首页 > 文章中心 > 计算机视觉技术及应用

计算机视觉技术及应用

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇计算机视觉技术及应用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

计算机视觉技术及应用

计算机视觉技术及应用范文第1篇

随着计算机技术以及图像处理技术的快速发展,计算机视觉技术作为一种新兴的技术,其被广泛应用在军事、医学、工业以及农业等领域[1]。一般而言,计算机及视觉技术应用在农业的生产前、生产中以及生产后等各个环节,其主要就是鉴别植物种类,分级和检测农产品的品质。计算机视觉相较于人类视觉而言,其具有更多的优点,能够有效提高农业的生产率,实现农业生产与管理的智能化和自动化,促进农业的可持续发展。

一、计算机视觉技术概述

计算机视觉主要是指利用计算机来对图像进行分析,从而控制某种动作或者获取某描述景物的数据,是人工智能与模式识别的重要领域。计算机视觉兴起于20世纪70年代,其涉及的学科范围较为广泛,包括视觉学、CCD技术、自动化、人工智能、模式识别、数字图像处理以及计算机等。就目前而言,计算机视觉技术主要以图像处理技术为核心,是通过计算机视觉模拟人眼,并利用光谱对作物进行近距离拍摄,运用数字图像处理以及人工智能等技术,对图像信息进行分析和研究。计算机视觉技术主要步骤包括采集图像、分割图像、预处理、特征提取、处理和分析提取的特征等[2]。

二、农业机械中计算机视觉技术的应用分析

一般而言,农业机械中计算机视觉技术的应用,主要表现在以下三个方面:一是田间作业机械中的应用;二是农产品加工机械中的应用;三是农产品分选机械中的应用。

(一)田间作业机械中的应用

在田间作业机械中,计算机视觉技术的应用较晚。近年来,由于环境保护政策的提出,在农田作业的播种、植保以及施肥机械中的应用越来越广泛。在田间作业的过程中应用计算机视觉技术时,主要应用在苗木嫁接、田间锄草、农药喷洒、施肥以及播种等方面[3]。为了有效识别杂草,对除草剂进行精确喷洒,相关研究人员分析了美国中西部地区常见的大豆、玉米以及杂草二值图像的形态学特征,发现植物长出后14~23天内能够有效区别双子叶和单子叶的效果,准确率最高达到90%。在1998年开发出Detectspary除草剂喷洒器,其能够有效识别杂草,在休耕季节时,其相较于播撒而言,能够减少19%~60%的除草剂用量。在农业生产中,农药的粗放式喷洒是污染严重,效率低下的环节,为了有效改变这种现状,Giler D.K.等研制出能够精量喷雾成行作物的装置。该系统主要是利用机器视觉导向系统,使喷头能够与每行作物上方进行对准,并结合作物的宽度,对喷头进行自动调节,确保作物的宽度与雾滴分布宽度具有一致性,从而有效节省农药。一般而言,该系统能够促使药量减少66%,提高雾滴沉降效率和施药效率,减少农药对环境产生的影响。

(二)农产品加工机械中的应用

随着信息技术以及计算机技术的快速发展,计算机视觉技术被广泛应用在农产品加工的自动化中。如Jia P等提出了图像处理算法,该算法主要是以鲇鱼水平方向与主轴的形心位置和夹角为依据,检测鲇鱼的方位以及背鳍、腹鳍、头、尾的位置,从而确定最佳的下刀位置。此外,我国的黄星奕等人在研究胚芽米的生产过程时,在不经过染色的情况下,对胚芽米的颜色特性等进行分析,得出胚芽米颜色特征的参数为饱和度S。同时利用计算机视觉系统,自动无损检测胚芽精米的留胚率,其结果与人工评定的结果大体一致。

(三)农产品分选机械中的应用

在分级和鉴定农产品的品质时,可以利用计算机视觉技术对其进行无损检测。一般计算机视觉技术不需对测定对象进行接触,可以直接利用农产品的表面图像,分级和评估其质量,其具有标准统一、识别率高一级效率高等优势。计算机视觉技术在检测农产品时,主要集中在谷物、蔬菜以及水果等方面。Chtioui Y等人提出了结合Rough sets理论,利用计算机视觉技术对蚕豆品质的方法进行评价。该理论通过不同的离散方法对石头、异类蚕豆、过小、破损以及合格等进行有效区分,并利用影色图像,对其特征参数进行分类,最终分类的结果相比于统计分类结果,两者具有较好的一致性。

