前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇物联网网络技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:网络编码 MIMO 联合编码
中图分类号:TN92 文献标识码:A 文章编号:1007-9416(2011)12-0046-02
网络编码是指在网络中继节点处对网络信息流进行存储转发的基础上实行编码操作,从而提高网络吞吐量,节省网络带宽等[1]。在无线通信网中,网络编码作为关键技术之一,可以在一定程度上节省网络资源消耗,提高频谱资源利用率,并在有限的频谱资源中尽可能多地传输数据,增加信道的传输容量。同时无线网络自身一些不同于有线网络的传输特性,也使网络编码带来了新的效益,它可以改善网络性能,结构和协议。
目前,大多数方案都是基于随机线性网络编码,如何在多径衰落这种不利条件下,设计网络编码方案,使其在无线网络中同样有效是一个具有挑战性的问题。很多国内外学者以及科研机构都致力于对网络编码的研究,从最初的网络信息流到分别与协作分集技术、MIMO技术相结合的现在。本文通过从物理层角度对无线网络中网络编码与其他应用技术相联合进行分析,如将其与MIMO等相结合,充分利用冗余度,提高系统吞吐量,并根据未来网络的复杂环境阐述了其进一步的研究方向。
1、联合网络编码
随着研究的深入,网络编码的很多优点也逐渐体现出来,如能获得很好的网络吞吐量,均衡网络负载、提升带宽利用率等优势。同时在无线网络中应用网络编码也面临着许多问题,如果将网络编码与其它应用技术相结合,则更能大大提升该应用系统的相关性能。
1.1 网络编码与信道编译码的联合
网络编码同信道的编译码技术相结合的核心思想就是利用网络编码的冗余信息协助信道编码,从而获得好的抗噪性能,达到最大的信道容量;通过利用中继传输的冗余度来获得分集增益[1]。基于Turbo码和LDPC码的联合编码已经被广泛研究,并在多址中继信道、时分复用双向中继信道[2]和BSC中与传统的网络编码方案进行了比较,充分显示了联合编码在能量消耗、信道容量、误码率等方面的优势,有效降低了编码复杂度以及由信道噪声带来的失真。
1.2 网络编码与协作分集技术的联合
协作分集技术,即在多用户环境下,每个天线用户在发送自身信息时也为其协作伙伴发送信息,通过节点间的协作,形成虚拟天线系统,以获得较大的分集增益,克服无线信道衰落。另外,在协作分集的基础上进行网络编码可以同时获得分集增益和网络编码增益。在协作传输过程中,通过在信源节点和终端节点放置中继可进一步提高数据传输速率,改善无线通信系统抗衰落性能,提高资源效率和系统容量[3]。
协作网络编码是当前无线移动通信系统的研究热点之一,特别是基于物理层网络编码的无线协作通信系统,对于双信源、双信宿无线通信系统,假设信源和都要将各自的信息广播到两个信宿和。由于发射功率的限制,将超出的传输范围,和将通过共享的中继来实现传输范围的扩大。在传统协作中继系统中由于要保证信号在正交信道上能够传输,完成这一过程需要4个时隙,而采用无线网络编码后仅需要2个时隙。分别为:(1)将信号广播至和;同时将其信号广播至和;(2)对二者叠加信号进行物理层网络编码,并将编码后的信号广播至和。由于在第1个时隙已经接收到广播的信息,因此,在第2个时隙结束时,可以从编码后的信号中提取到的信息。
此方案充分利用了网络资源和分集技术,可获得相对较低的错误概率、中断概率,以及较高的编码增益。因此,采用物理层网络编码的协作中继系统可以降低传输时间损耗,使数据在衰落信道中更好地传输。
1.3 网络编码与MIMO技术的联合
MIMO技术利用在发射端和接收端均采用多天线、多通道来获得高分集增益以改善信道的多径衰落特性,以及提高系统容量、频谱利用率和数据传输速率;通常情况下,多径要引起衰落,致使数据包丢失。对于MIMO系统,多输入多输出技术通过利用空间分集来解决这一问题。因为多入多出是针对多径无线信道来说的,传输信息流经过空时编码形成M个信息子流,由M个天线发射出去,经空间信道后由N个接收天线接收。在接收端通过检测译码,将接收到的符号矢量利用空时编码处理,并解码这些数据。
这两种技术的最终目的都是从接收到的符号矢量中恢复出原始信息,为了能够充分利用MIMO技术的分集特性和在传统网络编码中并没有利用到的冗余信息,将网络编码和MIMO技术相结合(MIMO_NC)。最大程度的将收到的信息传递给译码器,降低丢包率,完成检测译码过程,获得高信噪比增益。
MIMO_NC方案[4]的编码过程:由信源发出的信息,经过信道编码输出信息单元,这些由每个节点生成的信息单元被存入缓存器中,然后对其进行网络编码,产生编码包,并用Galois符号表示,最后经过转换调制将相应波形通过无线信道传输出去。
译码过程:在接收端将收到的数据包进行信道估计,并从其头部提取出网络编码系数,如果头部损坏就丢弃;反之,则把所有数据包存在缓存器中,并更新网络估计矩阵。为了在接收端正确获得信源的发送信息,节点存储器中至少要有等量的独立的原始数据包,这样才能解出编码方程,若少于要求数,则终端正确恢复原始信息的概率会很低。所以当能够进行译码时,节点开始检测接收到的数据包数目,同时确定中继节点数,最后通过软译码方案恢复出原始信息。
同样为了获得高分集增益,在编码阶段可以在发送端采取用两个网络编码器的方法,这样就有两个网络编码矩阵G1和G2,头部存储编码系数,并且编码相同的信息。此时的编码增益会明显提高,但是以传输速率的降低为代价,而在译码过程中采用自适MIMO-NC技术,就是为了改善传输速率,降低错误概率,但同时复杂度有所增加。具体的编译码流程如图所示:
…指的是经信道编码后的信息单元,为每个编码包的头部包含的编码系数,{}指的是Galois符号所对应的调制后的矢量。指的是在不同时间接收端收到的来自不同信源的编码包。
在传统的网络编码中,每个数据包的解调过程和提取NC系数过程都是分开进行的,其在译码阶段仅用来成功地接收数据包,因此限制了从不同节点接收相同信息的优势。MIMO_NC会利用已破损的CP,将所有收到的信息传递给译码器,充分利用冗余信息,改善其性能。
2、进一步的研究方向
现在网络编码的研究已经走向多元化,实用化。在LTE-A中通过采用MIMO分集技术,来抑制多径衰落,改善信道特性,提高系统性能。新一代无线通信网的网络架构是复杂的、多变的,其不仅体现在网络层次、基本构架方面,也体现在复杂的无线场景、传播环境和混合的无线小区结构上等。如何能在这样的环境下进一步满足提高系统的吞吐量、信道容量,降低误码率等要求,是目前的研究热点。
因此在以后的研究过程中我们可以考虑以下几方面:
(1)网络编码是一种协作通信的模式[3],与其他技术相结合可以优化网络性能,在各种无线传播环境下,充分结合多输入多输出天线技术,研究对网络中数据流传输的影响。研究基于协作分集技术的物理层网络编码和信道编码的联合设计方案,以及基于网络编码的数据传输,研究低复杂度、低时延的网络编码算法。
(2)在实际无线通信网络中,信道往往是频率选择性衰落的,这种环境下MIMO网络编码的性能分析也是很值得研究的。除了理论研究MIMO网络编码技术外,还需要考虑实际的场景,以解决应用过程中遇到的各种问题,如编译码复杂度、延时问题对系统性能的影响问题,系统效率、编码效率和鲁棒性的提高问题等。
3、结语
网络编码技术在无线网络中起到了重要的作用,同时具有很广阔的应用前景。由于无线通信网中信道的固有特性,在物理层进行网络编码并结合一些相关的检测技术、纠错编码技术、MIMO技术,与传统的网络编码方式相比,能获得更好的系统性能。本文主要介绍了网络编码分别与协作分集技术和MIMO技术相联合的方案及研究进展,并提出了有待进一步研究的方向。
参考文献
[1]HoT,Koetter,Medard M,A Random Linear Network Coding Approach to Multicast.IEEE Trans.Inf.Theory,2006:4413~4430
[2]Hausl C,Hagenauer J,Iterative Network and Channel Decoding for the Two-Way Relay Channel/Proceedings 0f IEEE International Conference on Communications 2006:1568―1573.
