首页 > 文章中心 > 电子封装的技术

电子封装的技术

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇电子封装的技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

电子封装的技术

电子封装的技术范文第1篇

【关键词】微电子技术;封装;发展趋势

一、微电子封装的发展历程

IC封装的引线和安装类型有很多种,按封装安装到电路板上的方式可分为通孔插入式(TH)和表面安装式(SM),或按引线在封装上的具体排列分为成列、四边引出或面阵排列。微电子封装的发展历程可分为三个阶段:第一阶段:上世纪70 年代以插装型封装为主,70 年代末期发展起来的双列直插封装技术(DIP)。第二阶段:上世纪80 年代早期引入了表面安装(SM)封装。比较成熟的类型有模塑封装的小外形(SO)和PLCC 型封装、模压陶瓷中的Cerquad、层压陶瓷中的无引线式载体(LLCC)和有引线片式载体(LDCC)。PLCC,Cerquad,LLCC和LDCC都是四周排列类封装, 其引线排列在封装的所有四边。第三阶段:上世纪90 年代, 随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI,vLSI,uLSI相继出现, 对集成电路封装要求更加严格,i/o引脚数急剧增加, 功耗也随之增大, 因此, 集成电路封装从四边引线型向平面阵列型发展,出现了球栅阵列封装(BGA),并很快成为主流产品。

二、新型微电子封装技术

(一)焊球阵列封装(BGA)

阵列封装(BGA)是世界上九十年代初发展起来的一种新型封装。BGA封装的i/o端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是:i/o引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成品率;虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热性能;厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小,使用频率大大提高;组装可用共面焊接,可靠性高。

这种BGA的突出的优点:1.电性能更好:BGA用焊球代替引线,引出路径短,减少了引脚延迟、电阻、电容和电感;2.封装密度更高;由于焊球是整个平面排列,因此对于同样面积,引脚数更高。例如边长为31mm的BGA,当焊球节距为1mm时有900只引脚,相比之下,边长为32mm,引脚节距为0.5mm的qfp只有208只引脚;3.BGA的节距为1.5mm、1.27mm、1.0mm、0.8mm、0.65mm和0.5mm,与现有的表面安装工艺和设备完全相容,安装更可靠;4.由于焊料熔化时的表面张力具有 “自对准”效应,避免了传统封装引线变形的损失,大大提高了组装成品率;5.BGA引脚牢固,转运方便;6.焊球引出形式同样适用于多芯片组件和系统封装。因此,BGA得到爆炸性的发展。BGA因基板材料不同而有塑料焊球阵列封装(pBGA),陶瓷焊球阵列封装(cBGA),载带焊球阵列封装(tBGA),带散热器焊球阵列封装(eBGA),金属焊球阵列封装(mBGA),还有倒装芯片焊球阵列封装(fcBGA)。PQFP可应用于表面安装,这是它的主要优点。

(二)芯片尺寸封装(CSP)

CSP(chip scale package)封装,是芯片级封装的意思。CSP封装最新一代的内存芯片封装技术,其技术性能又有了新的提升。CSP封CSP封装装可以让芯片面积与封装面积之比超过1:1.14,已经相当接近1:1的理想情况,绝对尺寸也仅有32平方毫米,约为普通的BGA的1/3,仅仅相当于tSOp内存芯片面积的1/6。与BGA封装相比,同等空间下CSP封装可以将存储容量提高三倍。

芯片尺寸封装(CSP)和BGA是同一时代的产物,是整机小型化、便携化的结果。LSI芯片封装面积小于或等于LSI芯片面积120%的封装称为CSP。由于许多CSP采用BGA的形式,所以最近两年封装界权威人士认为,焊球节距大于等于lmm的为BGA,小于lmm的为CSP。由于CSP具有更突出的优点:1.近似芯片尺寸的超小型封装;2.保护裸芯片;3.电、热性优良;4.封装密度高;5.便于测试和老化;6.便于焊接、安装和修整更换。

一般地CSP,都是将圆片切割成单个IC芯片后再实施后道封装的,而wlCSP则不同,它的全部或大部分工艺步骤是在已完成前工序的硅圆片上完成的,最a后将圆片直接切割成分离的独立器件。CSP封装内存芯片的中心引脚形式有效地缩短了信号的传导距离,其衰减随之减少,芯片的抗干扰、抗噪性能也能得到大幅提升。CSP技术是在电子产品的更新换代时提出来的,它的目的是在使用大芯片(芯片功能更多,性能更好,芯片更复杂)替代以前的小芯片时,其封装体占用印刷板的面积保持不变或更小。

wlCSP所涉及的关键技术除了前工序所必须的金属淀积技术、光刻技术、蚀刻技术等以外,还包括重新布线(RDL)技术和凸点制作技术。通常芯片上的引出端焊盘是排到在管芯周边的方形铝层,为了使WLP适应了SMt二级封装较宽的焊盘节距,需将这些焊盘重新分布,使这些焊盘由芯片周边排列改为芯片有源面上阵列排布,这就需要重新布线(RDL)技术。

