出要提高人才培养质量,牢固确立人才培养在高校工作中的中心地位,着力培养信念执着、品德优良、知识丰富、本领过硬的高素质专门人才和拔尖创新人才,强化实践教学环节Ⅲ。然而,社会仍存在“毕业生难找对口工作,用人单位难找优秀人才”的现象。麦可思研究院独家撰写、社会科学文献出版社正式出版的《2012年中国大学生就业报告》中提出,计算机科学与技术专业连续两年成为本科就业红牌警告专业。究其原因,并非社会不需要大量的计算机专业人才,而是一些高校计算机专业的人才培养模式不够合理,重基础理论,轻实践操作;强调知识学习,忽视开拓创新,最终导致毕业生与企业的需求存在很大差距,造成用人单位与学生无法有效对接的尴尬局面。

1 “DIY”培养理念的含义

计算机专业实践性要求非常强,高等学校的计算机教育不仅要让学生掌握扎实的理论基础,还要培养他们的开发能力和创新意识,尤其是较高的专业技能和创新能力。杭州电子科技大学计算机学院提出“DIY”(Do It Yourself)的培养理念,强调学生在教学过程中的主体地位,鼓励学生从做中学,重视学生在教学和实践过程中动手能力和创造能力的提高,在教学中始终贯穿“兴趣驱动一实践贯通一强化能力”这条主线,锻炼学生的自我学习能力;指导教师则根据知识更新、学术发展和社会需要的情况,对教学工作进行改进,以适应情况变化。“DIY”培养理念改变了传统的“教师讲、学生听”模式,一切以学生为中心,充分调动他们的积极性和主动性,学生也在不断的实践中提升了自身能力。

2 “DIY”特色人才培养模式改革方案

2.1 重建课程体系,紧跟专业前沿

计算机行业发展迅速,知识更新节奏快,学生往往对流行的技术倍感兴趣。如果一直沿用陈旧的课程体系,与专业前沿技术脱节,那么人才培养将成为空话,因此应结合社会经济发展对人才的需求,对课程体系进行系统规划,对现有课程体系中不适应时展的部分进行大力改革,聘请国内外著名计算机教育专家为顾问,以科研一线教师、教学骨干为核心,成立课程体系建设专家组,负责课程体系的制订与改革;选派教师参加国内外重要教学研讨会,如教育部高等学校计算机科学与技术教学指导委员会组织的系列教学改革研讨会,吸收国内外计算机教育一流高校及优秀地方高校的成功经验,结合省情、校情对培养计划及各课程的教学内容进行了修订,大力建设课程体系与配套教材;在现有经典课程的基础上,融合专业发展趋势与最新前沿技术,推出具有时代特征、教学与应用协调的课程群。

针对计算机科学与技术专业学生好“软”怕“硬”、选课随意性大、不能形成完整的知识体系等切实问题,杭州电子科技大学计算机学院在课程体系上进行改革创新:从基础课抓起,通过“DIY”教学手段,逐步培养和提高学生的学习兴趣,将计算机新技术和新方法纳入新课程体系建设,逐步形成“1个平台、3个层次、4个方向”的立体化课程体系。

1)1个平台。

以计算机基础课程(包括公共基础课和专业基础课)为平台,学生通过基础课程学习掌握专业必需的基础知识,对重要的专业基础课如数据结构、操作系统、计算机网络等均分别设置至少2周的课程设计,培养学生分析问题、解决问题和动手实践的能力,为后续课程打下坚实基础。

2)3个层次。

按照由浅入深、从基础到应用的培养思路,将课程设置为“3个层次”的课程群,即基础应用性课程、专业能力性课程、专业创新性课程。通过这些课程的教学,培养学生的基本技能、新技术应用能力、实际开发能力与综合创新能力,同时结合当前计算机技术热点,将前沿技术相关课程纳入培养计划,开设Android操作系统原理及应用开发、多核编程技术、无线传感器网络操作系统与NesC编程论、物联网与Web服务、脑机接口系统概论等多门新课程,使学生能接触到更多的前沿和热点技术。