计算机视觉技术及应用范文第2篇

【关键词】计算机视觉技术 推广 应用

在人工智能领域的研究中,计算机视觉是主要的研究对象之一,目前它已经发展为一门独立的科学学科,主要是对相关的理论以及技术进行研究,从而建立一个完善的人工信息系统。

一、计算机视觉技术的产生与发展历程

计算机视觉产生于20世纪50年代,其当时主要的工作内容为统计模式识别,尤其是需要进行分析二维图像的特点和作用,例如对航空图片进行研究、对显微图片进行分析等。直至60年代初,Roberts使用计算机从大量的数字图像当中选取出棱柱体、长方体等物体的三维图形,并且分析物体空间的主要特点。在70年代初期,视觉应用系统开始得到应用,然后过了几十年之后,专家们已经了解了机器视觉的特点,并且开设了对应的课程。到了80年代中期,计算机视觉已经逐渐被人们应用与工作和生活当中。计算机技术的不断发展,使得计算机视觉系统的实用性得以提升,现已被大量使用于机器人学、几何计算等领域,直接影响着人们的生活。

二、计算机视觉技术的推广与应用领域

2.1应用于工业生产领域

目前为止计算机视觉技术已经普遍应用于工业生产领域中,除了在工业探伤、检测方面得到了推广,而且还在办公以及生产自动化等各方面都得到了广泛的应用。一般来说在工业生产中推广计算机视觉技术,能够在很大程度上提高自动化程度,从而提高产品生产的效率,同时还能防止人工的失误,导致不必要的损失。

2.2应用于农业生产领域中

从农业生产领域的角度来看,计算机视觉技术的应用也越爱越普遍,一方面主要是利用该技术全程监测农作物的生产过程,已达到预防病害虫的作用,另一方面利用该技术对农产品进行检测,以便对其进行分类与分级。由于在农业生产领域中利用计算机视觉技术能够实现自动化管理,因此能够减少大量的劳动力,降低生产的人工成本,进一步提高管理生产效率。

2.3应用于社会公共安全领域中

社会公共安全是人们非常重视的一个问题,计算机视觉技术在这方面也得到了有效的应用,不仅应用于侦查、犯罪侦破工作中,而且还应用于指纹配比、人脸合成等工作中。应用这种技术能够进一步提高犯罪案件的侦破效率,避免更多的犯罪行为发生,从而影响人们的正常生活。

2.4应用于视觉导航领域中

通过对计算机视觉技术进行长时间的研究后,当前已将之推广于视觉导航领域中,主要是应用于太空探测、航天飞行等方面,在此基础上还应用于巡航导弹制导、智能交通等方面。在视觉导航领域中,应用计算机视觉技术可以解放大量的劳动力,避免工作带来的危险,而且还能有效提高工作效率。

2.5应用于人机交互领域中

一般来说在人机交互领域中应用计算机视觉技术,可以通过人的肢体语言、人脸表情进行测定,进一步分析人的意愿,从而按照要求认真完成指令,这样不仅可以有效增加交互的方便性,而且还可以有效增加临场感,具有其他技术不可替代的作用。

2.6应用于虚拟现实领域中

当前计算机视觉技术在虚拟现实领域中得到了推广,利用这种技术可以进行不同的军队战场场景模拟,在此基础上还能对飞行员飞行、医生手术等现场进行模拟。总之,利用这种技术能够带给人们一种身临其境的感觉,从而进一步提高工作效率。

2.7应用于卫星遥感领域中

从卫星遥感领域的角度来看,计算机视觉技术的应用并不少见,不仅应用于矿藏勘探、资源探测等方面,而且还应用于气象预报、自然灾害监测等方面。一般来说卫星遥感涉及的信息量非常大,而且类别也很多,分析识别工作稍不注意,就会出现错误,而利用这种技术后,能够快速、有效的进行信息的收集以及分析工作,进一步提高信息的准确性。