[3]殷勤业,张莹,丁乐.协作分集:一种新的空域分集技术,西安交通大学学报.2005.06.
[4]EFasoloFRossettoand MZorziNetwork Coding meet MIMOHongKongJan3-4 2008.
作者简介
关键词:中职;计算机网络技术;物联网技术;软件技术;实训教学
前言
物联网技术作为信息产业发展的第三次革命,涉及的领域广,其理念也日趋成熟。从整体来看,中国物联网市场主要份额有智能工业、智能物流、智能交通、智能电网、智能医疗、智能农业和智能家居等行业。2009年8月,“感知中国”的讲话把我国物联网领域发展推向了,我国在无锡建立了“感知中国”研究中心,中国科学院、电信运营商和多所大学在无锡建立了物联网研究机构,越来越多的行业和企业需要物联网技术人才,加大物联网工程技术各级人才培养力度,已经成为当前职业教育相关专业改革与发展的一项重要和紧迫任务,中职业学校的计算机网络技术专业课程的设置应该着眼于社会的发展需要,增加在物联网技术应用型人才培养,在课程设置、教学内容以及实训上增加物联网技术的知识与技能实训,培养既掌握计算机专业的知识技能,又懂得物联网技术的复合型技术人才,适应社会信息化产业新趋势的发展。
1中职物联网技术专业现状
目前,全国大多数本科、高职院校都开设物联网工程技术专业,并把该专业作为重点规划和发展专业,学科知识体系及课程设置都在研究与探讨,物联网专业教学与实训处在摸索、实践阶段,没有成熟的体系、成功的经验可以借鉴。中职学校也积极创造条件开设物联网技术应用专业,但是物联网技术是多个学科技术交叉融合的新兴发展技术,主要涉及计算机网络技术、计算机软件开发和电子技术等综合的学科应用,而大多数中职学校学科体系不够完善、受学制,专业师资和教学实训设备等因素限制,如何在学校现有师资、课程、实训设备的基础上,创建能满足物联网产业企业的需求、又具有本校特色的物联网专业,是各个学校急需解决的问题。在物联网技术专业的建设与人才培养上采用两步走的方式来实现:第一步,各中职学校将结合学校学科专业体系的特点与优势在电子技术应用、计算机网络技术、计算机软件技术专业增加物联网技术方向的基础课程和实训课程,进行探索与实践。第二步,整合相关专业教学实践、教学资源,制定统一、完善的物联网专业课程体系和人才培养方案,使之形成一个整体。
2物联网技术的专业课程设置
目前,计算机网络技术专业所开设的专业课程与教学实践都是基于普通计算机之间互联的网络工程技术,而物联网是物与物相连的互联网,是互联网的延伸,物联网技术是多个学科技术交叉融合的新兴发展综合技术。主要涉及电子技术、网络技术和软件技术等综合的学科应用技术,知识系统非常庞大,必须进行研究与梳理,依据人才培养的目标定位,考虑中职学制与学生学习能力,根据网络专业的课程架构与知识体系,合理组织增加物联网技术的知识,进行适时课程的设置调整,根据物联网技术系统层次结构特点和关键技术,课程设置如图1所示,使学生掌握新的知识与技术,从而扩大就业面,提升在就业中的优势而计算机网络技术专业标准课程设置中已经涵盖了物联网技术网络层知识领域,只需要增加的主要是物联网感知层和应用层的相关核心课程。具体是在专业基础课增加《物联网技术导论》,专业课上增加感知层《传感技术与检测》、《RFID技术与应用》、《传感网组网技术》课程和《网站建设与管理》、《数据库的应用技术》应用层课程。
3物联网技术实训体系设置
对于中职学生而言,物联网技术应用的定位应体现在工程实践性,学生需要有知识理论的学习,更要注重工程能力的实践,根据物联网工程的工作过程构建实践体系,设计教学实训内容,注重培养学生实际工程的应用技能,根据物联网技术专业课程的设置,结合计算机网络技术专业的实训教学与设施情况,确定物联网技术专业课程的实训体系,确定实训教学的内容。(见表1)
4物联网技术教学实训的实践
中职计算机网络技术专业受学制(三年)和学生学习能力、实训条件、师资等因素限制,课程调整的空间较小,在明确专业人才培养定位,根据网络专业的课程架构与知识体系,合理组织增加物联网技术的知识教学与实训,系统的增加物联网技术的知识,适当调整专业课程,一方面将物联网传输层新技术与知识“嵌入”到原有的课程教学中,比如:将传感器技术和RFID技术知识作为电子技术基础的内容,无线传感网组网技术加入到网络课程中,将数据库技术知识融入网站建设与管理课程中。另一方面,进行适时课程的设置调整,在有限的学时上增加《物联网技术应用》课程教学与实训,进行典型的应用系统综合实训,如智能家居与智能安防监控综合实训。
5物联网技术实训室设计
计算机网络技术专业建设有完善的网络布线实训室、网络设备配置实训室、系统搭建实训室、网络安全实训室,能完成网络工程的实践教学实训。物联网技术实训室可以对原有的网络工程实训室进行改造,规划和购置物联网实训模块设备,模拟物联网应用工程环境和实际应用环境,构建“理实一体化”物联网技术应用实训室,拓展原有实训室的功能,提供课程教学实训从理论知识学习、讲解到演示、基本技能训练、工程项目实践等多层次教学实践。借鉴网络技术的项目教学实践体系,根据物联网工程的工作过程构建实践体系,设计教学实训内容,注重培养学生实际工程的应用技能。因此,通过物联网技术专业课程、实训体系设置、实训实践及实训室建设的研究和探索,我们可以在中职计算机网络技术专业增加物联网技术的知识与技能实训,培养既掌握计算机网络专业的知识技能,又懂得物联网技术的复合型技术人才,扩宽计算机网络专业的学生就业渠道,提高学生就业竞争力。
参考文献:
[1]中华人民共和国教育.中等职业学校专业教学标准---信息技术类(第一辑)[M].高等教育出版社,2015.