3)4个方向。

在专业课程设置上分为4个方向,分别是嵌入式系统、物联网技术及应用、计算机视觉、认知与计算。学生学完基础课程之后,可以依据自己的兴趣爱好选择相应的专业方向进行系统学习,从而避免没有目标、胡乱选课的现象通过这种“菜单式”模块化专业方向的学习,学生对该专业相关知识有了全面、系统的了解和掌握,提高了就业竞争力,同时也为继续学习和研究指明了方向。

(1)嵌入式系统,着重培养嵌入式系统的开发和设计能力。

(2)物联网技术及应用,学习物联网工程与技术方面的基本理论和基本知识,接受从事开发与应用物联网技术的基本训练,着重培养开发、应用与管理物联网系统的能力。

(3)计算机视觉,着重培养智能视觉处理能力以及嵌入式视觉开发和设计能力。

(4)认知与计算,着重培养人工智能应用领域的软硬结合的高级复合型人才。

2.2 提供先进平台,加强实践教学

实践环节由校内实践与校外实践两个力一面有机组成。校内实践包括课程设计、工程训练与毕业设计等环节,校外实践鼓励学生到院企共建的实训基地完成工程设计、毕业设计和实训实习等。

1)依据“DIY”理念,构建先进的实践教学平台,实现随时随地学习。

首先,程序设计类基础课程依托自主研发的在线学习与测评系统(HD Online Judge),该系统全天候地向全球免费开放,能实时评判和反馈学生提交的作业,按照一定规则根据作业完成情况自动排名,以营造竞争性的学习氛围,“DIY”contest功能允许学生创建自己的在线比赛这种“课内课外紧密结合、学习竞赛互为促进”的教学模式广受学生欢迎,2011年注册用户提交量逾180万次,超过国内所有高校的同类系统,极大地提高了杭州电子科技大学计算机学院学生的程序设计能力。

其次,在专业培养中突出硬件特色,对于计算机组成原理、系统可编程单片机等课程实验,研制多种灵活的、高性价比的学习板(如 Startkit),鼓励学生将实验带回宿舍,以弥补实验室教学的不足,实现随时 随地学习。

最后对于软件实训类课程,搭建一个基于云计算技术的实训平台,主要用于软件工程和项目的实践环节,学生可以利用各种终端设备(包括手机等)在异地运行大型软件,进行大型软件项目的分析、设计与实现。

这些先进的实践平台打破了时间和空间的限制,使得学生可以利用课余时间做实验,随时随地进行协同开发,大大提高了实践能力和创新能力。

2)利用地区优势,加强校企合作,打造校外实训基地。

在计算机行业发展的新形势下,学生直接参与企业实训能够快速提升自身能力,为此杭州电子科技大学计算机学院与Sun公司、阿里巴巴、天堂软件、浙大网新等15家高新企业共建实训基地,与美国WinRiver公司联合建立Vxworks联合实验室与培训中心、与美国Google公司联合建立谷歌Android实验室,重点培养学生的工程实践能力与团队协作能力。此外,还开设若干校企合作课程,如与英特尔公司合作,将其先进的嵌入式技术融入原有的嵌入式课程体系中,利用公司提供的软硬件条件帮助学生掌握基于英特尔凌动TM嵌入式平台的研发技能,为培养出具有竞争实力、掌握先进技术、满足时展需求的人才打下良好基础。

2.3 实施创新工程,鼓励参与竞赛

1)推行创新性实验项目,实行创新能力学分制度。

鼓励学生进实验室,尽早参与教师的科研项目,设立本科生创新计划项目,以立项并给予经费支持的形式鼓励学生参加科技创新活动,这些措施可以为各类学科竞赛奠定广泛的基础。教师应鼓励有一定实践和项目经验的学生自发组团,参与各类省级、国家级创新项目,在学生之间形成“你追我赶”的良好氛围,在项目的带动下促进学生提升整体能力。

杭州电子科技大学计算机学院2010年起将创新能力学分纳入人才培养体系,推出《创新能力学分实施细则》。本科生参加院系及校级以上的一系列具有创新性的活动,包括科学研究、技术开发、发明创造、学科竞赛、撰写学术论文等,若取得标志性的科技成果、获得各类资格等级证书或竞赛奖励,均可得到一定的创新能力学分。