计算机视觉技术及应用范文第3篇

【关键词】 现代商业领域 计算机 web数据挖掘技术 应用实践 略述

现代商业领域经营实践规模的不断增大以及信息技术形态发展事业的蓬勃推进,使得现代商业领域的实务人员,在开展基本化的日常经营实践活动的过程中。难以避免地要时刻面对规模不断加大的数据信息资源对象,这种现实发展条件,使得探索和应用行之有效的大规模数据信息处理技术实现路径具备了极其重要的实践意义。近年来,web数据挖掘技术的应用为现代商业领域的稳定有序发展发挥了不可替代的实践助力作用,有鉴于此,本文将围绕现代商业领域中计算机web数据挖掘技术的应用实践展开简要的分析论述。

一、计算机Web数据挖掘技术的概况分析

所谓的Web数据挖掘技术,就是基于现实存在的Web数据信息资源,实现对所需求的特定知识或者是信息对象的抽取操作。这一技术实现了传统数据信息挖掘基本思想以及实施方式在现代Web技术形态体系中的有效应用,能够将Web活动或文档记载结构存在的有用的、隐藏的、或者是潜在的信息资源对象,完整而有序地提取出来。

将Web数据挖掘技术应用于现代电子商务事业的发展过程中,能够实现对用户群体基本特征的分析和理解,举例而论,可以通过对客户访问电子商务网站过程中的内容、频率,以及行为等记录信息的分析和研判,初步实现对特定用户对象消费行为特征的提取和研判,从而针对特定客户实施有针对性的产品推销行为。

二、Web数据挖掘技术在现代商业领域中的应用

2.1针对对潜在客户群实施查找和分析

想要针对Web访问日志记录里中呈现的数据信息规律,展开科学而系统的研究和解析,应当预先对已经保存的电子商务访问者的基本线上行为信息展开分类,并将分类过程中实际面对的关键属性以及数据关系结构进行有针对性的明确化处理行为。

对于电子商务网站的新访问者,技术人员在实际开展Web访问日志记录信息分类的过程中,必然能够通过对已有信息结构的对照而实现及时地捕捉和发现,并实现对新访问者个体基本网络实践行为属性特征的正确归类。针对可能成为潜在化新客户的新访问者实施有针对性的商品线上推销实务行为。

2.2实现已有客户对象的保留操作

在电子商务模式的发展路径中,销售商与消费者之间的空间距离已经不再明显,在网络销售平台背景之下,所有销售方开展的商品销售对象的呈现和展示行为,在消费者的观察视野之下都具备着明显的平等性,电子商务销售方想要切实提升访问者在自身商品呈现网页中的停留时间,就必须对网页访问者实际具备的网页浏览实践行为习惯实现真切而科学的了解,并在此基础上真切感知潜在客户的消费需求特征以及兴趣指向,并有针对性地改变商品推销的呈现内容与呈现模式,提升商家对客户的保留时间。

2.3实现对客户的聚类操作

针对客户群体中的个体化对象展开聚类操作,是现代电子商务产业发展实务过程中的一个极其重要的实践环节,透过针对具备相似化网页浏览访问实务行为的线上浏览者,进行分组归类操作行为,并针对分组之后各组内部组成成员的消费行为特征的具体分析,商务销售组织的有关人员,将会逐步实现对潜在消费者构成群体的深切了解,从而能够极具针对性地给客户提供更加全面且更具针对性、以及适当性的产品销售和售后保障。

举例论之,网站访问记录日志数据信息分析实务技术人员,如果发现某一类型的网站访问者有意识地将其网络浏览时间用于特定网络信息界面的浏览和分析行为之上,通过将这一类型的网站信息浏览者划分为一个独立小组,并依照科学化的分析方法,获知这一小组内的网页信息访问者实际具备的聚类信息,销售商便可将这一人员小组视作潜在客户群,并在针对这一小组的构成人员,开展实际化的商业交易活动的过程中,施加专门性的区分处理操作,对商品推销网络页面的内容和呈现模式,及时开展有针对性的调整实务行为,实现对消费者实际消费需求的充分满足。

结束语:针对现代商业领域中计算机web数据挖掘技术的应用实践问题,本文选取两个具体角度展开了简要的论述分析,文中涉及了较多的技术性与应用性内容,预期为相关领域的实践人员提供借鉴意义。

参 考 文 献

[1]牛红惠,金显华.Web数据挖掘技术在电子商务中的应用[J].濮阳职业技术学院学报,2006,03:16-17+24.

