前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇计算机分布式控制技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:物联网专业;控制理论与技术;课程内容;课程设置
1、背景
随着自动控制理论的发展和计算机技术的兴起,在工程实践中采用计算机并行、分布式处理设备来控制各类系统正常工作的生产方式已经越来越普遍。根据物联网专业的课程设置和培养目标,控制理论与技术是其重要的专业基础课,通过学习该课程,学生应掌握控制理论与技术的基本概念、原理和方法,并具备一定的工程应用能力。
由于物联网专业的课程设置和培养目标与自动化等专业不同,因此不能开设大量控制类课程。如何在有限的学时内使学生掌握较全面、实用的控制理论与技术,是物联网专业控制理论与技术课程设置中亟待解决的问题。
自动控制原理是自动化等专业的重要基础课程,该课程理论性强,需要学生具有较好的数学基础,而物联网专业的培养目标偏重实践能力,若采用原有自动控制原理的教学内容,无法使学生真正领会该课程的实际应用价值。随着计算机技术的发展,自动化等专业普遍开设了计算机控制系统和分布式控制技术等应用性较强的课程,但如果对物联网专业的学生仅讲授计算机控制系统或者分布式控制技术的内容,则缺乏基本控制理论的支撑,基础知识单薄,难以达到好的人才培养效果。
针对这一问题,笔者提出把自动控制原理、计算机控制系统、分布式控制技术等内容结合起来作为教学内容,并把理论教学、实验、实训结合起来,使学生既具有一定的理论基础,也具备一定的工程实践能力。
2、课程结合形式和授课方式
物联网专业控制理论与技术课程所涵盖的基础内容包含物联网控制技术概述、自动控制原理、计算机控制系统和分布式控制技术4部分(见图1)。
物联网控制技术概述部分简要介绍控制理论与技术的主要内容、基本概念、发展简史、基本控制方式、控制系统的组成及分类、控制系统的性能要求、控制研究的课题与发展方向等,使学生初步了解课程内容,理解控制理论与技术和物联网专业之间的关系,掌握该课程的特点和学习方法。
2.1 自动控制原理内容
物联网专业控制理论与技术中的自动控制原理部分理论性强,对学生的数学要求较高,不易理解,需要学生具备工程数学、电工电子技术等课程基础,同时还要开设计算机控制系统、过程控制工程、运动控制系统等后继课程,使学生充分理解整个课程体系。
然而,对于物联网专业的学生来说,由于培养目标的不同,该专业多数没有开设工程数学作为先修课程,也没有开设相应的后继课程,这增加了自动控制原理部分的教学难度。结合物联网专业的实际情况,可以适当降低该课程的理论难度和深度,简化复杂的知识点讲解,增加实例,同时根据教学需要辅以相应数学知识的讲解。
自动控制原理部分可以分为5大模块:控制系统的数学模型、时域分析法、复域分析法、频域分析法和自动控制系统的设计与校正。
1)控制系统的数学模型。
该模块介绍自动控制原理的基础知识,主要讲解拉氏变换、传递函数、动态结构图及其等效变换、典型环节的传递函数和自动控制系统的传递函数等内容,使学生对自动控制原理的学习内容具有整体的把握,同时了解相应的课程重点、难点和学习方法。
2)时域分析法。
该模块主要讲解典型输入信号及性能指标、一阶系统分析、二阶系统分析、高阶系统分析、系统稳定性分析、系统稳态精度分析等知识点,同时,辅以相关例题,作为课堂和课后作业,加深学生的理解。
3)复域分析法。
该模块主要讲解根轨迹法,包括根轨迹的基本概念、绘制根轨迹图的基本法则、利用根轨迹分析系统的动态性能和广义根轨迹等。在讲解的同时,以课堂讲解例题和课后作业的形式,使学生切实掌握根轨迹法。
4)频域分析法。
该模块主要讲解频率法,包括频率特性、典型环节的频率特性、控制系统开环频率特性、稳定判据及稳定裕度、闭环频域性能指标及时域性能指标的估算和系统开环频率特性三频段概念等。在讲解的同时,通过大量的实例,培养学生对基础知识的应用能力。
5)自动控制系统的设计与校正。
该部分的知识点较多,主要讲解控制系统的设计步骤、性能指标与系统设计的基本思路、基本控制规律、常用串联校正网络、常用的串联校正方法、反馈校正、复合校正和控制系统设计实例等内容。在讲解的同时与实际系统相结合,加深学生的理解。
在这5个模块中,第1模块是学习的基础;第2、3、4模块是核心内容,是授课的重点内容,也是难点,需要详细讲解每个知识点,并辅以实例;第5模块起到承上启下的作用,既要对前面几个模块向应用的层面进行扩展,也要为后面计算机控制系统和分布式控制技术的内容做好铺垫。