三、微电子封装技术的发展趋势

微电子封装技术是90年代以来在半导体集成电路技术、混合集成电路技术和表面组装技术(SMt)的基础上发展起来的新一代电子组装技术。多芯片组件(MCM)就是当前微组装技术的代表产品。它将多个集成电路芯片和其他片式元器件组装在一块高密度多层互连基板上,然后封装在外壳内,是电路组件功能实现系统级的基础。CSP的出现解决了KGD问题,CSP不但具有裸芯片的优点,还可象普通芯片一样进行测试老化筛选,使MCM 的成品率才有保证,大大促进了MCM的发展和推广应用。目前MCM已经成功地用于大型通用计算机和超级巨型机中,今后将用于工作站、个人计算机、医用电子设备和汽车电子设备等领域。

电子封装的技术范文第2篇

【关键词】集成电路;芯片;封装技术

1.引言

封装技术是一种将集成电路用塑料、陶瓷或玻璃等材料包装的技术。以CPU为例,我们实际看到的体积和外观并不是真正的内存的大小和面貌,而是内存芯片经过封装后的产品。因为芯片必须与外界隔离,以防止空气中的杂质对芯片电路进行腐蚀造成电气性能下降。此外,封装后的芯片更便于安装和运输。封装技术的好坏还直接影响到芯片性能的好坏和与之连接的PCB(印制电路板)的设计和制造,所以说它是至关重要的。

由于现在处理器芯片的内频越来越高,功能越来越强,引脚数越来越多,封装的外形也不断在改变。电子产品向便携式、小型化、网络化和多媒体化方向发展的市场需求对封装技术提出了更加严格的需求,集成电路封装技术正在不断的发展。

2.IC封装的现状

2.1 现阶段较广泛应用的集成电路封装

2.1.1 DIP双列直插式封装

DIP封装是最普及的插装型封装,适用于中小规模集成电路(IC),其引脚数一般不超过100个。采用DIP封装的芯片有两排引脚,需要插入到具有DIP结构的芯片插座上,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装具有以下特点:

①适合在PCB上穿孔安装,操作方便;②比TO型封装易于对PCB布线;③芯片面积与封装面积之间的比值比较大,故体积也比较大。

Intel系列CPU中8088就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。

2.1.2 PLCC塑料有引脚片式载体封装

PLCC封装属于表面贴装型封装。PLCC是一种塑料有引脚的片式载体封装,引脚从封装的四个侧面引出,呈丁字形,采用片式载体是有时在系统中需要更换集成电路,因而先将芯片封装在一种载体(carrier)内,然后将载体插入插座内,载体和插座通过硬接触而导通的。这样在需要时,只要在插座上取下载体就可方便地更换另一载体。PLCC封装主要用于高速,高频集成电路封装。

2.1.3 QFP/PFP方形扁平式/扁组件式封装

QFP封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数常在100个以上。此形式封装的芯片必须采用SMT(表面安装设备技术)将芯片与主板焊接起来。采用SMT安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。引脚端子从封装的两个侧面引出,呈L字形,引脚可达300脚以上。

PFP方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。

QFP/PFP封装具有以下特点:

①适于SMT表面安装技术在PCB电路板上安装布线,操作方便,可靠性高;②芯片面积与封装面积之间的比值较小;③封装外形尺寸小,寄生参数小,适合高频应用;④引脚从直插式改为了欧翼型,引脚间距可更密,引脚宽度可更细。

Intel系列CPU中80286、80386和某些486主板采用这种封装形式。

2.2 现阶段较先进的集成电路封装

2.2.1 BGA球栅阵列式封装

BGA一出现便成为CPU、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。BGA是表面贴装型封装的一种,在PCB的背面布置二维阵列的球形端子,而不采用针脚引脚。引脚可超过200,是多引脚大规模集成电路(LSI)常用的一种封装。BGA封装具有以下特点:

①I/O引脚数虽然增多,但引脚间距远大于QFP,故提高了组装成品率;②功耗虽增加,但BGA能用可控塌陷芯片法焊接,故可改善它的电热性能;③厚度比QFP减少约1/2,重量减轻约3/4;④信号传输延迟小,使用频率大大提高;⑤组装可用共面焊接,可靠性高;⑥占用基板面积过大。