计算机视觉技术及应用范文第4篇

关键词:计算机视觉;课程创新;教学改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)20-0118-02

计算机视觉课程是人工智能学科的分支学科,对互联网技术的发展有着重要的推进作用。随着时代的飞速变迁,越来越多的学生对这一领域产生了浓厚的兴趣,计算机视觉课程在信息专业中也开始占据重要的地位。如何让学生对这门课程保持长久的兴趣,如何培养学生的专业能力和实践能力,是当前高校应该考虑的问题。经过近几年的教学实践后,很多高校已经逐步确定了通过实际应用培养学生兴趣的教学方法,在满足学生对计算机视觉应用需求的同时,加深了学生对理论知识的理解,这已经成为了当前高校计算机视觉课程教学的重要模式。

一、计算机视觉课程的特点

近年来,随着计算机网络的飞速发展,计算机视觉的应用也越来越广泛,成为了信息相关专业学生的一门必修课。计算机视觉课程涉及众多领域,包括人工智能与模式识别、应用数学等,其覆盖范围广,综合性较强。具体来说,计算机视觉课程有以下几个特点:一是内容广泛,理论抽象。计算机视觉是一门新技术,随着时代的变迁,互联网新技术的更新日新月异,这就使得课程内容的更新过快,内容广泛,教师很难在第一时间向学生输送所有的课程知识。二是计算机视觉课程涉及多个学科领域,并且所涉及的领域知识内容复杂,表达抽象,这对学生的学习来说是一个较大的障碍。三是实践性强。计算机视觉课程的知识内容来源于各种专业不同的领域,操作性极强,学生只有在具有一定的工程项目综合能力后,才能进行计算机视觉应用和操作。

二、计算机视觉与计算机图形学、数字图像处理之间的联系和区别

1.计算机视觉与计算机图形学的联系与区别。计算机视觉一般输入的都是图像或图像序列,其输入资料主要来自usb摄像头或是相机。经过处理后,计算机视觉输出的是对图像序列和图像对应的对真实世界的一种理解,在这一方面,计算机视觉有识别车牌、人脸的作用。而计算机图形学则是一种对虚拟场景的描述。它一般是由多个多边性数组组成,每个多边性有三个顶点,输出的是二维像素数组。在增强现实的应用中,人们不仅需要用计算机视觉来提高对物体识别和姿态获取的效率,还需要用到计算机图形学对虚拟三维物体的叠加方法。

2.计算机视觉与数字图像处理的联系和区别。首先,计算机视觉与数字图像处理之间的联系在于数字图像处理是计算机视觉处理的基础,而计算机视觉的研究成果也可以作为数字处理的素材。其次,计算机视觉与数字图像处理之间的区别在于图形是一种纯数字化、矢量的单位,而图像则不仅包括图形,有时还包括来自现实世界的信号,并且图形的处理不是一种简单的堆积,计算机视觉的处理要从图像中找到一些统计数据和信息,并做进一步的数据分析。

三、高校计算机视觉课程教学的创新策略

1.以工程应用为导向的课程内容。鉴于学习本课程的学生在毕业之后多数会进入相关工程企业或者研究院工作,因此,在对学生进行培养时,高校一方面要考虑到学生的知识接受度,另一方面要设置以工程应用为导向的课程内容,帮助学生更好的进入企业或研究院开展工作。高校在进行计算机视觉课程教学创新时,首先要创新课程教材,摒弃以往枯燥的理论书籍,多选取一些实践性和应用性强的教材。考虑到国内教材的滞后性和学生基础的薄弱性,高校应该选择以下两本书作为学生的专用教材:一本是我国著名教授贾云得编纂的《机器学习》,这部教材深刻体现了时展的教学要求,书中不仅详细讲述了计算机视觉中的一些基本知识,包括计算机视觉的基本概念、算法及其应用,还有一些经典的数字图像处理方法和视觉应用分析,对学生了解基础知识和实践内容有着重要的意义;另外一本是国内外十分推崇的计算机视觉著作,它是美国教授Richard Szeliski教授的作品。该书在2010年出版,获得了众多业界人士的好评。Richard Szeliski教授是华盛顿大学的兼职教授,也是微软研究院交互视觉与多媒体的主任,他对计算机视觉的发展和未来走向十分清楚,也深刻了解产业界和大学需要什么样的计算机视觉课程教材。因此,这本教材面向应用,与当今最新的科技成果紧密相连,综合论述了计算机视觉在各个领域的发展,展示了计算机视觉的最新研究成果和未来的发展趋势。此外,本书中还有详细的国外研究案例和更加深入的应用案例,适合学生开展探究性学习。两本教材都是遵循以工程应用为导向的原则,对学生开放性思维的培养有着重要的意义。