2.2 计算机控制系统内容
随着计算机技术的普及,现代工、农业生产中的大多数控制是在计算机的辅助下实现的。在学生日后的实际生产应用中,要想充分发挥所学的控制理论与技术相关知识,计算机控制系统的学习是必不可少的。
物联网专业控制理论与技术中的计算机控制系统部分的学习,可以安排在自动控制原理部分之后。通过自动控制原理部分的学习,学生能掌握自动控制原理的基础知识和分析方法。计算机控制系统部分的内容更加贴近实际,具有较强的实践性和较高的实用价值。计算机控制系统部分主要包括以下内容:检测设备和执行机构、总线技术、过程通道与人机接口、数据处理与控制策略和抗干扰技术。
检测设备和执行机构部分主要讲解常用的传感器、变送器以及执行机构;计算机总线技术部分重点讲解总线的基本概念、内部和外部总线等知识点;过程通道与人机接口部分重点介绍数字量输入输出通道、模拟量输出输入通道以及人机接口的相关内容。这些内容是计算机控制系统的基础知识,教师一般以讲解为主,并辅以实例,使学生把常用的设备、元件和计算机控制系统联系起来。
数据处理与控制策略是授课的重点内容,通过这部分的学习,学生能掌握数字控制器的设计技术,包括数字滤波和数据处理的方法,以及数字PID控制算法、常规控制方案、先进控制方案等基本的控制策略。抗干扰技术是计算机控制系统设计中不可缺少的内容,通过讲解和举例可以使学生明白干扰的传播途径与作用方式,并掌握硬件抗干扰技术和软件抗干扰技术。
计算机控制系统的内容与实际联系较为紧密,如果与实验、实训相结合,则容易调动学生的学习积极性,进一步培养学生的动手能力,可以达到较好的教学效果。
2.3 分布式控制技术内容
分布式控制技术的应用日益广泛,在物联网专业控制理论与技术课程中增加对分布式控制技术的讲授,不仅可以使学生掌握较为先进的控制方法,也可以为后面云计算等与分布式计算相关的课程打下基础。基于物联网专业控制理论与技术课程的培养目标和课时,分布式控制技术的内容不易涉及过多,可以作为计算机控制系统部分--的有益补充。这部分的学习主要使学生了解分布式系统,掌握最常用的客户服务器端架构方式。
在对分布式系统定义的讲解过程中,可以对比介绍分布式与集中式的区别,以及分布式与计算机网络的关系,详细分析分布式系统层次结构、分类以及分布系统的主要特征(容错性、安全性等),并进一步介绍分布式系统中的软硬件设备。
客户一服务器端架构是最常用的分布式控制方式,在介绍客户一服务器模式的基本概念和优点后,可详细讲解两部分内容:一部分是客户一服务器端架构和体系结构,包括面向连接服务与无连接服务、应用程序的层次结构和客户一服务器模型体系结构等;另—部分是客户-服务器模型的进程通信,包括进程通信中客户—服务器模型的实现方法和客户_服务器模型的进程通信协议。
由于云计算等后继课程的开设,分布式控制技术讲授的内容不易过多,使学生能初步掌握分布式系统的概念、特点和典型应用即可。
3、课时安排
物联网专业控制理论与技术课程的学时安排要结合学生的具体情况。如果是本科生专业,可以适当增加自动控制原理的内容,这部分内容的理论性较强,能够使学生深入理解基本的控制理论。如果是专科专业,可以适当增加计算机控制系统和分布式控制技术的内容,这部分内容的理论相对简单,对学生的数学基础要求不高,以结合实践的具体应用为主,能充分调动学生的学习积极性,培养学生的工程实践能力。
以48~64学时的课程设置为例,物联网专业控制理论与技术课程内容安排见表1。在自动控制原理、计算机控制系统和分布式控制技术这3部分中,以自动控制原理为主,占31~3时,这部分包含最基本的控制理论,是学习的重点与难点。计算机控制系统和分布式控制技术占17~25学时,这部分与生产实践结合紧密,是基
同时,还应设置8~16个学时的实验,培养学生的动手能力,并辅以1~2次的专业实训课程,让学生进入生产第一线,进一步理解控制原理和技术在现代化工业生产中的应用。
4、实验与实训设置
实验有助于加深学生对基本概念、理论和算法的理解。由于控制理论与技术课程涉及较多的教学内容,针对每个教学内容都采购专门的实验仪器设备,会给新开设的物联网专业实验室建设带来较大的压力,因此,课程开设初期可以采用仿真试验的方式,既可以涵盖理论教学内容,也能够降低实验室建设成本,以后再逐步增加实验设备及相应的实验。
Matlab软件功能强大,可以直观地显示并分析复杂的结果。很多高校都采用Matlab软件完成自动控制原理和计算机控制系统等课程的实验教学。物联网专业的控制理论与技术课程也可采用Matlab仿真软件,并辅以C或者C++等学生较为熟悉的高级编程语言联合编程,以满足相应的控制需求。