[2]黄永前,刘凌.中职计算机网络技术专业物联网技术课程设置探索[J].物联网技术,2016.
[3]李翔宇,曾燕清,陈志德.基于岗位需求的物联网工程专业实训教学体系建设思考[J].福建电脑,2016.
当前,我国医疗资源分布不均及各地域发展水平不平衡的问题是近一段时期来我国医疗卫生部门面临的一个突出问题,如何解决广大人民群众就医公平,已成为一个重大课题。随着物联网、体域网等多种信息技术的快速发展,建立一种基于物联网的远程慢病防治监护平台,即将医疗技术从医院延伸到家庭,提供一套具有监护及防护功能的个人健康信息采集处理并提供远程服务的系统是解决当前问题的一个重要步骤。
2 物联网及远程监护(The internet of things, and
remote monitoring)
物联网[1]是延伸和扩展的互联网。它运用信息传感技术,实时采集需要监控、连接、互动的物体生物信号及位置等各种需要信息,把任何物品与互联网连接起来进行信息交换和通信。实现物与物、物与人、物与网络的连接,方便管理、识别和控制。
在物联网的众多领域当中,远程医疗是一个值得人们关注的热点,远程医疗[2]可缩小不同区域医疗水平的差距,减少病人及家属的路途奔波时间,提高了医疗效率和质量。远程监护是远程医疗的一个重要组成部分,它在患者与医院专家之间建立一座桥梁,能够使患者在任何地点、任何时间接受来自远端医院专家的诊断,通过远程监控数据,病人可以享受远程专家的医疗服务[3]。它是计算机、通信网络和现代医疗多种技术相结合的产物,它提供了一套全新的医疗服务共享体系。
3 慢病监护网络系统功能概述(Slow disease
monitoring network system function overview)
基于物联网的慢病监护系统是连接患者与医院的纽带,目标是能够实现以下功能:①患者在非医疗区域就能享受到医疗机构的监测及护理指导;②患者在任何地方就能享受到急救服务;③通过社区监护系统数据库建立居民的健康档案资源库;④医护人员通过健康监护平台能够及时获取患者疾病的信息;⑤医院健康监护平台收集各个社区医疗信息并进行诊断。
监护数据传输网络系统工作原理:人体基本生理参数(血压、心率、血氧)的采集,各路采集数据把各路收集到的基本数据经过控制器合并处理后形成同一路串口输出数据;通过无线传输网络把收集的人体生理参数存储在本地医疗监护网关(客户端);由本地医疗监护网关来完成人体生理参数数据的解析、处理和显示;远端医疗监护端(服务器端)接收客户端发来的人体生理数据,并对这些数据进行分析处理。服务器端和客户端间的数据交换和网络通信由两端的ARM6410完成。
本监护网络系统的设计实现通过以下五个模块完成:患者生理数据采集传感器模块、数据处理控制器模块、无线传输网络模块、本地及远程医疗监护控制模块。各个模块之间的联系框图如图1所示。
图1 慢病远程监护模块框架图
Fig.1 Slow disease remote monitoring module frame
以上不同模块实现的功能为:①患者生理数据采集传感器模块:即人体生理参数OEM模块,本模块数据输出为标准的串口数据,数据可直接和单片机STM32串口相连。②STM32处理模块:即对从不同串口上读取的患者基本数据进行合并处理并传输到无线模块上。③无线传输网络模块:选择一种合适的无线传输技术,将采集的患者生理数据通过无线传输发送,接收端接受数据并传送给客户端,即本地医疗监护网关模块。④客户端医疗监护控制模块:采用三星ARM6410开发平台,接受来自无线传输模块上传输来的患者生理参数数据,实时显示经过解析处理后的数据。⑤服务器端医疗监护模块:同样采用三星ARM6410开发平台,利用Socket技术建立与客户端医疗监护控制模块的联系。服务器端模块可解析处理客户端传送来的患者生理数据,服务器端可实时对客户端监护模块进行控制。
4 短距离无线通信方案分析(Short distance wireless
communication scheme selection)
无线网络通信技术是监护网络系统的重要部分,本系统所监护的面向对象具有移动性并且监护范围一般面向社区或家庭,监护区域比较小。而ZigBee技术是一种基于IEEE 802.15.4,它的主要优点是:网络容量大,安全性高、低复杂度、低功耗、低速率、低成本的短距离无线通信技术。并且它的通讯距离可自由扩展,从几米到几公里范围都允许,它采用自组网的通信方式,经常把它应用于传感控制、自动控制、工业控制、家居、医疗等领域。因此,根据对象的需求以及对短距离ZigBee无线通信优势的分析,本系统无线通信方案选择ZigBee作为无线传输。
5 嵌入式操作系统方案分析(The embedded
operating system scheme selection)
为实现慢病监控系统中各资源得到最有效的利用,选择合适的嵌入式操作系统进行软硬件资源及任务分配协调是非常必要的。
目前市场上流行的嵌入式操作系统较多,Android系统具有以下优点:①提供了从最底层内核到最高层应用程序的所有软件,用户还可以根据自己需求定制平台,开发限制少。②所有的应用程序软件完全平等,部分内置的组建也可根据需要被替换为符合个人需求的版本。③可移植性强,Android平台上的程序都是基于java语言开发的,并在虚拟机Dalvik上执行,所以,程序可以很好地移植在ARM X86等不同架构上。④优质的图形系统和音效。Android平台自身内置了一些常用的标准视频和音频编解码器,结合2D图形库和3D加速的OpenGL,可以得到很好画质和音质效果。⑤系统管理应用程序稳定性好,Android平台为不同程序之间兼容提供了良好的安全措施,各种应用程序的运行或关闭有条不紊地进行,系统稳定性得到很好保障。
基于以上的分析,Android系统符合监护系统的需要功能及要求,并且它可对监护网络设备进行很好的性能优化,所以系统选择Android作为客户端及服务器端医疗监护的操作系统。
6 慢病网络监护系统硬件设计方案(Slow disease
network monitoring system hardware design)
