首页 > 文章中心 > 简单的电子电路设计

简单的电子电路设计

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇简单的电子电路设计范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

简单的电子电路设计

简单的电子电路设计范文第1篇

关键词:数字电子电路,EDA技术,应用探究

在数字电子电路这门课程学习的过程中,理论知识的学习固然重要,但是相应的实验技能也是必备的。在学好理论知识的基础上,可以从实验方面出发,更透彻的学习这门课程。在实验的过程中,传统的实验就是通过导线把各种实际的实验器材连接在一起,主要在实验的过程中,通过实验的结果,更好的理解实验原理,从而有助于理论知识的学习。随着科学技术的不断发展,有了EDA这项技术。EDA技术就以计算机为载体,承载着各种模拟的软件,然后通过在相应软件的操作界面上进行软件的连接以及操作,这样大大方便了学生的实验,而且还能从一定程度上节省实验器材的经费,总之,这样的做法有很多的好处。本文将重点讨论关于数字电子电路设计之中EDA技术的应用探究。

1关于数字电子电路设计之中EDA技术的应用探究

1.1数字电子电路的概述

在我国职业教育体系中,与电子技术相关的专业中都设置到相关的专业基础课程,比如说模拟电子技术、数字电子技术基础等课程,其中数学电子基础这门课程还是比较重要的。在数字电子技术这门课程中,主要讲述一些逻辑关系,以及以逻辑关系为基础的各种门电路,除此之外就是各种组合而成的逻辑电路,其中包括TTL逻辑门电路,CMOS逻辑门电路等等,这些逻辑电路都是与生活息息相关的。在平时的生活中也会用到很多,比如说家里的开关,现在很多家中都会安装两个开关,当进门的时候在门口开灯,睡觉时在卧室关灯,这个就是是使用了最简单的逻辑电路。逻辑电路的使用方便了人们的生活。

1.2数字电子电路与EDA技术

数字电子电路技术这门课程在学习的过程中,除了要学好基础的理论知识,更重要的是在学好理论知识的基础上,要提高动手实验的能力,因为现在社会需要的是实践性的人才,正如在教育大会中指出,要平衡教育人才的培养,并且要重视实践性人才的培养。要培养实践性的人才,首先要做的就是对他们基础的动手能力进行培养,要如何培养才是要思考的问题。那就是从实验做起,实验技术随着科学的不断发展也在不断进步,如今已经有了比较成熟的EDA实验技术,这项技术就是让学生在虚拟的软件中模仿实物进行一定的实验训练。在数字电子技术中使用EDA这一项技术大大方便了教学,而且同时也能有效的提高学生对理论知识的理解。

1.3数字电子技术未来发展前景

目前我国的电子技术方面还是有一定的欠缺的,而且我国的市场这么大,所以要努力发展属于我国自己的电子信息技术。而且电子信息技术是一个非常核心的力量,只有掌握了这样的核心力量,才能让我国的电子技术发展的更好。通过电子信息技术,可以成为击垮一个国家的秘密武器,所以努力发展自己国家的核心技术力量,并且还要不断的更新,这样才能在未来的世界中变得强大。所以,电子信息技术的发展趋势良好,而且发展空间也足够大。

2数字电子电路设计之中EDA技术应用的作用

2.1有助于更好的学习理论知识

在数字电子电路这门课程的学习过程中,都是一些枯燥无味的理论知识,这样容易造成学生在学习过程中的疲劳,而且会造成课堂效率大大降低的不良影响。数字电子技术是一门纯粹的理论知识,而且都是一些我们不熟悉的电路方面的内容,所以在单单的讲解理论知识的时候,学生们不容易想象到他的具体的实物,这样就对学习造成了很大的困扰。但是通过借助EDA技术在数字电子信息技术的学习过程中,会对学生的学习有很大的帮助。在学习了抽象的理论知识之后,通过在EDA技术上进行模拟,这样就比较容易理解理论知识。这样的做法对学习理论知识都很大的帮助,不仅能提高学生的学习效率,而且还能培养实践性的人才。