控制理论与技术课程共设置8个实验,每个实验2学时,实验内容为控制系统的Matlab数学建模、控制系统的时域分析、控制系统的频域分析、控制系统稳定性和稳态性能分析、控制系统串联校正、采样系统设计与实现、PID调节器设计与实现和电机控制系统综合设计。其中,前5个实验类型为验证性实验,后3个为综合设计性实验,以学生操作为主,每人一机,辅以计算机多媒体演示。在实际教学中,可根据实际情况调整验证性实验和综合设计性实验的比例,使学生充分理解理论教学内容、灵活运用所学知识,培养学生的综合能力。
实训可以使学生进一步理解控制理论与技术在实际工程中的应用,激发学生研究探索的兴趣,促使学生更快地把所学知识应用到工作中去。以青岛科技大学为例,物联网专业开设了“轮胎智能生产流程实训”。通过实训,学生了解了橡胶轮胎企业生产中的各个环节、各个流程,全面掌握橡胶轮胎企业中的控制原理与技术以及物联网相关的技术环节、技术装置和技术性能等,全面提高了学生综合知识的应用能力。
关键词:楼宇自动化系统 基本功能 原理核心 软硬件技术
1 引言
楼宇自动化系统也叫建筑设备自动化系统(BuildingAutomationSystem简称BAS),是智能建筑不可缺少的一部分,其任务是对建筑物内的能源使用、环境、交通及安全设施进行监测、控制等,以提供一个既安全可靠,又节约能源,而且舒适宜人的工作或居住环境。
2 楼宇自动化系统的组成与基本功能
建筑设备自动化系统通常包括暖通空调、给排水、供配电、照明、电梯、消防、安全防范等子系统。根据我国行业标准,BAS又可分为设备运行管理与监控子系统和消防与安全防范子系统,如图所示。一般情况下,这两个子系统宜一同纳入BAS考虑,如将消防与安全防范子系统独立设置,也应与BAS监控中心建立通信联系以便灾情发生时,能够按照约定实现操作权转移,进行一体化的协调控制。
建筑设备自动化系统的基本功能可以归纳如下:
(1)自动监视并控制各种机电设备的起、停,显示或打印当前运转状态。
(2)自动检测、显示、打印各种机电设备的运行参数及其变化趋势或历史数据。
(3)根据外界条件、环境因素、负载变化情况自动调节各种设备,使之始终运行于最佳状态。
(4)监测并及时处理各种意外、突发事件。
(5)实现对大楼内各种机电设备的统一管理、协调控制。
(6)能源管理:水、电、气等的计量收费、实现能源管理自动化。
(7)设备管理:包括设备档案、设备运行报表和设备维修管理等。
3 楼宇自动化控制系统的原理
楼控系统采用的是基于现代控制理论的集散型计算机控制系统,也称分布式控制系统(Distributedcontrol systems简称DCS)。它的特征是“集中管理分散控制”,即用分布在现场被控设备处的微型计算机控制装置(DDC)完成被控设备的实时检测和控制任务,克服了计算机集中控制带来的危险性高度集中的不足和常规仪表控制功能单一的局限性。安装于中央控制室的中央管理计算机具有CRT显示、打印输出、丰富的软件管理和很强的数字通信功能,能完成集中操作、显示、报警、打印与优化控制等任务,避免了常规仪表控制分散后人机联系困难、无法统一管理的缺点,保证设备在最佳状态下运行。
以下介绍与分布控制系统相关的几个概念。
3.l 直接数字控制系统(DDC)
直接数字控制系统(Direct Digital Control简称DDC)如图2所示。计算机通过模拟量输入通道(AI)和开关量输入通道(DI)采集实时数据,然后按照一定的规律进行计算,最后发出控制信号,并通过模拟量输出通道(AO)和开关量输出通道(DO)直接控制生产过程。因此DDC系统是一个闭环控制系统,是计算机在工业生产过程中最普遍的一种应用方式。
DDC系统中的计算机直接承担控制任务,因而要求实时性好、可靠性高和适应性强。
3.1.1 直接数字控制系统的组成
直接数字控制系统主要由过程输入通道、过程控制计算机、过程输出通道三部分组成。
过程输入通道由模拟量输入和数字量输入两部分组成。模拟量输入通道由变送器、采样开关、放大器、A/D转换器和接口电路组成。其中变送器的作用是将非电量信号变换成标准电信号,可将温度、压力、流量变换成0-10mA或4-20mA的直流电信号,它是通过A/D转换器来实现的。—数字量输入通道由开关触点、光电耦合器和接口电路组成,反映生产过程的通/断状态的触点信号,经过光电耦合器和接口电路变换成数字信号送给计算机。