慢病监护系统硬件主要由以下部分组成:患者基础生理参数采集设备、无线传输网络、客户端医疗监护网关和服务器端医疗监护网四个部分,框架流程如图2所示。
图2 慢病监护硬件框架图
Fig.2 Slow disease monitoring hardware frame
6.1 患者 基础生理参数采集及无线传输网络
生理参数采集采用ARM Cortex-M3内核的STM32芯片并搭载三个生理医疗传感器模块。以STM32作为核心微控制器,因为它包含有丰富的外设接口,通过三路采集到的患者生理数据经STM32处理后合并为一路数据,数据通过无线传输模块发送出去。选择EWRF3065和CSR GL-6B作为无线传输设备,EWRF3065模块由时钟电路、电源电路、天线射频电路、电平转换电路等组成,GL-6B模块由电源电路、电平转换电路、天线射频电路等组成。流程框图如图3所示。
图3 患者生理参数采集及无线传输系统
Fig.3 Patients physiological parameters acquisition and
wireless transmission system
6.2 本地医疗监护网关子系统
客户端监护平台以Samsung S3C6410 ARM11微处理器作为主CPU,其优点是:ARM6410可以提供1GB SDRAM和1GB NANDFlash存储空间,同时具备高速SD卡存储设备、100MB网络、USB Host、RS232、RS485和外扩GPIO界面等接口,另外配有800×600 7.0英寸高清TFT液晶触摸屏,并提供宽电压的电源输入方式,能方便搭配不同环境下的电源使用。
客户端医疗监护网关子系统工作主要原理是:患者数据采集系统通过无线网络将患者基本生理数据传送给该子系统,客户端监护网关通过DM9000 AE设备的RJ-45网口将患者基本生理数据传输给服务器端监护子系统。本地医疗监护网关框图如图4所示。
图4 本地医疗监护系统
Fig.4 Local medical care system
6.3 远端医疗监护端子系统
服务器端监护系统以ARM 1176JZF-S为内核,处理器运行速度快,最高可在667MHz主频上运行,平台配备有丰富的内部资源,内置硬件加速器,集成了一个支持视频编解码MFC,因此它可广泛应用在移动服务和通信处理等领域。另外,处理器支持多种NAND Flash和Mobile DDR存储器,集成了CMOS摄像头、USB HOST、以太网、SD卡、液晶屏触摸等多种高端接口,这些接口为用户实现高端设计提供良好的基本条件。
服务器端监控子系统工作情况是:通过DM9000AE的RJ-45接口接收来自客户端医疗监护网关通过互联网传送过来的患者基本数据,并对这些数据进行解析处理。另外,它可以把服务端医生或专家经过判断处理后的结果及时地发到客户端网关,实现实时监控。服务器端医疗监护系统框图如图5所示。
图5 远端医疗监护系统
Fig.5 Remote medical monitoring system
7 慢病监护系统软件设计(Slow disease monitoring
system software design)
7.1 无线传输软件设计
通过以上无线通讯方案的选择,首先对它实现软件设计,由于ZigBee网络分别定义Coordinator(协调器)、Router(路由器)和End Device(终端设备)三种网络角色。各角色之间的关系如图6所示。
图6 ZigBee数据传输网络
Fig.6 ZigBee network data transmission
Coordinator负责网络建立和网络地址分配,Router负责寻找、建立、修复及传送数据包,End Device加入网络并可以传送数据。通过分析不同角色的功能,因此在软件设计过程中,分别以两种传输方式实现数据传输。
①数据透明传输。该传输方式以可变的透明数据包的形式进行传输,如果数据传输的第一组不是0xFC、0xFD或0xFE,那么从端口接收的数据就自动发送给其他所有的节点,接收到的节点把数据自动发给Coordinator;如果两个设备是通过串口连接,那么可用两个ZigBee CC2530模块通信来实现透明数据传输。
②点对点数据传输。ZigBee网络中任意节点之间都可以通过格式:“0xFD+数据长度+目标地址+数据”传送数据长度可变的数据包。
7.2 本地医疗监护软件设计
客户端监护软件设计主要完成宿主机上Android开发环境和编译环境的搭建,实现本地医疗监护软件功能。软件设计由以下两个方面组成:
(1)搭建符合要求的编译环境,安装交叉编译工具,对Android源码进行编译,把Android系统移植到客户端ARM6410上,并做功能测试。
(2)配置Eclipse、Android SDK、JDK等开发环境,客户端医疗监护软件采用Java和C同步开发设计,底层Linux读写串口数据由C程序设计完成;高层部分的患者生理数据接收、UI界面绘制及显示、客户端和服务器端Socket通信等功能则由Java程序设计完成。
7.3 远端医疗监护软件设计
为了程序的兼容性,服务器端医疗监护软件设计主机环境配置和客户端监护软件的配置采取一致的方法。即把客户端编译过的Android操作系统直接移植到服务器端医疗监护平台上。服务器端医疗监护软件中的数据接受、程序控制、UI界面绘制及显示、客户端与服务器端的Socket通信等功能采用Java语言开发。
另外,为了提高程序运行效率,客户端和服务器端监护软件设计均采用多线程编程机制。
8 结论(Conclusion)
本文从分析慢病监护系统的功能需求入手,分不同的模块设计框架来实现远程慢病网络监护系统,并从软硬件环境的需求提出符合实现系统要求的方法。通过本系统的方案设计,为以后的方案实现提供明确的研究内容。
参考文献(References)
[1] http://baike.baidu.com/view/1136308.htm.
[2] http://baike.baidu.com/view/1241145.htm.
[3] 白净,张永红.远程医疗概论[M].北京:清华大学出版社,2000.