2)构建各类竞赛体系,引导激励多管齐下。

作为创新教育的重要内容,大学生科技竞赛对于激发学生学习兴趣,培养学生创新思维、创新能力、团队协作精神,提高分析和解决问题的能力有着极为重要的作用,因此科技竞赛是创新型人才培养的有效手段。杭州电子科技大学计算机学院以科技竞赛为抓手,建立各种竞赛组织、集训、选拔的长效机制,开设与竞赛配套的全校性任选课,组建ACM协会、电脑硬件协会,扩大竞赛的影响面,激发学生学以致用的兴趣,提高学生的综合素质,带动整个专业人才培养良性发展。

根据各项竞赛激励政策,对获得国家和省级各类学科竞赛等级的学生给予成绩、学分和物质3种奖励,对指导教师给予绩效奖励和课时补贴,调动广大师生的参与热情,在全院范围内形成师生共同备战、积极参赛的良好氛围。

2.4 严把教学环节,保障教学质量

教学过程管理是创新应用型人才培养的保障。杭州电子科技大学计算机学院引入IS09000质量管理体系标准,借鉴其过程化管理、按要素评估的思想,建立了一套完善的计算机专业教学质量控制和保障体系,形成了组织机构健全、职责分工明确、教学目标清晰、考核手段健全、过程管理严格、档案记录详实、定期总结讲评的专业管理模式,实现了教学管理从经验型向科学化的转变。

1)教学质量环节控制。

教学质量环节控制通过3个方面实现:制订严格的教学质量标准,如开课制度、新教师培养制度、教学事故认定制度等,每门课程均按照课程大纲规定作业批改量、自学课时数、答疑次数,重视实践教学环节的指导和考核;每门课程的考试成绩按照平时成绩、期中成绩和期终成绩综合给出;期末由教师上交学生成绩册、课程小结表和试卷分析表并由教务部门做好收集整理工作。

2)教学质量过程控制。

除了教务处的相关规定外,作为过程控制的相关制度必不可少,包括设立教学督察与指导制度,按课程领域对所有课程进行动态跟踪,在新教师的岗前培训、课程组教学研讨、专业班主任配备等方面均有相关的教学管理文件。在毕业设计从开题到答辩结束的全过程,学院学术委员会均参与指导、审核、检查,指导教师负责每个学生的毕业设计整体质量,各答辩小组负责论文评阅、系统验收和演讲答辩打分,保证毕业调设计质量。

3)教学评估检查控制。

通过社会评价、教师之间互评、督导小组不定期检查、学评教4个方面综合展开,多方面完善教学质量评价体系,体现全面、公平、公正的原则。

4)质量信息反馈控制。

杭州电子科技大学计算机学院为了提升教学质量,定期调查学生、家长以及用人单位对学院教学工作的满意度,尤其对于用人单位,学院通常会请企业对毕业生进行评价并给出建议,然后采用一些企业提出的培养方案,提高学生的就业竞争力。

3 改革成效

杭州电子科技大学计算机学院依据创新教育的理念大胆探索,扎实推进计算机专业“DIY”特色人才培养模式改革,取得了显著成果。

(1)改革成果受益面广、影响力大,已经辐射到全省众多高校,起到了显著的示范作用。计算机基础课实验教学中心是国家级10个计算机实验教学示范中心之一;计算机基础课程教学团队为国家级教学团队;计算机科学与技术专业成为国家特色专业,现又成为教育部专业综合改革试点工程项目;计算机组成原理为国家级精品课程,获得2项国家级教学成果奖和5项省级教学成果奖。

(2)学生在ACM程序设计、电子设计、数学建模、智能汽车等各类学科竞赛中屡获佳绩2011年院代表队成功进入ACM国际大学生程序设计大赛全球总决赛,与哈佛、麻省理工、斯坦福等国际一流学校的学生同场竞技,并且凭借全场最快解出E题的优异表现获得UPE单项奖;在国际大学生程序设计竞赛亚洲区预选赛(第34届、35届)中获得各类奖项72个;在2009年全国大学生“飞思卡尔”杯智能汽车竞赛中获得4项二等奖;2010年英特尔杯大学生电子设计竞赛嵌入式系统专题邀请赛中获得3项全国二等奖:在2010年浙江省第五届大学生电子商务竞赛中获得1项二等奖;在2010年浙江省大学生电子设计竞赛中获得3项二等奖;在2011年全国大学生“挑 战杯”学术科技作品竞赛中获得3项个国三等奖,17项省级奖;省新苗计划立项10项