2.2.2 CSP芯片尺寸封装

随着全球电子产品个性化、小型化和便携化的需求,出现了CSP芯片尺寸封装。它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大,封装尺寸就有多大。即封装后的IC尺寸边长不大于芯片的1.2倍,IC面积只比晶粒大不超过1.4倍。CSP封装具有以下特点:

①近似芯片尺寸的超小型封装;②保护裸芯片;③满足了LSI芯片引出脚不断增加的需要;④电、热性能优良;⑤解决了IC裸芯片不能进行交流参数测试和老化筛选的问题;⑥便于焊接、安装和修整更换。

目前日本有多家公司生产CSP,而且正越来越多地应用于移动电话、数码录像机、笔记本电脑等产品上。从CSP近几年的发展趋势来看,CSP将取代QFP成为高I/O端子IC封装的主流。

2.2.3 MCM多芯片模块系统封装

为了解决单一芯片集成度低和功能不够完善的问题,把多个高集成度、高性能、高可靠性的芯片,在高密度多层互联基板上用SMT技术组成多种多样的电子模块系统,从而出现MCM多芯片模块系统。MCM的特点有:

①封装延迟时间缩小,易于实现组件高速化;②缩小整机或组件封装尺寸和重量,通常体积减小约1/4,重量减轻约1/3;③可靠性大大提高。

目前MCM已经成功地用于大型通用计算机和超级巨型机中,今后将用于工作站、个人计算机、医用电子设备和汽车电子设备等领域。

3.国内外封装技术比较

我国的封装技术比较落后,目前仍然停留在PDIP、PSOP、PQFP、PLCC、PGA等较为低档产品的封装上。国外的封装早就已经规模化生产,在国内封装企业主要集中在长三角的合资或国外独资企业,没有一家企业位能独立进行批量生产,其根本原因是政府的政策不够完善,我们的观念、技术和管理与国外还存在很大差距。其具体原因有:

①封装技术研发环境欠佳,可操作性不够强;

②封装设备相对落后,材料性能的落后,而且质量不稳定;

③封装设备维护保养能力不足,缺少有经验的维修工程师,而且可靠性实验设备不齐全,测试手段不足;

④国内封装企业普遍规模较小,从事低端产品生产的居多,可持续发展能力不强,缺乏向高端产品封装技术发展的技术和资金;

⑤掌握封装技术专业人才相对短缺、缺少正规的培训人才的途径和手段;

⑥缺少团队精神,缺乏现代企业管理的机制和理念;

⑦政府的政策导向不够明确,现有机制不够灵活,产业结构没得到很好调整。

4.IC封装的发展趋势

在过去几十年里,为适应集成电路向小型化、高速化、高频化、大功率发展的需要,集成电路封装技术得到了不断的提高和改进,朝着小尺寸、多I/O、高密度、高可靠性、高散热能力、自动化组装的方向发展。

就芯片水平来看,二十一世纪的封装技术发展将呈现以下趋势:

①单芯片向多芯片发展。为了适应多功能化需要,多芯片封装成为发展潮流,采用两芯片重叠,三芯片重叠或多芯片叠装构成存储器模块等方式,以满足系统功能的需要。

②平面封装(MCM)向立体封装(3D)发展。伴随着芯片体积的增加导致封装出来的产品面积也会明显增加,在现有技术条件和有限的空间内,如何进一步提高晶体管的密度,必然在二维平面封装(MCM)的基础上向Z方向发展,即实现3D封装。3D封装可实现超大容量存储,不但使电子产品密度更高,也使其功能更多,传输速度更快,性能更好,可靠性更好,还有可能降低价格。

③为适应市场快速增长的以手机、笔记本电脑、平板显示等为代表的便携式电子产品的需求,IC封装正在向着微型化、薄型化、不对称化、低成本化方向发展。

④为了适应绿色环保的需要,IC封装正向无铅化、无溴阻燃化、无毒低毒化方向快速发展。

电子产品高性能、多功能、小型化、便携式的趋势,不但对集成电路的性能要求在不断提升,而且对电子封装密度有了更高的要求。随着时间的推移,封装会有越来越多的改进,性价比将得到进一步的提高,由于其灵活性和优异的性能,封装有着广泛的前景。我们应该加强封装技术的研究,把我国的封装技术水平进一步提高,为我国电子工业作出更大的贡献。

参考文献

[1]李枚.微电子封装技术的发展与展望[J].半导体杂志,2000,25(2):32-36.

[2]肖力.我国微电子封装研发能力现状[J].电子与封装,2007,7(4):1-5.