过程控制计算机直接承担运算和控制任务,首先通过过程输入通道采集被控对象的各种参数信号,再根据预定的控制规律(如PID)进行运算,然后向被控对象发出控制信号,再通过输出通道直接控制调节阀等执行机构。
过程输出通道由模拟量输出和数字量输出两部分组成。前者把计算机输出的数字控制信号转换成模拟电压或电流信号,再经过放大器去驱动调节阀等执行器实现对生产过程的控制。这一部分由接口电路、D/A转换器,放大器和执行器组成。后者把计算机输出的开关信号,经放大器去驱动电磁阀和继电器执行器,它由接口电器、光电耦合器、放大器和执行器组成。
3.1.2 直接数字控制系统的基本算法
按照偏差的比例(P)、积分(I)和微分(D)进行控制,是连续系统中技术成熟、应用最为广泛的一种基本规律,将PID控制规律离散化并在计算机上实现,可以方便地利用已积累的成熟技术,而且可以在被控对象的数学模型或参数不很清楚的情况下,经过在线整定达到满意的效果。因此,将模拟调节规律离散化的数字PID算法,已被工业过程计算机控制系统普遍采用,成为DDC系统的基本算法。
数字PID控制算法,模拟量调节器的理想PID算式为
式中e(t)——偏差(设定值与实际输出值之差)
u(t)——控制量
Kp——比例放大系数
Ti一积分时间常数
Td——微分时间常数
写成传递函数形式
为了能在计算机上实现,必须将连续形式的微分方程化为离散形式的差分方程。设了为采样周期(与系统时间常数相比,T足够小),k为采样序号(k=0,1,2,……),可用矩形法计算而积以差分代替微分
式中e(k)——第k次采样所得偏差值
e(k-1)——第(k-1)次采样所得偏差值
u(k)——第k时刻的控制量
上式中的采样周期T越小(与系统时间常数比较而言),则被控过程与连续控制过程越接近,又称为“准连续控制”。
3.2 分布式控制系统的体系结构
分布式控制系统(Distributed Control Systems简称DCS)20世纪于70年代中期出现并迅速发展起来,它将计算机技术、控制技术、图形显示技术和通信技术汇集于一体,可对分散在现场的设备进行控制,又可方便地集中管理、操作,与以往的控制系统相比,既避免了单台计算机集中控制的不足,又克服了常规仪表人机交互困难的缺点。
分布式控制系统的多台微型计算机取代了集中控制系统的单台计算机,从体系结构上分散了危险性,提高了可靠性。其基本结构功能如图3所示,图中现场控制站、数据采集站、工程师站、操作员站、监控计算机和管理计算机通过数据通信网络被有机地结合起来,组成分级分布控制系统。
3.2.1 分布式控制系统的数据通信网络
数据通信网络是分布式控制系统的支柱。整个分布式控制系统的结构,实质上是一个网络结构,现场控制站、数据采集站、工程师站、操作员站、监控计算机等都是这个网络上的“节点”,都含有CPU和网络接口,它们都有自己特定的网络地址(节点号),可以通过网络发送和接收数据,网络中的各节点处于平等地位,既能共享资源,又不相互依赖,形成既有统一指挥,又使危险分散的功能结构,网络的架构区具有极大的伸缩性,可扩性很强,可以满足分布式控制系统扩充与升级的需要,十分灵活、方便。
(1)控制网络特点 分布式控制系统的通信网络不同于通用计算机网络,与一般的通信网络比较,它有如下特殊要求:①有高可靠性和安全性,要求传递的信息绝对准确、可靠,为此常采用冗余技术、后备措施和自诊断功能。如:控制站采用双CPU板,双I/0板等。②具有良好的实时性。③对环境适应性强。
(2)网络拓扑结构 建筑设备自动化系统常用的有总线网和环网,在两种结构中任意两节点通信可直接通过网络进行,各节点处于平等地位。
(3)网络通信协议 组成建筑设备自动化系统,必须有一种大家都能接受并且共同遵守的工作语言来实现相互之间的对话,这就是数据通信协议标准。
用于建筑自动化控制网络的BACnet协议由物理层、数据链路层、网络层和应用层组成,或相当于开放系统互联参考模型(OSI)的第一、二、三、七层协议
其中:ARCnet为令牌总线网,数据传输速率为2.5-20bit/s,有良好的实时性。MS/TP是一种主/从令牌传递数据链路层技术,允许使用EIA-485硬件。BACnet实现了不同生产厂家自控系统之间进行通信的技术,即从一个“岛”到另一个“岛”之间进行相互联系的技术。
3.2.2 现场总线技术的应用——分布式控制系统的进一步分散化