作者简介:
关键词:物联网;人才培养目标;课程体系
作者简介:张淑梅(1968-),女,山东莱州人,南京交通职业技术学院电子信息工程系,副教授。
基金项目:本文系中国交通教育研究会2012-2014年度教育科学研究课题“大交通背景下计算机网络技术专业课程体系构建”(项目编号:交教研1202-83)、南京交通职业技术学院教改项目“大交通背景下计算机网络技术专业课程体系构建研究”(项目编号:JX1128)、南京交通职业技术学院科学研究计划项目重点项目“高职院校计算机类专业优化研究”(项目编号:JR1205)的研究成果。
中图分类号:G712 文献标识码:A 文章编号:1007-0079(2013)14-0083-02
2009年8月,总理在无锡视察时提出了“感知中国”,物联网被正式列为国家五大新兴战略性产业之一。 2009年11月12日,中科院、江苏省政府在江苏省无锡市共建中国“物联网研究发展中心”,并初步形成以无锡市为核心,南京、苏州为支撑的物联网产业聚集区。有政府的大力支持,科研单位、运营商的大力推动,受需求和应用驱动,物联网将广泛应用于各行各业,物联网的市场潜力给高职教育带来了无穷的机会,这将为高职教育发展带来新的机遇。高职院校应顺应市场需要积极开办相关专业,培养物联网产业专业人才,满足国家战略性新兴产业发展的迫切需求。
物联网是个交叉学科,涉及到通信、传感、计算机网络以及RFID、嵌入式系统等多方面技术。高职院校与物联网相关的计算机网络技术专业如何更好地适应行业和区域产业发展的需求,在传统计算机网络技术专业的基础上开设物联网应用方向,调整专业人才培养方案、重构课程体系,主动适应地方经济发展的需要,是我们需要认真思考并付诸于实践的重要课题。
一、物联网应用方向人才培养目标的确立
专业的人才培养目标准确定位是构建合理课程体系的前提。高职教育的人才培养目标与社会经济发展对人才素质的要求是否一致,是检验高职教育能否满足社会经济发展需求的重要指标。以职业能力培养为核心的培养目标是现代社会对职业教育提出的新要求。为了体现高职教育以就业为导向,以职业能力培养为核心,增强学生社会适应能力及可持续发展能力,制定一个科学合理的人才培养目标时应从以下几个方面考虑:
一是高职教育的目的,即“培养什么样的人”;二是行业背景与区域经济发展,也就是要适应行业和区域产业发展的需求,为本地区培养高级技术技能人才;三是社会需求下的能力构成,这需要对高职物联网应用技术专业的学生毕业后所从事的职业岗位进行分析;四是行业专家意见。
物联网主要由感知层、传输层和应用层组成,物联网产业主要包括围绕整个产业链的硬件、软件、系统集成和运营服务四大领域。通过对无锡物联网产业研究院、中科怡海科技有限公司、无锡万博信息技术公司、上海亿道电子有限公司等多家物联网产业链的相关企业进行人才需求调研,调研结果显示,物联网企业对高职层次人才需求主要为:物联网工程项目技术员、物联网软件程序员、物联网软件测试员、网络维护技术员、物联网系统管理员、物联网设备营销与技术支持人员等。
按照专业人才培养方案的开发要求,对江苏长三角地区物联网产业发展现状及物联网产业人才进行需求分析、企业调研、专家研讨,明确了物联网应用技术专业主要面向物联网产业链的系统集成、运营服务领域,归纳出主要面向的职业岗位:物联网工程项目技术员、物联网系统管理员、物联网应用系统管理员等3个核心职业岗位,以及每个岗位的典型工作任务,从而确定南京交通职业技术学院计算机网络技术专业(物联网应用方向)培养目标为:本专业主要面向物联网产业,针对物联网在智能交通、平安家居等领域的研究和应用,服务区域与地方经济发展,培养具有扎实的专业基础理论知识、较强的实践能力、良好的团队协作能力,具有可持续发展与创新能力,掌握物联网应用技术,具备物联网工程项目的规划与施工管理、物联网设备安装与调试、物联网应用平台设计与开发、物联网管理与维护,物联网嵌入式软件开发以及物联网设备营销与技术支持等职业能力和素质的高端技术技能型人才。
二、物联网应用方向课程体系的构建
人才培养目标需要通过课程体系来实现。培养目标发生了改变,课程体系就需要重构。为了使人才培养既达到就业岗位职业要求,又具备一定的技术消化、吸收、改良、反求、创新能力的需求,课程体系的构建必须遵循“理论与实践相互交融”的课程体系设计思想。一个是培养学生可持续发展能力的基础知识的设计,一个是培养学生实践动手能力和创新能力的专业技能及素质能力的设计,理论与实践相互融合、交叉使用,形成完整的切实可行的课程体系。实践动手能力和创新能力培养,要将实验、实训、仿真实训到最后的顶岗实习整个实践教学过程系统化设计,这就要求加大实践课程的占比,教材也要随之配套建设。
1.构建“项目主导、模块递进”的课程体系
本课程体系构建采用“项目主导、模块递进”的课程体系构建模型。所谓的“项目主导、模块递进”的课程体系,是根据产业行业企业特点,明确本专业主要就业岗位,依据就业岗位归纳典型工作任务,确定完成职业岗位的典型工作任务所需职业核心能力,按基本能力、专业能力、综合能力三个依次递进的模块构建课程体系。
依据专业调研结果,明确了专业面向的主要工作岗位,对应物联网应用技术专业职业岗位的典型工作任务主要有:物联网项目方案拟定;物联网工程施工管理及实施;物联网设备配置与调试;物联网系统的管理与维护;物联网应用系统设计与开发、管理与维护;物联网设备营销、物联网项目售后服务、技术支持等。完成职业岗位的典型工作任务,需具备以下职业核心能力:具备物联网组网方案拟定、物联网工程施工组织及实施能力;具备熟练配置和使用网络设备的能力;具有较强的物联网管理与维护、保障网络系统安全运行的能力;具备较强的物联网应用系统维护、数据库管理、物联网技术应用等能力;具备熟练使用网络管理软件、网络编程工具、网页设计软件完成物联网应用软件设计、调试和维护的能力;具备从事网络设备营销与技术支持工作的能力;具有较强的团队协作能力、协调沟通能力、创业能力、就业能力及创新精神。
在分析本专业面向的主要就业岗位、就业岗位的典型工作任务、完成就业岗位的典型工作任务所需职业核心能力的基础上,构建了以项目为主导,按“基本素质模块、职业基本能力模块、职业核心能力模块、职业拓展能力模块、职业综合能力模块”五个相对衔接、交替上升的模块课程体系,整个课程体系按照从简单到复杂、从单一到综合、从低级到高级的知识进阶规律,综合培养学生的职业能力,为学生职业生涯打下坚实的基础。本课程体系结构如图1所示。
(1)基本素质模块。这一模块用于提高和培养学生的政治思想素质和职业道德,培养学生的辩证思维能力和外语应用能力,为创新思维和创新能力提供广阔的发展空间。该模块主要开设“德育基础”、“政治思想概论”、“军事理论”、“计算机应用基础”、“实用英语”、“高等数学”、“体育”、“就业指导”、“大学生心理健康”等课程,同时还开设“艺术鉴赏”、“美术鉴赏”、“音乐欣赏”等公共艺术课程。
(2)职业基本能力模块。职业基本能力模块涵盖该专业对应职业岗位群所需要的最基本的知识、技能、技术和素养,为职业核心能力模块服务。该模块主要开设“计算机硬件组装维护”、“计算机网络技术”、“局域网组建与管理”、“数据库技术及应用”、“物联网安全技术”、“射频识别技术(RFID)与应用”、“无线传感网络技术”、“初级程序设计(C#)”、“网页设计与制作”、“工程制图”等课程。
(3)职业核心能力模块。本模块突出“一专”,针对主要就业岗位方向。所有课程均安排一周到二周单项技能实训,该模块课程授课教师应具备相应职业资格证书和职业能力,即“双师型”教师,同时引入企业一线能工巧匠担任实践课程教学。这一模块主要开设“物联网组网技术”、“Linux操作系统”、“物联网综合布线”、“传感器与自动检测技术”、“嵌入式系统设计”、“企业网站开发”等课程。