电子封装的技术范文第3篇

    [关键词]芯片 封装技术 技术特点 

    我们经常听说某某芯片采用什么什么的封装方式,在我们的电脑中,存在着各种各样不同处理芯片,那么,它们又是采用何种封装形式呢?并且这些封装形式又有什么样的技术特点以及优越性呢?在本文中,作者将为你介绍几个芯片封装形式的特点和优点。 

    一、DIP双列直插式封装 

    DIP是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。 

    DIP封装具有以下特点:(1)适合在PCB(印刷电路板)上穿孔焊接,操作方便。(2)芯片面积与封装面积之间的比值较大,故体积也较大。Intel系列CPU中8088就采用这种封装形式,缓存和早期的内存芯片也是这种封装形式。 

    二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装 

    QFP封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。PFP方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。 

    QFP/PFP封装具有以下特点:(1)适用于SMD表面安装技术在PCB电路板上安装布线。(2)适合高频使用。(3)操作方便,可靠性高。(4)芯片面积与封装面积之间的比值较小。Intel系列CPU中80286、80386和某些486主板采用这种封装形式。 

    三、PGA插针网格阵列封装 

    PGA芯片封装形式在芯片的内外有多个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2~5圈。安装时,将芯片插入专门的PGA插座。为使CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。 

    ZIF是指零插拔力的插座。把这种插座上的扳手轻轻抬起,CPU就可很容易、轻松地插入插座中。然后将扳手压回原处,利用插座本身的特殊结构生成的挤压力,将CPU的引脚与插座牢牢地接触,绝对不存在接触不良的问题。而拆卸CPU芯片只需将插座的扳手轻轻抬起,则压力解除,CPU芯片即可轻松取出。PGA封装具有以下特点:(1)插拔操作更方便,可靠性高。(2)可适应更高的频率。Intel系列CPU中,80486和Pentium、Pentium Pro均采用这种封装形式。 

    四、BGA球栅阵列封装 

    随着集成电路技术的发展,对集成电路的封装要求更加严格。这是因为封装技术关系到产品的功能性,当IC的频率超过100MHz时,传统封装方式可能会产生所谓的“CrossTalk”现象,而且当IC的管脚数大于208 Pin时,传统的封装方式有其困难度。因此,除使用QFP封装方式外,现今大多数的高脚数芯片(如图形芯片与芯片组等)皆转而使用BGA封装技术。BGA一出现便成为CPU、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。 

    BGA封装技术又可详分为五大类:(1)PBGA基板:一般为2~4层有机材料构成的多层板。Intel系列CPU中,Pentium II、III、IV处理器均采用这种封装形式。(2)CBGA基板:即陶瓷基板,芯片与基板间的电气连接通常采用倒装芯片的安装方式。Intel系列CPU中,Pentium I、II、Pentium Pro处理器均采用过这种封装形式。(3)FCBGA基板:硬质多层基板。(4)TBGA基板:基板为带状软质的1~2层PCB电路板。(5)CDPBGA基板:指封装中央有方型低陷的芯片区。 

    BGA封装具有以下特点:(1)I/O引脚数虽然增多,但引脚之间的距离远大于QFP封装方式,提高了成品率。(2)虽然BGA的功耗增加,但由于采用的是可控塌陷芯片法焊接,从而可以改善电热性能。(3)信号传输延迟小,适应频率大大提高。(4)组装可用共面焊接,可靠性大大提高。 

    BGA封装方式经过十多年的发展已经进入实用化阶段。1987年,日本西铁城公司开始着手研制塑封球栅面阵列封装的芯片。而后,摩托罗拉、康柏等公司也随即加入到开发BGA的行列。1993年,摩托罗拉率先将BGA应用于移动电话。同年,康柏公司也在工作站、PC电脑上加以应用。直到五六年前,Intel公司在电脑CPU中(即奔腾II、奔腾III、奔腾IV等),以及芯片组中开始使用BGA,这对BGA应用领域扩展发挥了推波助澜的作用。目前,BGA已成为极其热门的IC封装技术,其全球市场规模在2000年为12亿块,预计2005年市场需求将比2000年有70%以上幅度的增长。 

    五、CSP芯片尺寸封装 

    随着全球电子产品个性化、轻巧化的需求蔚为风潮,封装技术已进步到CSP。它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大,封装尺寸就有多大。即封装后的IC尺寸边长不大于芯片的1.2倍,IC面积只比晶粒大不超过1.4倍。 