2.面向科技最新成果的课程定位。计算机视觉是一门新技术,科技创新是其发展的原动力,因此,高校在进行课程安排时,应该将当今计算机视觉领域的重要的科技成果作为计算机课程的基本教学内容。要想以科技最新成果定位计算机视觉课程,高校要做到以下两个方面:(1)选取涵盖最新成果的教材。考虑到不同学生的数字图像处理基础不一的问题,学校可以在课程中补充一些有关数字图像处理的基础内容。在选择教材内容时,计算机视觉课程的内容应该包括数字图像处理、视觉学习和模式识别这三大部分。数字图像处理是视觉课程的基础内容,主要向学生介绍数字图像处理和计算机视觉所涉及的一些基础知识,包括图像的分割和检测、图像滤波的处理等。数字图像处理是整个计算机课程学习的重要基础内容,其课时可占总课时的二分之一。其次,视觉部分是近几年来计算机视觉的最新科技成果,内容主要包括摄像机的几何设定和计算机摄影机的序列处理等。作为最前沿的科技领域,视觉部分将会是该课程后期的重点内容,与实践作业紧密结合。而模式识别则更多的是新技术的一种工程应用,学生会更多的涉及到实践操作,更好的培养学生的实践能力。(2)强化学生自学和调研能力。课程调研和实践是信息专业学生强化能力的重要方法之一,高校可以在课程项目中引入新技术的探究,在使课程在具有基础性、研究性的同时,具有一定的前沿性,还能让学生在第一时间了解到最新的科技成果和互联网应用技术。在课程调研和实践中,高校必须要强化学生的自学和调研能力,在调研时给每一个小组安排一位高年级研究生作为指导,每组学生独立完成任务,高年级研究生只做引导和辅助的作用。学生在自我设置调研程序,查找资料,理解和熟悉相关程序的时候,能够更加掌握最新科技成果的内容,同时还提高了学生的自学能力和团队协作能力。

3.工程实践化的教学形式。工程项目综合能力是信息专业的学生必须具备的素质之一,因此在计算机视觉课程的教学过程中,培养学生的工程实践能力是教学目标之一。高校可以采取以下两种方法:(1)选取适当的工程实例。对于信息专业的学生而言,计算机视觉课程各个独立的算法和方法较多,彼此没有过多的联系。这对学生来说过于抽象,不易理解,因此教师不应当仅仅限于知识的传授,还应该选取一些适当的工程实例,将知识体系串联在一起,加深学会对教学内容的理解,从而达到良好的教学效果。例如,在教学过程中,教师可以着重介绍手机制造的例子。手机是现在学生十分熟悉的产品,用手机举例更加贴近学生的生活,教师可以详细介绍手机键盘和主板的制造过程,并在这一过程中将所学的算法和理论融合进去,加深学生对知识的理解。其次,教师在手机讲解时,还可以引导学生思考类似的产品制造,从而引出数码相机的制造原理,和学生一起探讨其制造算法。这种做法不仅可以帮助学生学习,还可以让学生拓宽思路,发散思维,不断创新计算机视觉领域。(2)选择合适的实际应用。计算机视觉课程是一门实践性和操作性极强的学科,因此,为了学生更好的学习,教师要将理论工程实践化,选择合适的实际应用来提高学生的实践能力。教师可以安排学生进入手机制造厂房,给学生上一堂别开生面的实践课,详细介绍每个制造流程,并向学生不断抛出与课程有关的问题,引发学生的思考,比如选择什么样的模板匹配法可以更为简单。学生在不断的解答和提问中,对学科知识的了解也会逐步加深。其次,高校可以建立专门的实训基地,学生可以在基地里实践操作,将理论转化为实物,亲自尝试做出模型,这种做法可以极大地提高学生的实践能力,使学生更快的将理论转化为实际。

四、结语

在新形势下,高校应不断创新计算机视觉课程的教学模式,并以此展开教学活动,培养学生的实践能力和创新精神。将工程应用和科技最新成果结合的教学模式,有利于解决理论和实践相脱节的问题,在增强学生学习兴趣、提高学生独立分析能力的同时,还使学生接触了国际最新的研究成果,拓宽了学生的思路,这对学生未来的发展有着重要的意义。

参考文献:

[1]郭小勤,曹广忠.计算机视觉课程的CDIO教学改革实践[J].理工高教研究,2010,(05).