2.2通过学习EDA技术,不断创新

在数字电子信息技术的学习过程中,通过借助EDA技术,可以培养学生的动手能力。在实验的时候,学生一般都是通过对课本上已有的知识进行模拟,学习。但是实验就是创造的过程,有很多伟大的发明就是在实验的过程中发现的。在学生进行实验的过程中,不断对实验结果进行调试的过程中,有可能就会发现新的成果。所以可以通过借助EDA技术在数字电子信息技术中,让学生在不断实验的过程中,碰撞出科学的火花,不断的创新,壮大我国的电子科学技术。所以说要大量的运用EDA技术在数字电子电路的学习中,这样可能某个时刻就会对我国的科学作出贡献。

2.3更好的适应于未来的社会

现阶段我国的科学技术不断发展,日新月异,尽管如此我国的科学技术与世界还有一段差距,所以说还是要不断发展科学技术,尤其是电子科学技术,因为现在的社会已经是非常现代化的电子信息社会了,未来的社会更是电子信息的社会,任何事情都离不开电子技术。所以在目前这个阶段要大力发展电子信息技术并且掌握基本的电子信息技术的使用方法,这样才能在将来的社会中立足。所以在目前的学习中不断使用实用性的EDA软件的过程也是在不断适应现代社会的过程。

3结束语

本文中,通过讲述数字电子电路,数字电子电路与EDA技术以及数字电子技术在未来的发展前景这三点来阐述了关于数字电子电路设计之中EDA技术的应用探究。数字电路是一门贴近生活的比较基础的课程理论,它的成果运用于人们的生活中大大方便了人们的生活。相信通过使用EDA技术在数字电子电路设计之中,一定会使数字电子技术发展的更好,同时也会促进EDA技术不断成熟。

参考文献

[1]关于数字电子电路设计之中EDA技术的应用探究;陈惠娟;《电子制作》;2015年23期

[2]CGP函数建模在天线设计中的应用;于章意曾三友;中国地质大学;2013年

简单的电子电路设计范文第2篇

电子电路在长期运行以后难免出现各种各样的故障问题,需要及时的进行检修,才能使电子电路恢复正常,重新投入使用。但是电子电路的故障种类较多,而且导致故障的成因非常复杂,在检修的过程中如果操作不当,将难以找出故障类型以及成因,因此本文对电子电路常见的故障类型以及原因进行了分析,并分析了可以使用的检测方法以及检测过程中需要注意的事项。

【关键词】电子电路 故障成因 检测方法

1 前言

电子电路由于受到各方面因素的影响,在运行的过程中不可能不发生故障,而且故障的种类比较多,生活中较为常见的类型是是超负荷运作而导致的故障,除此之外还存在其他的电子电路故障,成因较为复杂,检修的过程中需要先找出故障问题,然后再分析发生故障的具体原因,才能采取对应的措施解决问题,使电子电路恢复正常。

2 电子电路常见的故障类型以及原因

从线路设计故障方面来看,电子电路最为常见的故障问题主要有三大类,

(1)连线错误;

(2)电路荷载错误;

(3)元件设置错误。

而发生这些错误的根本原因是电路设计不够谨慎,或者是因为相关数据计算错误。从设计成型的电路故障方面来看,极有可能出现最初级电路问题,更具体来说是实际电路与原先设计的图纸不一致,相关的电路元件链接错误,或者使用的型号错误。从定型类电子电路故障方面来看,极有可能出现焊锡脱落,或者焊接点以及线路短路等问题。与此同时在使用的过程中,没有按照规范进行操作,通常都会使电子电路出现电磁场异常,或者设备电路受到不同程度的损害等问题。

3 故障检测的方法以及需要注意的问题

3.1 检测方法

对电子电路故障问题进行检测的过程中,常用的方法主要有7种,

3.1.1 可以使用直接观察法

这是相对比较简单的的一种检测方法,主要是利用肉眼等感官感觉观察,并结合自身的知识与经验对相关元件、电子提示等是否出现异常进行判断,并从设备是否存在噪音、电路运行中是否存在烧焦气味等对电子电路故障问题进行识别。