    CSP封装又可分为四类:(1)传统导线架形式,代表厂商有富士通、日立、Rohm、高士达等等。(2)硬质内插板型,代表厂商有摩托罗拉、索尼、东芝、松下等等。(3)软质内插板型,其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也采用相同的原理。其他代表厂商包括通用电气(GE)和NEC。(4)晶圆尺寸封装:有别于传统的单一芯片封装方式,WLCSP是将整片晶圆切割为一颗颗的单一芯片,它号称是封装技术的未来主流,已投入研发的厂商包括FCT、Aptos、卡西欧、EPIC、富士通、三菱电子等。 

    CSP封装具有以下特点:(1)满足了芯片I/O引脚不断增加的需要。(2)芯片面积与封装面积之间的比值很小。(3)极大地缩短延迟时间。CSP封装适用于脚数少的IC,如内存条和便携电子产品。未来则将大量应用在信息家电、数字电视、电子书、无线网络WLAN/GigabitEthemet、ADSL/手机芯片、蓝芽等新兴产品中。 

    六、MCM多芯片模块 

电子封装的技术范文第4篇

【关键词】微电子封装 等离子体清洗 应用

在微电子技术领域,大量的清洗技术得到了广泛应用。而从材料消耗和环境影响角度来看,等离子体清洗技术具有明显的应用优势,所以在微电子封装等方面得到了广泛应用。因此,有必要对等离子体清洗机理及分类问题展开研究,并且进一步分析微电子封装中等离子体清洗的应用问题,从而更好的促进微电子行业的发展。

一、微电子封装中等离子体清洗机理及分类

(一)等离子体清洗机理

所谓的等离子体,其实就是物质由电子、自由基、中性粒子、正离子和光子组成的状态,需要有相等的正负电荷。而这些离子的存在,将导致物质在与固体接触时较容易与固体表面发生物理或化学反应。同时,由于反应生成的都是H2O和CO2等能够从真空泵排出的无污染气体,所以能够对固体表面进行清洗。从特点上来看,等离子体清洗技术可以对不同材质的对象进行清洗,如半导体、高分子材料、氧化物和金属等等,并且能够实现从局部到整体的清洗。此外,由于可以使用数控技术进行等离子体清洗过程中的控制,所以采取该种清洗方法具有较高的时间控制精度和自动化程度[1]。而正确进行该种方法的使用,并不会对清洗对象的表面造成损伤,所以能够确保清洗对象的表面质量。

(二)等离子体清洗分类

按照清洗过程中发生的反应的类型,可以将等离子体清洗划分成物理反应和化学反应。其中,物理反应就是利用活性粒子进行待清洗表面的轰击,能够利用真空泵将脱离的污染物吸走。而化学反应就是利用活性粒子与污染物发生反应,可以生成能够被真空泵吸走的易挥发性物质。如果以物理反应为主,由于清洗对象表面将不存在氧化物,所以可以确保被清洗对象的化学纯净性,并且使其具有腐蚀作用各异性的特点。但是,使用该种等离子体清洗法,也容易产生较大的热效应,继而导致清洗表面的腐蚀速度较低,并且导致物质的选择性较差。如果使用以化学反应为主的等离子清洗法,将能够在较短时间内完成清洗,并且有效进行污染物的清洗。但是,同时也会导致氧化物的产生。

二、微电子封装中等离子体清洗的应用分析

(一)在芯片粘结方面的应用

在微电子封装工艺中,芯片粘结过程中常常会出现空隙。之所以出现这种问题,就是因为芯片表面存有大量的有机污染物和氧化物,所以导致了芯片无法得到完全粘结。因为,未经处理的芯片表面往往具有较大的惰性和疏水性,所以芯片的粘结性较差。而出现这种问题,将直接导致封装的散热能力降低,并且最终影响芯片封装的可靠性。在芯片粘结之前,使用等离子体清洗技术清洗芯片表面,可以使芯片表面得到活化,所以能够使材料的表面流动性得到改善。在这种情况下,芯片粘结将具有浸润性,并且有良好的接触表面,因此能够在避免空洞形成的同时,使芯片的热传导能力得到改善[2]。就目前来看,可以使用氢气、氧气和氩气等混合气体进行等离子清洗,从而达成去除芯片表面金属氧化物和有机氧化物的目的,继而使芯片粘结质量得到极大改善。