(4)职业拓展能力模块。职业拓展能力模块对应“多能”,体现学生今后就业方向拓展,职业迁移能力。这一模块主要开设“C++程序设计”、“图像处理”、“GIF与GPS技术应用”等专业选修课作为职业能力拓展课程。根据各个学校的特点及优势,可以在此模块中调整不需要的培养方向或培养内容。
(5)职业综合能力模块。本模块主要体现实践性教学环节,保证学生获得较系统的职业技能、技术训练,为学生的就业和创业打下良好的基础。这一模块包括课程整周单项技能实训、物联网技术应用实训、专业综合实训、考证实训、毕业设计、顶岗实习等,做到校内学习与实际工作融通,顶岗实习与校外学习结合,校内考核与校外考核结合,实现课堂学习与实训实习地点“一体化”教学,体现“学中做、做中学”的实践教学理念。
基于各个学院的特色,将课程体系构建与特定人才培养及就业需求结合起来,有利于学生在社会中生存和发展,为学生迈向成功的职业生涯打下坚实基础。该课程体系有利于培养学生的职业道德、职业技能和就业创业能力,着力激发学生的创新能力和对未来职业的憧憬,增强学生的可持续发展能力。
2.以职业能力培养为核心,改革教学方法
任何课程内容都要通过一定的教学活动才能转化为学生的知识、技能、技术和素质,以职业能力为核心的培养目标要求以学生为主体组织教学活动。在教学方法上改变传统的教师唱主角的教学方法,而是采用案例法、任务驱动法、问题引导法、项目模仿法、小组学习法等方法。这种方法有利于培养学生独立学习的能力和提高专业技能,同时工作能力、创新能力、团结协作能力等均得到了全面的训练和提高。以职业能力培养为核心,改变了传统教学中教师与学生的地位,在教学过程中教师是指导者与咨询者;学生主动性和积极性得到了充分的发挥,由被动接受者变为主动获取者。
3.围绕课程体系建设开发并编写项目化教材
教材是课程体系建设一个重要的内容载体,通过开发和使用好的教材,一方面可以使学生的学习有章可循,另一方面可以更好地贯彻根据岗位需求培养人才的目标。物联网应用技术专业是一个新兴的专业,目前市场上还没有与课程体系相匹配的优秀教材。因此,建设在课程体系的同时,应积极推行项目化教材的开发与建设,在教材内容上,既突出理论体系创新,又体现实践能力的培养,使课程建设与教材建设统筹规划,协调发展。
三、结束语
物联网作为新兴的技术,受到各行业的广泛关注,未来必将得到极大的应用和扩展,然而高职院校要开办一个新专业,必须要进行谨慎的调研和论证,需要进行完善的课程体系开发和设计,配备相应的师资和教学设备。南京交通职业技术学院通过谨慎理性思考后选择了改造传统专业,积极开展课程改革、修订人才培养方案和课程标准,在专业课程设置时嵌入物联网技术相关的课程,使专业建设跟上技能进步的脚步,提升了专业与产业发展的吻合度。
参考文献:
[1]张淑梅.高职院校软件技术专业创业型人才培养课程体系的构建[J].职教论坛,2011,(27).
[2]朱群梅.高职院校开设物联网专业的探讨[J].科技致富向导,2012,(12).
[3]关勇.物联网行业发展分析[D].北京:北京邮电大学,2010.
关键词: 无线Mesh网络; 同步; 时隙利用; 数据包连发
中图分类号: TN711?34; TP393.04 文献标识码: A 文章编号: 1004?373X(2014)15?0049?06
Research on data packet continuous transmission technology
in synchronization wireless Mesh networks
LI Qian1, LIU Jing?wei1, L? Ren?jian1, 2, HAN Zhong?hua1
(1. North China Institute of Computing Technology, Beijing 100083, China; 2. Beijing University of Posts and Telecommunication, Beijing 100876, China)
Abstract: Only one data packet is sent in a time?slot in synchronization wireless Mesh network based on the existing multi?directional antenna array, which will decrease the slot utilization rate when data packets are sent in high modulation rate at transmitting node. To solve this problem, the technology of data packet continuous ransmission in this network environment is studied. The detailed design scheme of the number of maximum data packet continuous ransmission, calculation opportunity, sequence number, acknowledgment mechanism, parameters and node processing flow is offered in this paper. The technology was fully tested in actual hardware environment. The comparison result shows, when data packets are sent in high modulation rate at transmitting node, the technology of the data packet continuous ransmission can improve time?slot utilization, and the performance of the network can be improved obviously.
Keywords: wireless Mesh network; synchronization; time?slot utilization; data packet continuous ransmission
0 引 言
无线Mesh网络是一种多跳网状的宽带无线网络,具有覆盖范围广、带宽高、鲁棒性强等特点,在机动指挥与应急通信方面有着广阔的应用前景。
无线Mesh网络多采用异步组网技术[1?12]。该网络在节点个数较少并且节点之间距离较近时的性能比较理想,但当网络规模扩大时,所有节点因竞争信道导致了网络吞吐量急剧下降,无法实现高速的端到端无线数据传输,业务的服务质量也就难以保证。
目前出现了一种基于多方向天线阵列的同步无线Mesh网络(以下简称为同步无线Mesh网络)[13]。该网络除通过定向天线实现了节点之间的远距离数据传输外,还采用了同步组网技术,通过精准的时隙划分,网络内所有节点的通信都被安排在合适的时隙中,避免了节点因竞争信道而导致网络吞吐量的急剧下降,通过高效的时隙分配策略则进一步提高了网络的吞吐量。另外,网络中节点之间具有一定的父子关系,网络管理也变得更加简单。
现有同步无线Mesh网络采用了一个数据时隙(以下简称为基本时隙或时隙)内单一数据包的收发机制,即每个节点在一个时隙内只发送或接收一个数据包,当底层调制速率较低时,该数据包的长度较短,其收发时间会占满整个时隙,即时隙的利用率较高;而当底层调制速率较高时,该数据包的长度受到底层无线接口最大传输单元长度(MTU)的限制,其收发时间不能占满整个时隙,因而时隙内会有很大的浪费。