3.1.2 可以采用参数测试法

这种故障检测方法主要是通过使用仪器来发现问题。严格来说它应分为两种,一种是断点测试法,一种是通电测试法,前者主要是指在电路断电的条件下,利用相关的仪器对电路等电阻值进行测量,进而分析电路是否存在连线短路或者焊点短路等故障问题,一旦检测后的数值与正常值存在较大差异,就可以确定故障点。后者主要是指在带电的条件下,通过利用相关的仪器对电路中电压,或者支路电流进行测量,然后根据测量结果对故障问题进行分析。

3.1.3 可以采用信号寻迹法

这种故障检测方法主要是指将频率的信号注入到电路输入端,然后利用相关的仪器观察波形与幅值的变化。当然,不一定非要从输入级到输出级进行检查,也可以反着进行检查。需要注意的是如果检查发现其中一个元器件出故障,那么通常整个回路中极有可能都出现了故障。

3.1.4 可以采用对比法

这种检测方法主要是指通过使用相关的奇异对电子设备运行过程中的电压、电流以及波长等数据进行测量,然后将之与正常值进行比较,找出数据差异较大之处,然后再次进行故障审核,对比数据类型后分析发生故障的最根本原因。

3.1.5 可以采用替换法

该方法主要是指通过使用正常且符合的元件替换电路中怀疑有故障问题的全部元件,然后在具体找出真正存在异常的元件。替换法通常应用于微小型电路故障方面的检测,例如可以用来对电容部件是否存在漏电现象进行检查。

3.1.6 可以采用旁路法

旁路法适宜较为简单的电路应用,主要是指通过将测试部件短路与相应型号仪器等进行连接,然后观察电力电路的异常情况有没有恢复,如果不再出现电磁波异常,那么就可以确定此类元件存在故障。

3.1.7 可以使用分割测试法

这种检测方法主要是指按照一定的方法将整个电路分成几个相互独立的电路,然后分别进行测试,分析故障出现在那个部分,进而再寻找具体的故障位置。另外,有反馈的电路通常都与各级的情况存在一定的牵连,此时需要先利用分割环形电路消除反馈环,然后逐一的进行检查,判断故障点以及具体的原因。

3.2 注意事项

在对电子电路故障进行检测的过程中需要注意4个问题:

3.2.1 检测人员需严格按照正确的方法使用测量仪器的接地端

对于测量过程中必须用到地端接机壳的仪器,有关检测人员应确保其与放大器的接地端相互连接,否则将会由于干扰而使测量结果出现误差。

3.2.2 检测过程中所使用的测量方法应确保方便可行

通常在对电路电流进行测量的时候,条件允许时最好是测量电压,不要测量电流,因为测电压比较方便,不需要改动被测电路。

3.2.3 故障检测的时候应将所有的观察结果详细记录下来

只有将这些观察数据与理论结果进行比较,才能更快的找出故障问题。

3.2.4 如果在调试的过程中发生古战,那么一定要先查找故障原因,不能一发生这种情况就立即拆掉线路,重新进行安装

因为重装的线路并不能保证不会出现问题,一旦发生原理上的错误,重新安装根本就不能彻底的消除故障。因此有关人员需先查找故障以及原因,对之进行一个系统的分析,再采取下一步的计划。

4 结语

为了能够更快的找出电子电路的故障类型以及成因,需要采用有效的方法进行检测,现实中对电子电路的故障进行检测的时候,可以采用多种方法,但是经常使用的主要有对比法、替换法等几种,这些方法较为方便,而且可操作性强。同时检测故障的时候,还需要注意选择合适的方法、详细记录观察结果等一些问题,这样才能准确的找出电子电路的故障类型,以及发生故障的根本原因,最终采用最有效的方法修复,使电路恢复正常。

参考文献

[1]张勇.电子电路的常见故障及其检测技术探讨[J].电子制作,2016(07):40-41.

[2]梁博.基于电力电子电路智能故障诊断技术研究[J].山东工业技术,2016(14):137-137.