(二)在引线键合方面的应用

在微电子机械封装中,芯片、基板和基座之间有较多的引线键合。提高引线键合的质量,就可以使芯片焊盘与外引线得到有效连接。但在实际工作中,基材表面容易出现氧化层和一些氟化物、氢氧化物等污染物。使用低压等离子体清洗技术,则能够使基材表面的污染物得到有效去除,并且只会花费少量的清洗成本。在清洗之后再进行键合,就可以使键合引线的拉力均匀性和键合强度得到有效提高,继而使引线键合的效果得到有效改善。而使用气体等离子体技术进行芯片接点的清洗,也可以使引线键合的成品率和强度得到有效改善。但是,使用等离子体清洗技术对不同公司生产的不同类型产品进行清洗,键合引线拉力强度的增加幅度并不相同,但是器件的可靠性基本都能够得到提高。

(三)在引线框架清洗上的应用

在微电子封装中,引线框架是主要结构材料。利用该材料,可以进行内部芯片的接触点和外部导线的连接。为了实现良好的连接效果,则需要选用具有良好导电性、耐热性、导热性和耐腐蚀性的材料,生活中一般会选用铜合金材料。但是,该种引线框架容易被空气氧化,生产的氧化物又会使框架表面持续氧化,继而导致封装体开裂和分层[3]。所以在使用引线框架之前,需要使用氢气和氩气的混合体进行引线框架的等离子体清洗,从而使框架上的有机污染物和氧化物得到去除,继而达成提高框架焊接、粘结性能的目的。

(四)在管座管帽清洗上的应用

如果存放过长的时间,管座管帽的表面就会出现尘迹,甚至遭到污染。所以,还需要对存放一段时间的管座管帽进行等离子体清洗,以便将其表面污染去除。清洗完成后,就可以进行封帽处理,以便提高封帽的合格率。通常的情况下,如果需要进行陶瓷封装,还需要在键合区和盖板密闭区使用金属浆料印制线。而在进行这些材料电镀之前,还需要对材料进行等离子体清洗,以便通过去掉材料表面沾污提高镀层质量。

总而言之,在微电子封装领域,使用等离子体清洗技术可以使封装材料表面存在的脏污得到清除,所以能够使电子元器件的键合不良、界面不稳等质量缺陷得到改善。所以,在进行微电子封装时,应该较好的掌握和应用等离子体清洗技术,从而使封装的质量和可靠性得到有效提高。

参考文献:

[1]杨杰,范新丽.在线等离子清洗在IC封装行业中的应用[J].山西电子技术,2013,03.

电子封装的技术范文第5篇

关键词:环氧树脂 封装材料 研究现状

一、环氧树脂电子封装材料的研究现状

环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物。由于其分子结构中含有活泼的环氧基团,能与胺、酸酐、咪唑、酚醛树脂等发生交联反应,形成不溶、不熔的具有三向网状结构的高聚物。这种聚合物结构中含有大量的羟基、醚键、氨基等极性基团,从而赋予材料许多优异的性能,比如优良的粘着性、机械性、绝缘性、耐腐蚀性和低收缩性,且成本比较低、配方灵活多变、易成型生产效率高等,使其广泛地应用于电子器件、集成电路和LED的封装