[2]伦向敏,侯一民.高校《计算机视觉》课程辅助教学系统的研究[J].教育教学论坛,2012,(18).

[3]陈芳林,刘亚东,沈辉.在《计算机视觉》课程中引入研讨式教学模式[J].当地教育理论和实践,2013,(07).

[4]杨晨.视觉传达设计专业插画设计课程创新与实践人才培养机制探究[J].艺术科技,2015,(05).

[5]蒋辰.基于数字媒体环境的视觉传达设计专业综合实验课程改革探证[J].文艺生活:中旬刊,2015,(07).

[6]张胜利.视觉传达设计专业中色彩风景写生课程多元立体化教学模式的构建[J].美术教育研究,2015,(08).

计算机视觉技术及应用范文第5篇

Abstract: This paper puts forward the camera calibration method in computer vision, through analysis of principle of computer vision, and analyzes the application of camera calibration methods in computer vision.

关键词: 计算机;视觉;摄像机;定标

Key words: computer;visual;camera;scaling

中图分类号:TP391.4 文献标识码:A 文章编号:1006-4311(2013)24-0193-02

0 引言

在计算机技术快速发展的今天,人们越来越依赖于计算机,计算机在人们的生活工作中占有重要的地位。计算机中的各种应用层出不穷,广泛应用在各个领域,计算机视觉在摄像中的应用为摄像机定标方法提供了巨大的参考价值。由于人们对摄像机拍摄效果的要求,使得摄像机在不断改革更新,摄像机的定标方法是摄像机研究领域备受关注的话题。计算机视觉中摄像机的定标方法是摄像机研究领域所推崇的,它受到了研究人员的高度重视。计算机视觉中摄像机的定标方法呈现出了高质量的摄像效果,极大地满足了人们对摄像机摄像效果的要求。

1 计算机视觉投影原理

计算机视觉投影原理是利用光的折射现象,把视觉中呈现的影像投射到摄影机的屏幕上,形成了固定的图像。在计算机视觉中摄影机的成像原理就是利用光的感应,通过对摄像机的焦距进行调整,确定拍摄目标在摄像机镜头中的位置,然后利用光的折射形成固定的图像。在进行摄像时调整焦距是非常关键的,焦距就是镜头与目标之间的距离,这两者距离的远近决定了摄像的效果。如果焦距太远的话,目标成像就会非常小甚至是模糊。如果焦距太近的话,目标成像会很大也会导致无法看清图像,所以调整焦距是非常必要的,只有调好了焦距才会形成高质量的图像。

2 计算机视觉中的摄像机定标方法

2.1 三维立体定标法 摄像机的成像往往都是三维立体的,把图形通过每个立体面详细的表现出来,以达到完美的效果。要想达到三维立体的效果在对摄像目标的位置进行确定时,就要找出目标的三维坐标点,以便接下来的摄像工作可以顺利进行。然后在图像投影中找到对应的三维坐标,这一步决定了整个摄像过程的设计方案。最后确定目标在摄影镜头中的实际三维坐标,根据镜头中目标的实际三维坐标形成具体的图像。三维立体定标方法的操作原理就是把目标的三维投影进行分步成像,和实际成像效果相联系,形成镜头中具体的三维图像。在计算机视觉中把三维成像图进行处理,对三维定标的参数进行分析,找出最优的三维成像方法,使摄像机呈现出高质量的摄像效果。

2.2 平面定标法 平面定标法就是利用多个成像平面对目标的位置进行分析,选择合适的成像平面对目标进行位置的确定。每个平面的成像都是不同的,由于每个平面的成像都是在运动的,所以应该在摄像机与目标之间的平面内找到一个点,来分析目标与摄像机之间的成像规律,然后根据这一规律对目标进行定标,使摄像机中运动的目标给人们带来不一样的感受。随着目标的不断运动,摄像机与目标之间平面内的点会越来越多,对物体的定标会受到这些点的影响,物体定标的准确度也越来越高,为摄像机定标提供了可靠的信息支持,会减少摄像机定标的成本,提高了摄像的经济效益。相比三维立体定标法,平面定标的精确度更高,定标所用的时间相对较短,所以平面定标法在摄像研究领域中值得推广。