[3]王丽利,赵建兵,朱昌军等.电子电路的调试方法及其故障处理策略[J].电子制作,2015(09):91-91.

[4]李文.电子电路常见故障和检查排除方法[J].科学与财富,2014(08):464-465.

简单的电子电路设计范文第3篇

关键词:电子实训 Multisim 10 仿真 PCB设计

中图分类号:TN02 文献标识码:A 文章编号:1007-9416(2013)05-0164-02

电子实训是电子类专业学生必修的一门实践课程,通过该课程的学习,使学生在电子元器件选用、电子电路分析设计、计算机仿真测试、电路板焊接与装配,电子产品调试以及编写技术文件等方面受到一次综合训练。我校在《模拟电子》、《数字电子》课程结束后都安排了电子专项实训,教师提出设计要求,让学生自己从设计到装配、调试都经历一遍,所以电子专项实训既巩固了学生的理论知识,又提高了他们的操作技能。

1 Multisim 10和Protel DXP软件的比较

在电子实训过程中使用较广的EDA软件是Multisim和Protel ,这两个软件都具有电路设计和仿真功能,但是Multisim软件的长处是电子仿真,而Protel软件的长处是PCB设计。美国NI公司推出的Multisim 10软件具有强大的仿真能力,既可对模拟电路或数字电路进行仿真,也可进行数模混合仿真,尤其新增了射频电路的仿真功能。Altium公司的Protel DXP软件具有强大的电路设计自动化功能,其印刷电路板设计模块的设计规则和检查工具比Protel 99 SE更加完善,为设计高质量的印刷电路板提供了可靠的保障。本文以设计一个模拟声响电路为例,论述Multisim 10和Protel DXP在电子实训课程中的综合运用。

2 电路设计和仿真

2.1 电路设计

电子实训中要求设计一个模拟声响的电路,这个电路主要是通过两片555定时器结合简单的器件来实现。按照设计要求,学生通过查阅资料可以设计出较多方案,模拟不同的声响,这样学生在电路设计中发挥的空间比较大,不局限于一个电路,电路初步设计好之后,通过Multisim 10来仿真。图1所示为其中一个电路,555定时器U1、U2分别构成一个多谐振荡器,元器件参数确定后,根据多谐振荡器的频率计算公式,U1的输出波形频率是680Hz,U2的输出波形频率是9.345KHz。由于U1的输出端接U2的复位端,故只有U1输出为高电平时,U2振荡器才振荡,U1输出为低电平时,U2停止振荡,通过U1的输出来控制电路最终的输出,使扬声器发出9.345KHz “呜呜”的间歇声响。

2.2 Multisim 10仿真分析

因为电子仿真是Multisim软件的长处,所以图1的电路在设计时,要求学生用Multisim 10软件来绘制,这样就把设计和仿真贯穿起来。电路绘制结束后,选择虚拟仪表双通道示波器来仿真U1、U2的输出波形。示波器的控制面板可以根据需要来调节,微调时间基准(time base),设定通道A(channel A)和通道B(channel B)的量程如图2所示,设置完毕后通过示波器观察到波形如图2所示。由于在设计时已经理论计算出波形频率,根据仿真波形图测算出的频率与理论值基本相等,设计得到验证。

3 网络表生成和PCB板设计

3.1 网络表生成和修改

根据实训要求,电路原理图设计好之后学生需进行电路板的布局布线设计,这就需要使用Protel DXP软件,而采用Multisim 10绘制的原理图的数据要导入PCB设计系统中需要一座桥梁——网络表。由于Multisim中选取的元件部分是虚拟元件,仿真所用仪器也是虚拟仪器,这就会出现和Protel不兼容的情况,所以在生成网络表之前要先去掉虚拟仪器,部分虚拟元件也要用连接器代替。在本例电路中,虚拟示波器XSC1需去除,5个虚拟电容也要用连接器代替。电路修改之后执行菜单“Transfer/Export to PCB Layout”,在弹出的对话框中选择保存类型“Protel(*.net)”,输入文件名之后就生成了电路对应的网络表,如网络表无法生成,一般问题都在虚拟器件上,根据提示修改即可。