为在底层高调制速率下提高时隙利用率,本文对同步无线Mesh网络下的数据包连发技术进行了研究,提出了设计方案并对性能进行了对比分析。
1 同步无线Mesh网络数据包连发技术
数据包连发技术涉及到时间帧结构、包类型、单时隙内的数据包连发技术与多时隙内的数据包连发技术。
1.1 时间帧结构
时隙浪费与时隙长度有关。当时隙较长时,高调制速率下会产生时隙内的时间浪费;当时隙长度设计得过小时,由于协议控制包的开销而导致时隙内数据收发利用率下降,另外,也给底层同步平台设计带来难度,系统资源消耗也因此增加。因此,时隙长度应主要参考系统在实际使用时最大可能出现的底层调制速率值,同时保证底层同步平台能够实现,而系统资源消耗也能够接受。
时间帧结构如图1所示。
图1 时间帧结构
时间帧结构中具有以下两种类型的时隙:
(1) Hello时隙。Hello时隙的时间长度为1个基本时隙长度,用于网络内节点向未入网节点提供接入服务。
(2) 数据时隙。数据时隙内的每个基本时隙用于实际数据传输。
时间帧结构是同步无线Mesh网络内各节点协调工作的基础。
1.2 包类型
节点在每个时隙内的通信都会涉及各种包的交互,数据通信则与以下包相关:
1.2.1 轮询包
该包用于父节点调度子节点,该包还可以进一步细分为如下两类:
(1) 父子轮询包
当父节点向子节点发送数据时,父节点会在时隙开始时首先向子节点发送一个父子轮询包,该包发完后,父节点再接着向子节点发送数据包。
该包中含有父节点本次即将连发数据包的个数与父节点规定的时隙合并的个数。
(2) 子父轮询包
当父节点接收子节点的数据时,父节点会在时隙开始时首先向子节点发送一个子父轮询包,该包发完后,父节点将等待接收子节点发送的数据包。
该包中含有父节点规定的时隙合并的个数。
1.2.2 确认包
当数据包为需确认数据时,接收完数据的节点将立即向对端发送一个确认包,否则接收完数据的节点将结束该时隙内的收发动作。
1.2.3 数据包
数据包格式如图2所示。
图2 数据包格式
第一层包头的内容与节点之间点对点基本通信相关,如基本数据包类型、目的节点地址、源节点地址、序列号、后续数据包个数等。
第二层包头,由同步无线Mesh网络协议中不同的功能模块所定义,如模块类型、该模块内的数据包类型、数据净荷长度、QoS标记。
数据净荷为以太网帧。
校验在数据发送时由无线网卡添加。
1.3 单时隙内的数据包连发技术
1.3.1 功能说明
为提高时隙利用率,发送节点应在每个时隙内尽可能多地发送数据包。
每个时隙内的数据包连发如图3所示。
图3 单时隙内数据包连发
1.3.2 最多连发的数据包个数与计算时机
(1) 单时隙内数据包最多连发个数
发送节点通过计算后应在一个时隙内尽可能多地发送数据包,但需要规定最多发包个数,规定最多连发数据包的个数不超过16个,一个时隙内连发数据包的个数一般为2或3。
(2) 轮询包与确认包的发送时间
轮询包与确认包的发送时间(单位:μs)为固定值,可按式(1)计算:
[t=数据包长×8+B+NwNDBPS×4+20] (1)
各值的含义如下:
包长为无线接口数据长度,单位为字节;[B]为PLCP头部中服务类型的比特数;[Nw]为尾比特数;[NDBPS]为一个OFDM符号含有的比特数,6 Mb/s时的值为24,9 Mb/s时为36,12 Mb/s时为48,18 Mb/s时为72,24 Mb/s时为96,36 Mb/s时为144,48 Mb/s时为192,54 Mb/s时为216。
(3) 每个数据包的发送时间
每个数据包的发送时间在数据包被加入到数据发送队列时便已计算好,仍按公式(1)计算。
(4) 单时隙内数据包最多连发个数的计算时机
发送节点在当前时隙开始时计算该时隙内最多能够发送多少个数据包。
1.3.3 序列号与确认机制
为所有数据包安排序列号并加入确认机制。接收节点根据发送节点所指示的数据包连发个数进行接收、检验序列号连续性并对实际收到的最后一个数据包进行确认。
接收节点刚刚收到的数据包中的序列号如果与收到的上一个数据包的序列号不连续,则丢弃刚刚收到的数据包。
接收节点在当前时隙的后两个基本时隙单位开始时刻设定确认包等待定时器,该定时器设定在该处可以保证接收节点能够在25 km距离条件下将确认包发送给发送节点。接收节点如果在当前时隙内收到了发送节点的所有应发数据包后,则立即向发送节点回复一个确认包,并取消确认包超时定时器;否则,接收节点在确认包等待定时器超时后再向发送节点回复一个确认包。
1.3.4 涉及到的参量
数据包连发过程中涉及到以下参量:
数据包最大连发个数。一个时隙内所发送的数据包个数与多个连续时隙所发送的数据包个数都不应超过该值,数据包连发个数过多,失败重传的次数也会增加,网络性能反而下降。
最大时隙合并个数。该值表示某个发送节点与某个接收节点之间共享的连续时隙数,在连续时隙里可以持续收发数据包。
发送节点应发数据包个数。发送节点在当前时隙内计算出能够发送的数据包个数。
发送节点实发数据包个数。发送节点在当前时隙内实际发送的数据包个数,在正常情况下,发送节点实发数据包个数与发送节点应发数据包个数相等。
接收节点应收数据包个数。接收节点在当前时隙内应该接收到的数据包个数。
接收节点实收数据包个数。接收节点在当前时隙内实际接收到的数据包个数。
发送序列号。发送节点发送数据时在每个数据包中添加的序列号,该序列号按模递增。
接收序列号。接收节点接收数据时从每个数据包中获得的序列号,在正常情况下,接收序列号应等于发送序列号,即接收序列号也是按模递增。
1.3.5 父节点流程
父节点在当前时隙内的处理流程如图4所示。
(1) 父节点在当前时隙中断到来时开始确定是发送数据还是接收数据,即确定父子节点之间数据传递的上下行关系。
(2) 当父节点向子节点发送数据时,父节点根据1.3.2节中的各种时间值计算出当前时隙内能够发送的数据包个数并将该值填到父子轮询包中。另外,时隙合并个数设为1,表示仅在当前一个时隙内进行数据包连发。
(3) 父节点向子节点发送父子轮询包,在父子轮询包发送成功后,父节点继续向子节点连续发送所有数据包。
(4) 父节点会在所有数据包发送完毕后等待接收子节点的确认包,等待接收确认定时器的超时时间设在当前时隙结束时。
(5) 父节点如果收到了子节点发送的确认包后,根据确认包中的确认序列号判断出已经被子节点成功接收的数据包,将这些数据包从发送队列中删除并释放内存。
(6) 父节点在等待确认定时器超时后仍没有收到子节点发送的确认包时,根据已发送数据包的发送次数决定在后续时隙中是否重发,如果这些数据包已经达到最大发送次数,则将这些数据包从发送队列中删除并释放内存,否则在后续时隙中继续重发。
(7) 当父节点准备接收子节点发送的数据包时,父节点将时隙合并个数设为1,并将该值填到子父轮询包中。
(8) 父节点向子节点发送子父轮询包,在子父轮询包发送成功后,父节点等待从子节点接收数据包。
(9) 父节点接收的数据包如果序列号不正确,父节点则将这些数据包从接收队列中删除并释放内存,否则,父节点将在发送确认定时器超时前接收完子节点发送的所有数据包。
(10) 当发送确认定时器超时后,父节点针对已收到的最后一个数据包向子节点发送确认包。
1.3.6 子节点流程
子节点在当前时隙内的处理流程如图5所示。
(1) 子节点在当前时隙中断到来时等待接收父节点发来的轮询包。
(2) 子节点如果收到的是子父轮询包,子节点则记录时隙合并个数,并计算出当前时隙内能够发送的数据包个数。
(3) 子节点向父节点连续发送所有数据包。
(4) 子节点会在所有数据包发送完毕后等待接收父节点的确认包,等待接收确认定时器的超时时间设在当前时隙结束时。