2.3 双平面定标法 所谓的双平面定标法就是利用镜头与目标之间的两个平面的成像点来进行定标,不需要成像平面上的光线通过平面中心,只要选取两个平面之间任意两点坐标来对定标参数进行计算分析,得出具体的成像图。这种定标方式不受平面中心的影响可以在任意点上成像,减少了定标参数的数量,提高了定标的工作效率。但是由于双平面定标法只是任意选取两平面上的点,对定标的精确度造成了一定的影响,使计算机对参数的运算缺少可靠的数据支持,一定程度上降低了摄像机的成像清晰度,使计算机视觉中摄像机的定标精度存在一定的偏差,呈现出来的具体图像质量相对比较差。

2.4 直线两点定标法 在三维立体和平面定标法的基础上,又进一步研究了直线两点定标法,极大程度上满足了人们对摄像效果的要求。直线两点定标法是利用定标物与摄像机镜头之间的直线上的两点进行定标。然后通过计算机视觉对这两点的坐标参数进行分析,然后摄像机利用这些参数对摄像机的焦距进行调整,确定物体的具置。在三维立体和平面定标的基础上对计算机视觉程序进行改进升级,进一步提高对物体定标的精确度。对原有定标方法进行创新改进得出了直线两点定标法使定标参数的数量大幅度的下降,节省了很多的人工成本,摄像机的清晰度也会大大提高。

2.5 透视变换焦距的定标法 透视变换焦距定标法是通过分析镜头与目标之间的距离,不断调整两者之间的距离使镜头里呈现出来的图形清晰为止,然后就将现在的目标设置为定标物。由于这种定标方法不用去分析具体的定标参数被人们广泛的应用。随着科技的发展现在的摄像机都有自动调整焦距功能,不用人为的去调整焦距,使定标物更快地呈现在镜头中,节省了大量的定标时间,计算机的运算速度也加快了。但是这种定标方法也存在一定的缺陷,在实际操作如果不考虑摄像环境以及摄像镜头的变化,定标的精确度会存在一定的偏差,导致镜头中的定标物成像不清晰。

3 计算机视觉中摄像机定标方法的应用

3.1 在计算机视觉中摄像机的主动定标 计算机视觉中摄像机的定标方法推动了计算机技术在摄像机中的广泛应用。计算机视觉中摄像机的主动定标是计算机技术在摄像机中的显著应用。计算机技术使摄像机在定标过程中主动寻找定标物,使焦距和视角很好地配合,充分发挥计算机视觉在摄像机中的成像原理,把定标方法合理地运用在摄像机主动定标过程中,使摄像机的清晰度得到大幅度地提升。

3.2 分层次进行摄像机的定标 随着计算机技术在摄像机定标中的不断发展更新,摄影者喜欢分层次地进行定标,把自己的观点融入到摄像机定标过程中,用自己的思维对定标参数进行分析,利用计算机视觉成像原理把定标物直观的反映在计算机上,以便更好的对定标物进行分析,以其中一个定标物的成像平面来确定定标物的具体成像图,使摄像机镜头中的定标物图像可以更清晰。这种分层次的定标使计算机技术可以更好的应用在摄像机定标过程中,呈现出高质量的摄像效果。

4 总结

在计算机视觉中摄像机的定标方法都是可行的,但各种方法都存在一定的缺陷,所以在实际应用中还应该根据摄影环境以及摄影机的质量选择最优的定标方法,保证定标参数的准确性,在镜头里呈现出清晰的成像。针对计算机视觉中摄像机定标方法的缺陷,摄像机的研究领域应该要不断更新摄像机定标方法,提高摄像机定标的精确度,不断满足人们对摄像机清晰度的要求,呈现出清晰的摄像效果。

参考文献:

[1]邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述[J].自动化学报,2000(1).

[2]伍雪冬,蒋新华,李建兴,黄靖.计算机视觉中传统摄像机定标方法综述[J].福建工程学院学报,2007(1).