(3)毕业生具有扎实肯干的工作作风和持续创新的能力,就业率连年达到97%以上。毕业生被众多知名IT企业录用,如阿里巴巴、百度、网易、腾讯、华为、华三、思科、网讯等,有着广阔的发展空间。杭州电子科技大学荣获“全国普通高等学校毕业生就业工作先进集体50强”称号

4 结语

大学计算机学科评估范文第5篇

摘要:本文介绍了“数据结构与算法”课程的教学

>> 北京大学移动课堂设计与实现 北京大学教室管理系统的设计与实现 北京大学引领式网络教学的实践与探索 北京大学计算机教学的改革与实践 陆平与北京大学 “以学生为中心”视角下的北京大学课堂教学改革的实践与探索 北京大学讲座资源调查与分析 《新青年》与北京大学 耶鲁大学与北京大学的大学章程文本比较分析 戴尔与北京大学合作,领跑数据中心建设 北京大学第三医院门急诊医技楼方案设计 北京大学课程评估系统的设计和实施 当代北京大学生工作价值观结构研究 北京大学残疾人事业教学和培训基地成立 北京大学计算机学科的教学体系改革 关于北京大学“十六字”教学方针的反思 北京大学信息化建设与IT治理的实践与探索 北京大学城市与环境学院学科热点与交叉合作模式 邵飘萍与北京大学新闻学研究会 与北京大学新闻学研究会 常见问题解答 当前所在位置:l教学平台相当完善,细化到知识点的课程导航;实践平台十分先进,采用ACM/ICPC (ACM程序竞赛)在线提交评测系统/ JudgeOnline(POJ),该系统由北京大学李文新教授主持开发,有2200多道覆盖各知识领域的在线评测经典算法实习题,本课程还采用该系统进行算法能力测试。本课程还设计了数十道数据结构综合大项目实习题。

强化课程的实践环节,以学生为本、分层设计的培养方案,让每个学生得到最大的收获。课程组得到了学院教学督导组的高度评价,得到同事们的认可,受到北大学生的广泛好评。国内有南开大学、兰州大学等30多所名校采用本课程组的教材,课程网站、课程视频等网络教学资源被很多高校和IT网站链接。

在校内,北京大学校长助理、副教务长李晓明教授认为“张铭所主持的数据结构与算法和相应的实习课是北大信息学院学生公认的精品课程”。

在国内,教育部计算机科学与技术专业教学指导分委员会委员,2006年国家精品课程“数据结构与算法”主持人廖明宏教授认为“北京大学信息科学技术学院数据结构与算法课程在国内同类课程中处于领先地位”。

值得一提的是,北京大学信息科学技术学院“数据结构与算法”课程得到了许多来自世界著名大学的认可和高度赞赏:ACM Fellow(院士)、美国卡内基・梅隆(CMU)大学张晖教授认为“课程建设得非常完善而先进。毫不逊色于美国的CMU、Berkeley等一流大学的相应课程,甚至在深度、广度上扩展得更多。”斯坦福大学计算机系博士生徐颖表示:“我自豪地发现,北大的本科教育,特别是张老师的数据与算法结构课,完全可以媲美美国最好的计算机系的相应课程。”

在长期教学实践过程中,北京大学信息科学技术学院“数据结构与算法”课程在国内外都获得了广泛好评,2008年被评选为“北京市精品课程”。

课程建设小组成员将再接再厉,多与国内外同行交流,更多地与IT企业界合作,保持课程理论和技术的先进性,进一步扩大课程的影响力和受益面。

参考文献

[1] 教育部高等学校计算机科学与技术教学指导委员会.高等学校计算机科学与技术专业发展战略研究报告暨专业规范(试行)[M]. 北京:高等教育出版社,2006.

[2] CC2005. The Overview Report of Computing Curricula 2005[EB/OL].

[3] /portal/cms_docs_ieeecs/ieeecs/education/cc2001/CC2005-March06Final.pdf