(1)现场总线概况 现场总线(Fieldbus)是连接智能现场设备和自动化系统的数字式双向传输、多分支结构的通信网络。不同的现场总线遵循的协议不同,接口标准不同,各具特色。现场总线技术具有如下一些特点:①以数字信号取代4-20mA的模拟信号,极大地提高了信号转换的精度和可靠性,因此现场总线具有很高的性能价格比。②现场总线把处于设备现场的智能仪表(智能传感器、智能执行器)连成网络,使控制、报警、趋势分析等功能分散到现场仪表,使控制结构进一步分散化,导致控制系统体系结构的变化。③符合同一现场总线标准的不同厂家的仪表、装置可以联网,实现互操作,不同标准通过网关或路由器也可互联,现场总线控制系统是一个开放式系统。
(2)LonWorks技术
LonWorks是一种完全分布式控制的局部操作网(Local Operating Network—LON)技术。LonWorks网络节点由神经元芯片、收发器、固件和I/O接口电路组成。神经元芯片(Neuron chip)是这种智能节点的核心,它由媒体访问控制处理器、网络处理器和应用处理器组成,这就使得节点既能管理网络通信,又具有控制功能。Neuron芯片方块图。
芯片附有固件,该固件实现LonTalk通信协议和所有的任务调度。LonTalk协议遵循世界标准组织ISO提出的开放式互联参考模型OSI,具有完整的7层协议,管理网络节点的通信,分配节点地址,运行内含的冲突/检测回避算法,控制物理/电气的连接等。
Neuron芯片除了具有控制功能外,还带有媒体访问控制处理器和网络处理器,LonTalk协议固化在芯片的ROM中,使得LonWorks的微型节点无需中心结构的完全分布式控制模式,将控制功能分散到了现场级仪表。
LonWorks网络,可以采用多种通信媒体,如双绞线、电力线、同轴电缆、光缆、无线电、红外线,并且提供与上述多种媒体相适应的收发器,这使得同一网络中的信号可以在不同的媒体之间传输,因而可以根据需要组网,不同媒体之间以路由器进行连接。
LonMark是为了避免众多制造商以不同的含义来解释LonWorks技术,保证不同的产品能够方便地集成一起,以便构成一个真正开放的系统,而制定的一个行业标准。
(3)分布式控制系统的进一步分散化
传统的分布式控制系统在现场控制站这一级依然是一个集中式结构,而现在的分布式控制系统是在原有分布式控制系统的基础上,采用LonWorks现场总线的建筑设备自动化系统发展起来的新系统,标准LAN为原有的分布式控制系统,使用BACnet协议,以利于实现多种供应商的不同类型的子系统之间的通信信息交换,把具有控制功能的各个岛连成一个整体。新增的LonWorks现场总线使用LonTalk协议,把控制功能进一步分散到现场级仪表,标准LAN与现场总线之间的路由器相联。这样BACnet和LonMark两项标准互相补充,互为依托,构成一个完全分散的、真正开放的建筑设备自动化系统。
4 楼宇自动化系统设备的发展历史及相关产品简介
楼宇设备自动化系统到目前为止已经历了四代产品:
第一代:CCMS中央监控系统(20世纪70年代产品)
BAS从仪表系统发展成计算机系统,采用计算机键盘和CRT构成中央站,打印机代替了记录仪表,散设于建筑物各处的信息采集站DGP(连接着传感器和执行器等设备)通过总线与中央站连接在一起组成中央监控型自动化系统。DGP分站的功能只是上传现场设备信息,下达中央站的控制命令。一台中央计算机操纵着整个系统的工作。中央站采集各分站信息,作出决策,完成全部设备的控制,中央站根据采集的信息和能量计测数据完成节能控制和调节。
第二代:DCS集散控制系统(20世纪80年代产品)
随着微处理机技术的发展和成本降低,DGP分站安装了CPU,发展成直接数字控制器DDC。配有微处理机芯片的DDC分站,可以独立完成所有控制工作,具有完善的控制、显示功能,进行节能管理,可以连接打印机、安装人机接口等。BAS由4级组成,分别是现场、分站、中央站、管理系统。集散系统的主要特点是只有中央站和分站两类接点,中央站完成监视,分站完成控制,分站完全自治,与中央站无关,保证了系统的可靠性。
第三代:开放式集散系统(20世纪90年代产品)
随着现场总线技术的发展,DDC分站连接传感器、执行器的输人输出模块,应用LON现场总线,从分内部走向设备现场,形成分布式输入输出现场网络层,从而使系统的配置更加灵活,由于LonWorks技术的开放性,也使分站具有了一定程度的开放规模。BAS控制网络就形成了3层结构,分别是管理层(中央站)、自动化层(DDC分站)和现场网络层(LON)。
第四代:网络集成系统(21世纪产品)
随着企业网Intranet建立,建筑设备自动化系统必然采用Web技术,并力求在企业网中占据重要位置,BAS中央站嵌入Web服务器,融合Web功能,以网页形式为工作模式,使BAS与Intranet成为一体系统。