1962年,通用电气公司的尼克·何伦亚克(Hol-onyak)开发出第一种实际应用的可见光发光二极管就是使用环氧树脂封装的。环氧树脂种类很多,根据结构的不同主要分为缩水甘油醚型、缩水甘油酯型、缩水甘油胺型、脂肪族、脂环族、酚醛环氧树脂、环氧化的丁二烯等。由于结构决定性能,因此不同结构的环氧树脂,其对所封装的制品的各项性能指标会产生直接的影响。例如Huang J C等以六氢邻苯二甲酸酐为固化剂,以TBAB为催化剂,分别对用于LED封装的双酚A型环氧树脂D E R.-331、UV稳定剂改性后的双酚A型环氧树脂Eporite-5630和脂环族环氧树脂ERL-4221进行了研究。研究发现,D E R-331这类双酚A型环氧树脂主链上有许多醚键、苯环、次甲基和异丙基,侧链上则有规律地间隔出现许多仲羟基。其中,环氧基和羟基赋予树脂反应性,使树脂固化物具有很强的内聚力和黏接力;而极性的醚健和羟基基团则有助于提高材料的浸润性和粘附力;苯环和异丙基赋予聚合物良好的耐热性和刚性,但因主链含苯环,容易发生光降解而老化并发黄导致光衰,直接影响LED器件的使用寿命。Eporite-5630因在双酚A型环氧树脂的结构中引入了耐UV的化学结构,使得材料不仅保持了DE R-331优点,还拥有更好的耐UV性能,更适合于LED的封装。ERL-4221是脂环族环氧,由于环氧基直接连接在脂环上,能形成紧密的刚性分子结构,固化后交联密度增大,使得固化后的材料具有较高的热变形温度,可达300℃以上;分子结构中不含苯环,表现出良好的耐UV性能和低吸湿性,比较适合用于户外LED,但其固化过程中产生的内应力导致其它性能较差。双酚A型环氧树脂因原料易得、成本低、产量大、用途广,被称为通用型环氧树脂,占环氧树脂总用量的90%。该类树脂具有良好的黏接性、耐腐蚀性、介电性能和成型性。但是,由于苯基和羟基的存在亦使得材料的耐热性和韧性不高,耐湿热性和耐候性比较差,容易发生黄变导致光衰,直接影响LED器件的使用寿命。另外,由于纯环氧树脂具有高的交联结构,因而存在质脆、易疲劳、耐热性不够好、抗冲击韧性差等缺点。因此,需要对其做进一步的改性才能保证封装器件的可靠性及满足多样化的LED封装要求。Charles等使用二或三烷氧基硅烷与环氧树脂共混并反应,发现少量的硅烷即可降低材料的吸湿性,提高环氧的绝缘性和耐久性。Shiobara等则采用含氢的硅树脂与烯丙基缩水甘油醚等化合物进行硅氢加成反应,制备有机硅改性的环氧化合物,然后将其与环氧树脂进行共固化,得到高玻璃化转变温度、低热膨胀系数及抗龟裂性好的封装材料。Yoshinori等通过在聚二甲基硅氧烷链段中引入一定的苯基来改善与环氧树脂的相容性,在侧链上引入氨基与环氧反应,将有机硅链段接枝到环氧结构中来减少固化产物的内应力和耐高低温冲击性能。刘伟区等在有机硅改性环氧树脂的发明专利中采用氯端基封端的有机硅与双酚A型环氧树脂中的羟基反应,生成有机硅改性双酚A型环氧树脂后,再将改性树脂与各种电子封装用环氧相混合并共同固化,达到了既提高环氧树脂的韧性和耐热性又能明显降低吸水率的目的。此外,该工艺相对简单,成本相对低廉,有利于大量推广应用及工业化。Barton等的研究发现150℃左右环氧树脂的透明度降低,LED光输出减弱,在135~145℃范围内还会引起树脂严重退化,对LED寿命有重要的影响。在大电流情况下,封装材料甚至会碳化,在器件表面形成导电通道,使器件失效。

为了提高材料的耐热性,减少因黄变而引起的光衰,Suzuki等选择脂环族环氧树脂的固化性能进行研究,结果发现这类材料经过几周的老化实验之后,其在400nm的光透过率仍为90%,具有良好的耐老化性,抗紫外辐射性很好。这是由于环氧基直接连接在脂环上,能形成紧密的刚性分子结构,固化后交联密度增大,使得固化后的材料具有较高的热变形温度。同时,分子结构中不含苯环,具有优良的耐候性、耐化学、耐冲击性能、抗紫外辐射性。另外,因其是由脂环族烯烃经过有机过氧酸的环氧化制备得到的,其离子含量低,电性能好,不会因有氯的存在而产生对微电路的腐蚀等问题,适合于用作LED的封装材料。李元庆等通过填充纳米氧化锌来提高对紫外光的屏蔽效果,减少紫外光对封装胶的破坏。结果发现,选择合适的粒径对封装材料的光学性能尤为重要,当ZnO含量低于0.07%(wt)、粒径小于27nm时复合封装材料在可见光区具有高的透明性,同时又有良好的耐紫外光辐射性,满足UV-LED封装的需要。Hi-sataka等人将粒径5~40nm的二氧化硅和粒径5~100nm的球形玻璃粉加入到有机硅改性环氧树脂中,硫化成型后材料的透光率可达95.7%,折射率为1.53~1.56,线膨胀系数为40×10-6K-1左右,经200次冷热冲击后损坏率仅4%~12.5%。周利寅等在环氧固化体系中引入环氧倍半硅氧烷,利用氧倍半硅氧烷的笼型结构及高键能的硅氧键来提高环氧封装料的耐热性和抗黄变性。黄伟等采用4-乙烯基-环氧环己烷与含氢环体进行加成反应,然后使用β-二酮金属络合物作为催化剂来固化有机硅改性的环氧树脂,发现产物具有优良的光学性能、抗紫外、耐高温老化性能,适合于UV-LED的封装。由于使用的催化剂是有机金属化合物,其在中温与有机硅改性环氧树脂中有良好的溶解性,本身耐高温,可以有效避免因为使用胺或酐固化剂而产生的高温黄变问题。此外,还有通过对双酚A化合物进行加氢制备不含双键的氢化双酚A型环氧树脂来提高封装材料的耐候性。