(5) 子节点如果收到了父节点发送的确认包后,根据确认包中的确认序列号判断出已经被父节点成功接收的数据包,将这些数据包从发送队列中删除并释放内存。
(6) 子节点在等待确认定时器超时后仍没有收到父节点发送的确认包时,根据已发送数据包的发送次数决定在后续时隙中是否重发,如果这些数据包已经达到最大发送次数,则将这些数据包从发送队列中删除并释放内存,否则在后续时隙中继续重发。
(7) 子节点如果收到的是父子轮询包,子节点准备接收父节点发送的所有数据包。
(8) 子节点接收的数据包如果序列号不正确,子节点则将这些数据包从接收队列中删除并释放内存,否则,子节点将在发送确认定时器超时前接收完成父节点发送的所有数据包。
(9) 当发送确认定时器超时后,子节点针对已收到的最后一个数据包向父节点发送确认包。
(10) 如果子节点没有收到父节点的轮询包,则子节点在当前时隙内什么也不做。
1.4 多时隙内的数据包连发技术
多时隙内的数据包连发技术,又称时隙合并技术,该技术是对单时隙内数据包连发技术基础上做出的功能提升,发送节点通过在多个连续时隙内连发数据包,减少了中间时隙内的轮询包与确认包的个数,从而进一步提高时隙利用率。多时隙内的数据包连发示意如图6所示。
图6 多时隙内的数据包连发示意
多时隙内的数据包连发技术中的最多连发的数据包个数与计算时机、序列号与确认机制、涉及到的常量与变量、父子节点的处理流程与单时隙内的数据包连发技术均相同,这里不再赘述。它们的不同之处在于:
(1) 父子节点需要计算多个连续时隙内最多能够发送多少个数据包。
(2) 父子节点将多个连续时隙中除第一个时隙以外的后续所有时隙中的状态机取消,仅执行第一个时隙中的状态机。
2 理论性能对比
现分别对单跳网络在使用单时隙内的数据包连发技术前后的理论性能进行对比:
2.1 约束条件
(1) 每个时间帧内有980个数据时隙,即时间帧使用效率为98%。
(2) 在实验室内或近距离条件下进行对比,忽略传播时延,忽略实际平台所带来的各种时延。
(3) 轮询包与确认包均始终以6 Mb/s的调制速率发送,按公式(1)可算出它们的发送时间均为48 μs。
(4) 发送节点分别以6~54 Mb/s调制速率发送数据包。
(5) 不使用组包功能,但使用分段功能。
(6) 同步无线Mesh网络协议数据包净荷为以太网帧,而以太网帧最大长度为1 518 B,因此发送节点能够发送的最大数据包长度为1 518+40+4=1 562 B。
2.2 理论性能对比
理论性能对比情况分别见表1~表7。
表1 发送节点以9 Mb/s发送数据包
[\&单时隙内单包\&单时隙内多包\&数据包个数\&1\&1\&数据包长度 /B\&991\&991\&时隙使用效率 /%\&90.4\&90.4\&带宽 /(Mb/s)\&7.8\&7.8\&]
表2 发送节点以12 Mb/s发送数据包
[\&单时隙内单包\&单时隙内多包\&数据包个数\&1\&1\&数据包长度 /B\&1 323\&1 323\&时隙使用效率 /%\&90.4\&90.4\&带宽 /(Mb/s)\&10.4\&10.4\&]
表3 发送节点以18 Mb/s发送数据包
[\&单时隙内单包\&单时隙内多包\&数据包个数\&1\&2\&数据包长度 /B\&1 562\&1 562,384\&时隙使用效率 /%\&71.2\&90.4\&带宽 /(Mb/s)\&12.2\&15.3\&]
表4 发送节点以24 Mb/s发送数据包
[\&单时隙内单包\&单时隙内多包\&数据包个数\&1\&2\&数据包长度 /B\&1 562\&1 562,1 029\&时隙使用效率 /%\&54\&90.4\&带宽 /(Mb/s)\&12.2\&20.3\&]
表5 发送节点以36 Mb/s发送数据包
[\&单时隙内单包\&单时隙内多包\&数据包个数\&1\&3\&数据包长度 /B\&1 562\&1 562,1 562,1 167\&时隙使用效率 /%\&36\&90.4\&带宽 /(Mb/s)\&12.2\&33.6\&]
2.3 结 论
(1) 在6~12 Mb/s调制速率下,一个时隙内只能发送一个数据包,因此单时隙内单包发送与单时隙内多包发送的性能相同。
(2) 在达到18 Mb/s调制速率或以上时,采用单时隙内多包发送的时隙使用效率仍为90.4%,其性能明显高于单时隙内单包发送的性能。
表6 发送节点以48 Mb/s发送数据包
[\&单时隙内单包\&单时隙内多包\&数据包个数\&1\&4\&数据包长度 /B\&1 562\&1 562,1 562,1 562,261\&时隙使用效率 /%\&28\&90.4\&带宽 /(Mb/s)\&12.2\&38.8\&]
表7 发送节点以54 Mb/s发送数据包
[\&单时隙内单包\&单时隙内多包\&数据包个数\&1\&4\&数据包长度 /B\&1 562\&1 562,1 562,1 562,942\&时隙使用效率 /%\&24.8\&90.4\&带宽 /(Mb/s)\&12.2\&44.1\&]
3 结 语
对基于多方向天线阵列的同步无线Mesh网络下的数据包连发技术进行了研究,给出了最多可连发的数据包个数与计算时机、序列号与确认机制、涉及到的参量、父子节点处理流程的详细设计方案。理论性能对比结果表明,在发送节点采用高调制速率发送数据包时,在该网络下采用数据包连发技术能够大幅度提高时隙利用率,网络性能明显提升。
参考文献
[1] VASUDEVAN S, KUROSE J, TOWSLEY D. On neighbor discovery in wireless networks with directional antennas [C]// INFOCOM 2005 24th Annual Joint Conference of the IEEE Computer and Communications Societies. [S.l.]: IEEE, 2005, 4: 2502?2512.
[2] CHARBONNEAU Terrance Wayne. Scan synchronous directional antennas for time division multiple access in multi?hop Ad Hoc wireless networks [D]. USA: Purdue University, 2005.
[3] 李佳,周杰.无线Mesh网络集中式信道分配算法设计[J].无线电工程,2009,39(12):3235?3237.
[4] 韩冬,鄢楚平,王志泉,等.基于NDIS的无线Mesh网络协议的研究和实现[J].计算机工程与设计,2011,32(3):784?787.
[5] 苏家勇,许磊,周国.无线Mesh网络中的信道分配问题研究[J].无线电通信技术,2009,33(5):4?6.
[6] 张克非,杨寿保,胡云,等.基于多QoS参数约束的无线Mesh网络路由机制研究[J].计算机应用研究,2009,26(3):994?996.
[7] 秦莹莹.无线Mesh网络路由协议研究[J].软件导刊,2012,11(2):99?101.
[8] 刘贺,张陆勇,陈明刚,等.无线Mesh网络集中式信道分配算法设计[J].无线电工程,2011,41(5):4?6.
[9] 谢桂芳,段盛,罗玉玲.无线Mesh网络信道分配研究[J].计算机工程与应用,2011,47(18):85?87.
[10] 邱振谋,姚国祥,官全龙,等.多信道无线Mesh网络的多播信道分配算法[J].计算机工程,2011,37(6):107?109.
[11] 何萍实,徐子平.无线Mesh网络中使用双收发器的多信道MAC协议研究[J].计算机应用研究,2010,27(1):327?329.