网络集成系统(EDI)是采用Web技术的建筑设备自动化系统,它有一组包含保安系统、机电设备系统和防火系统的管理软件。
EBI系统从不同层次的需要出发提供各种完善的开放技术,实现各个层次的集成,从现场层、自动化层到管理层。EBI系统完成了管理系统和控制系统的一体化。网络集成系统结构图如图7所示。
目前,规模和影响较大的楼宇设备供应公司有美国霍尼维尔公司、江森公司、KMC公司、德国西门子公司等。
分布式控制系统现状
分布式控制处理系统是继工控机处理系统、嵌入式处理系统后的第三代控制系统。目前市场上常见的分布式图像控制系统架构主要有两种:第一种是采用分布式信号采集,集中式信号处理的架构。第二种是采用网络式架构的分布式控制系统,如Jupiter公司推出的PixelNet高清视频分布式解决方案以及台达DVCS分布式图像控制系统,其每一路信号输入/输出均由一个单独的处理器进行处理,每一路信号的处理均为独立通道,任何一个信号点出现故障都不会影响其他信号源,从根本上保证了大屏幕显示的安全、可靠。
据北京飞利信电子技术有限公司营销中心副总经理王章敏介绍,目前,分布式控制处理器由于成本的问题,暂时在市场中还不能取代传统的集中式控制处理系统。但是在拼接规模较大,信号源输入较多以及对安全可靠性要求较高的场合,分布式控制处理系统优势突出,主要表现在其应用灵活、扩展性好、易操作、易维护,信息输出质量高且节能环保。所以这两年分布式控制器在拼接控制器行业中的市场份额逐年上升,目前市场份额大概在处理器系统中占15%左右。
云计算、物联网的新型控制系统平台
云计算的兴起和发展,让视讯企业用户可以将重要的数据分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将与互联网更相似,帮助企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统。飞利信是国内第一家提出云分布式的分布控制技术的厂家,并且于2012年5月在PALM展中给客户展现。
飞利信打造独有的将拼接控制技术与云计算、物联网技术三者融合的控制平台PX-CVCS。云计算相当于大脑,物联网相当于眼睛、鼻子、耳朵、嘴巴、四肢等等,而拼接控制器则将这些有机地拼接成一体,构成一个新的平台,所有的运算都在大脑里进行,将眼睛、嘴巴、耳朵等搜集到的信息进行计算和整理,根据应用场合和客户需求,将资源最大化应用,既避免了集中式控制系统的低可靠性和有限运算能力的缺陷,又避免传统分布式控制的资源浪费,比如某一路在不工作状态时,传统的分布式系统对于该路的控制器就是一种浪费,而云技术的控制则不同,可以根据情况,灵活分配。
除此之外,拼接控制器结合云计算与物联网技术,实现每个节点的地址查询及显示,共享软硬件资源和信息资源,并可以按需提供到显示平台和其他设备上,清投结合此技术打造了众多新型控制系统平台,如“一云三端”、“高清底图机”、“整屏录播系统”,同时结合云计算技术及物联网技术打造第三代融合控制系统平台,其相对比第一代软件融合和第二代硬件融合最大的区别在于可扩展多种应用。
另据台达集团国内子公司中达电通视讯产品经理朱力介绍,台达集团紧密把握物联网技术潮流,最新研发出面向广域大规模的智慧型监控与管理系统――iPEMS。iPEMS系统由数据处理子系统与分布式显示子系统2个部分组成。数据处理子系统包括数据感知与传输,数据分布式存储,大数据分析以及数据可视化;分布式显示子系统包括显示控制器,拼接显示墙以及显示管理软件。该系统通过实时模拟/数字信号获取、网络化数据传输、海量数据存储、智能大数据挖掘与分析、超高清晰度数据可视化等技术,为人们提供海量可视化信息,帮助人们及时有效决策和远程控制。
新型平台具备革命性优势
传统的集中控制系统,由于资源有限,因此在大规模、复杂的拼接墙以及信号源较多的场合下,由于传输距离的限制、接入点的上限、图像处理速度慢、不间断运行易宕机等问题而不能使用,同时,由于所有的输入输出都由集中控制器处理,一旦控制器出现问题,则整个系统都崩溃,导致系统的安全性和可靠性不足。传统的分布式控制系统,最大的缺点是每一路都需要一个控制器,无论输入和输出,虽然能解决运算资源和可靠性问题,但造成了另一种局面,就是资源浪费,成本增加,占用的体积也相应加大,灵活性也还不够。同时整个拼接系统仍处于图像控制的范畴内,无法与正处在高速发展的传感器、互联网技术更好地结合发展。而新的结合了云计算和物联网技术的控制系统,则可以解决上述所有问题。