为了提高材料的硬度、耐冷热冲击能力,降低其模量,日本信越化学公司将含硅羟基的乙烯基硅树脂、含氢硅油及少量有机硅弹性体加入环氧树脂中,使用铂系催化剂催化硅氢加成反应,烷氧基或酰基或硅羟基铝化物作环氧固化剂,经注塑成型后获得折射率高达1?51、硬度70A、不吸尘、低模量、低收缩率的LED封装材料。另外,该封装材料经-40℃/120℃冷热冲击1000次不开裂。虽然通过以上方法改性能够一定程度上改善环氧树脂封装料的耐热、抗黄变性能,但随着商业化LED功率不断提高,大功率的芯片需要更高的电流和导致更高结温,对LED的封装材料亦提出更高的要求。现在的环氧及改性产品因自身热阻比较大,不利于散热而影响LED芯片的使用寿命,已不能满足使用需求。为了有效地降低封装热阻,提高出光效率,必须寻找一种新的替代材料。

二、环氧树脂电子封装材料的发展趋势

1.液晶环氧树脂

液晶环氧树脂是一种高度分子有序、深度分子交联的聚合物网络,它融合了液晶有序与网络交联的优点,与普通环氧树脂相比,其耐热性、耐水性和耐冲击性都大为改善,可以用来制备高性能复合材料;同时,液晶环氧树脂在取向方向上线膨胀系数很小,而且其介电强度高、介电损耗小,是一种在电子封装领域具有美好应用前景的新型功能材料。

2.新型脂环氧树脂

脂环式环氧树脂的合成中,不用环氧氯丙烷为原料,因此产品的有机氯含量为0。因此有可能开发出超高纯度的环氧树脂新材料,这对于电子封装的高纯净要求十分有利。目前这方面的研究报道很少,几乎没有工业化的产品出现,是今后电子封装材料值得注意的一个开发方向。

3.绿色环保封装材料

塑封材料大多采用含各种添加成分的热固环氧树脂,固化后大部分可抵抗化学侵蚀,产品报废时难以溶解,有的还会释放出有害物质。随着信息产业的飞速发展,器件封装量日益增加,产品报废时产生的废物将迅速增加,这必然造成环境污染的问题。因此,开发绿色环保型封装材料是未来的必然趋势。解决这一问题的一个可能途径是使用热塑封装材料,但这会带来许多新的可靠性问题。

4.环氧树脂基纳米复合封装材料

环氧树脂中加入纳米材料是一种行之有效的改性方法。纳米材料的表面非配对原子多,与环氧树脂发生物理或化学结合的可能性大,增强了粒子与基体的界面结合,因而可承担一定的载荷,具有增强、增韧的可能,过精细控制无机超微粒子在环氧树脂中的分散与复合,能以很少的无机粒子体积含量,在一个相当大的范围内有效地改善复合材料的综合性能,增强、增韧、抗老化,且不影响材料的加工特性。因此,如能采用有效的方法,解决纳米材料在环氧基体中的分散问题,将有可能制备出强度好、韧性高、耐热的高性能封装材料。

当前,伴随着高密度高性能的要求出现了许多新的发展形式,电子封装的概念也已从传统的器件转为系统,即在封装的信号传递、支撑载体、热传导、芯片保护等传统功能的基础上进一步扩展,利用薄膜、厚膜工艺以及嵌入工艺将系统的信号传输电路及大部分有源、无源元件进行集成,并与芯片的高密度封装和元器件外贴工艺相结合,从而实现对系统的封装集成,达到最高密度的封装。封装面向系统在国际上已成为该领域的制高点,各大公司都在投入巨资进行发展。高分子材料的发展将为封装技术的革命提供更多可选择的新型材料,特别是塑料共混改性技术的发展,一系列高性能、新功能、低成本新材料大量涌现。将反应性挤出增容技术、分子原位复合技术、反应挤出合成技术等新技术应用于封装材料的研究,必将大大推动封装技术的进步和发展。高分子材料的改性新技术与面向系统的封装相结合,有可能导致封装技术的新革命。

参考文献

[1] 陶长元、董福平、杜军、刘弘炜. LED封装用环氧树脂的研究进展.[C].第十一次全国环氧树脂应用技术学术交流会论文集,江苏常熟,2005

[2] 周利寅、贺英、张文飞、谌小斑. LED封装用环氧树脂/环氧倍半硅氧烷杂化材料的研制[J].工程塑料应用, 2009, 37(3):5-8.

[3] Huang W, Yuan Y X, Yu Y Z. Synthesis, curing and proper-ties of silicone-epoxies[J]. Journal of Adhesion and Interface.2006, 7(4):39-44.