清司相关负责人表示,采用云计算、物联网技术的控制平台具有更高的可扩展性和灵活性。传统处理器为机柜插卡式结构,机箱需按照输入输出的路数预先订制,且最多只能处理72路信号,扩展性和灵活性受到了极大制约;而分布式拼接系统采用以太网进行数据交换传输,仅需用网线将节点设备接入交换机即可实现系统扩展。
分布式系统的布线以网线为主,简单而且方便。传统的RGB线缆、DVI线缆都有传输距离的限制,超过了30m以后就会出现信号质量下降、画面抖动、闪烁问题,需要增加其他外设补偿信号,从而降低了图像的真实性,很难满足用户对信号质量的高需求。特别是监控系统,远端信号传输已经过一次转换,如果再进行数/模转换,就会大大降低信号强度。这就会影响用户的使用体验。而采用分布式只需要将信号源接入网络,在网络带宽满足的情况下就可以保证远距离传输,而且保证色彩还原度。
物联网拼接控制系统具有更高的稳定性和更低的功耗。集中式系统的拼接控制器是整个系统的核心,一旦故障,整个系统便会崩溃;而分布式系统中不存在中央处理器,各个控制节点彼此并不互相依赖,单个节点故障并不影响整体系统正常运行,而且核心数据交换设备采用网络交换机这种非常成熟的产品,稳定性非常高。另系统中每个节点功耗只有5-10W,节能环保。
用户的福音
网络化、分布式作为未来拼接系统的发展趋势,正在越来越多的大型拼接系统应用中崭露头角。对行业用户来说,分析自己的应用需求,选择性价比最高的拼接系统会尤为重要。同时,除了考虑拼接系统的稳定性、可靠性之外,如何利用新技术和平台,实现更多的便捷功能、与现有IT资源整合、提升投资回报率也会成为评估的重点。
计算机控制技术发展初期,是以集中控制的工作方式进行计算机系统控制的。集中控制系统会建立统一的控制中心,由控制中心负责信息的收集、处理、加工等工作。如果集中控制系统出现了任何问题都能够及时发现,有助于企业及时制定科学合理的解决方案,系统的控制效率也因此得到了大幅度提升。集中控制技术主要是将信息的输入或输出作为控制主体的,主要包括信号采集、信号运算、信息处理及信息反馈、状态显示等工作内容,以上工作内容主要是通过IPC(一种工业控制计算机)控制完成的。IPC会收集温度、PH值、压力等相关数据,并通过接口卡来接受经过处理而得到的信号。集中控制技术具有一定的缺陷,一旦出现控制失误的情况就会使整个系统的运行都会受到某种程度的影响。而且,随着控制系统的日益复杂化,一台计算机已经无法负责控制多种信号的处理工作。为解决以上缺陷问题,以集散控制工作方式为主的计算机控制技术随之发展起来,集散控制又被称为分布式控制系统,根据功能的不同,集散控制又被分成了上位机与下位机,集散控制系统将通信作为系统的核心。整个系统的集中监视工作主要由上位机负责,而下位机则负责控制分布在各现场的用于分布控制的个体,集散控制系统的上、下位机通过通讯互联网进行信息传递,保持信息通畅。集散控制系统具有较高的安全性、有效性及可拓展性。但许多厂家为实现经营垄断常常采用封闭形式的集散控制系统,阻碍了集散控制系统的推广和发展。
2封闭集散控制系统到工业现场中线的发展分析
封闭式的集散控制系统缺乏较好的兼容性和开发性,系统存在无法共享信息的局限。为增强集散控制系统的兼容性和开发性,在构建系统过程中必须采用标准化、网络化的网络协议,工业现场中线技术随之发展起来。由该技术构建的工业现场总线控制系统可以确保工业现场中智能化仪器、控制器、执行机构设备之间保持信息通畅。整个控制系统按照总线方式有条不紊的运行着。工业现场总线控制系统采用的是开放式的现场总线协议,以该协议方式进行现场所有支线工作的协调工作,不仅可以降低投资成本、维护资金,该系统还具有操作简单、经济实用、工作效率高的显著优势,用户的功能需求也可以得到更好地满足。工业现场总线控制系统是一种开放的、互联的分布式系统。该系统将工业现场作为中线,通过收集中线中的信号或信息,并根据所收集的信息对其进行有效控制,将分散控制管理与集中控制管理进行了有效结合,将系统危险分散开来,实现控制分离。
3现场控制到企业自动化控制发展分析
以太网工业协议作为一种开放式的网络协议,实现了全方位的自动化控制。在计算机控制技术中引入互联网,有助于提升产品的安全系数和适用性。但目前,企业化基于以太网的自动化控制中存在着一个问题就是不稳定的网络信号,无法确保系统时刻保持在稳定的工作信号下。信息化工厂的提出是为了解决以太网不稳定问题。基于该技术下,系统将大量的数据进行转移,使信息的采集、传输和处理都能处于良好的环境中,最终实现信息的自动化控制,并提高控制效率。
4总结
【关键字】机电一体化;生产模式;生产技术
1 机电一体化在化工中的应用
1.1电子监控
电子监控设备的主要目的就是为化工企业生产提供自动化运行状态的监控设备,保证生产情况的稳定、生产效率的提升,避免出现严重的生产设备运行故障,引发大量的维修费用问题。电子监控的主要功能就是设置了报警系统,其中枢系统是由一台电脑控制,由无线接收主机、无线转发器和探头组成。当设备运行出现问题时探头便会通过无线转发器将信号传送给报警程序,报警器就会自动发出警报声,由无线接收主机接收信号,再通过控制电脑转化为信号,传输到管理平台。例如:排水泵房自动化监控系统适用于城市排水泵站的远程监控及管理。泵站管理人员可以在泵站管理处的监控中心远程监测站内格栅机的工作状态、污水池水位、提升泵组工作状态、出站流量、池内有害气体浓度等。系统组成包括:排水泵房自动化监控系统主要由监控中心、通信平台、泵站远程测控终端、计量测量及摄像设备组成。
1.2节能降耗
机电一体化的发展方向就控制系统来说,可以通过提高系统的效率,实现节能,仪器仪表如果能更精确的测量,给系统准确的反馈,也能更好第为节能做出贡献。节能是一个大工程,在系统的每一个环节,自动化技术都可以发挥积极的作用,这还需要我们自动化人通过不断的努力,积极创新每一个环节的技术,为节能减排发挥最大的贡献。一体化能够实现全面化的能源管理,可以对能源的发生、使用集中监视,并且对能源放散系统直接操作和控制,对能源使用量的调整可以直接指挥,使事故的判断和处理更迅速,因此能源的作用也从单纯的利用变为缓冲兼顾性的利用,可以大大减少能源的放散量。
1.3生产设备控制
机电一体化在化工企业中的应用能够实现对生产设备的全面自动化控制。如:化工仪表和自动化控制、电子调速器,电子油门控制装置、自动停机装置、自动升温控制装置等。这些装置都能够实现对生产设备的全面电脑控制,并且装备安全保护以及各种辅助机构。通常多台一体化设备与控制计算机(控制台),导航设备,充电设备以及周边附属设备组成一体化设备系统,其主要工作原理表现为在控制计算机的监控及任务调度下,一体化设备可以准确的按照规定的路径行走,到达任务指定位置后,完成一系列的作业任务。另外还可以实现对生产成品的高精度控制。例如:价格加氢保护催化剂的过程中,需要加工颗粒直径15mm~18mm,颗粒内孔直径2.0mm~3.0mm的七孔球形颗粒。利用机电一体化技术能够整合的磨削软件,操作者首先输入被磨削刀具的数量、尺寸和型式:其次,选取要执行的操作工序:控制的气动驱动器实现对装夹器运动的操纵,从而实现对消磨颗粒的高精度加工。
2 机电一体化在化工中的生产模式
机电一体化广泛应用与化工企业生产之中,对日用化工行业、电子称重模块、纺织机械、自动加煤技术、水厂自动化系统、烧结预配料系统、啤酒生产、焦化厂电力系统、发电厂锅炉热控工程等众多领域都有较高的影响,具体来讲,其在化工企业之中的生产模式包括以下几个方面。
2.1分布式控制生产模式
分布式控制生产模式含有几组功能部件的公共控制方式,其中每组部件只服务于数目有限的呼叫。包括4c技术既Control控制技术:Computer计算机技术:Commu nication通信技术:Cathode RayTube CRT显示技术。在这种生产模式之下,化工生产过程中控制系统发出第一命令的主控制器和多个以一种树结构方式与主控制器相连接的通信控制器。通信控制器通过解释第一命令获得控制参数,或通过执行对应于第一命令的第二应用程序发出第二命令并而后获得控制参数。不论发生哪种情况,控制参数都被从通信控制器输出到马达控制器,通过马达控制器控制多个马达。生产模式更为简单方便,有较为明确地管理、操作和控制作用,实现测控技术的全面化发展,控制了更多的生产调度,实现了全面化的生产技术管理功能。
2.2计算机集成制造生产模式
计算机的集成制造生产模式能够实现全面的生产经营、生产管理以及过程控制连成一体,用以实现从原料进厂,生产加工到产品发货的整个生产过程全局和过程一体化控制。目前化工企业已实现了生产制造的自动化,但是对于计算机集成制造生产模式来讲,缺乏对生产经营和生产管理的自动化控制。对生产经营方面来讲,可以建立远程网络通信平台,实现生产经营的全面化控制,可以将现场工艺数据传输到远控中心,同时也可以对电气自动化设备的数据进行查看,更有利于内部经营。而对于生产管理的一体化控制则可以进行仿真控制技术,对现场情况进行全面化的控制管理。通过计算机集成化的生产方式能够更好地保证生产、经营、管理的优化,实现经济效益。
2.3现场总线生产技术