网络表生成后,运行Protel DXP软件,新建工程,调用网络表并把它添加入新建的工程中。考虑网络表中原有元器件封装与设计要求不符,需要修改封装,元器件封装的选取根据设计的实际情况来定。

3.2 PCB板设计

作为桥梁的网络表修改确定后,在工程中添加一个PCB文件并且设定电路板尺寸,执行菜单“Design/Import Changes From *.PriPCB”导入网络表,所有元件就被更新到PCB板上,检查元件正确后,根据设计和工艺要求布局布线,从而完成PCB板的设计工作。图1中电路的PCB版图如图3所示。

4 结语

把Multisim仿真和Protel 制版的结合作为电子实训的辅助设计工具,既可以帮助学生高效进行方案选择和参数确定,又可以练习印刷电路板的制作。在电子实训中引入这种设计方法,大大丰富和优化了实训教学内容,使学生掌握更多新知识,得到更多锻炼。

参考文献

[1]王连英.基于Multisim 10的电子仿真实验与设计[M].北京:北京邮电大学出版社,2009.8.

简单的电子电路设计范文第4篇

【关键词】Multisim 仿真 电子技术 教学

【中图分类号】G71 【文献标识码】A 【文章编号】2095-3089(2013)05-0017-01

Multisim是美国国家仪器有限公司推出的以Windows为基础的仿真工具,是一个专门用于电子电路仿真与设计的工具软件,人们可以用它自由地搭建电路原理图,并用虚拟仪器技术对电路进行仿真。

职业学校的《电子技术基础》教学一般由理论教学和实验教学两个大的教学环节构成。我们在教学过程中,结合理论教学的进程,利用Multisim仿真软件在计算机上进行电子电路实验仿真,作为教学的补充,既帮助学生更好地理解电子技术的理论知识,又能确保电子实验电路参数的准确,实践证明,这种教学、设计手段的运用,有助于增强学生的感性认识,培养学生的创新能力和综合动手能力。

1.多媒体演示仿真实验,提高课堂教学效率

以前的电子技术课程教学,多数教师主要进行理论课教学,注重原理分析、公式推导,学生听起来感觉枯燥无味,难以理解。为了提高教学效率,有时需要配合演示实验。但实物的演示实验,需要花费较多的准备时间,将多种仪器搬到教室,使用不便,而且电子元件或示波器屏幕比较小,坐在后排的同学难以看清演示的内容。而且演示操作过程,也会占用过多时间,影响教学进度。

现在将仿真软件引进课堂,在讲解理论的同时,利用多媒体同步演示,显示实验结果,使一些抽象的概念形象化、直观化、简单化,提高教学的效率。下面举两个应用的实例。

在讲授三极管共发射极放大电路时,三极管具有放大和反相的作用,有的学生理解起来比较困难。我们利用仿真软件来仿真电路的实际效果,并用虚拟示波器观测波形。学生有了感性认识后,理解起来就轻松了不少。

在讲授振荡电路的起振时,通过电路的正反馈作用,输出信号就会逐渐由小变大,当振荡幅度增大到一定的程度后,由于三极管的限幅作用,最后使得输出的波形稳定。其中部分原理学生比较难理解,用实验室现有的仪器根本就不能显示出起振的波形来,现在利用Multisim仿真显示出振荡波形,振荡器起振的过程非常直观,这种教学模式生动活泼,学生自始至终保持着极高的学习兴趣,加深了理解和记忆,有效地提高了课堂教学效率。

将仿真技术应用于课堂教学后,可以把许多抽象的内容变得生动形象,化难为易,使教学中的难点、重点变得一目了然,便于学生观察与思考,从而更好地理解和掌握所学知识。

2.改革实验教学方法,提高实验教学质量

《电子技术基础》是一门实践性比较强的课程,理论学习必须与实践操作结合起来。以前,实践环节主要是上电子实验课,实验内容多为验证性实验,而创新设计、综合性实验较少。

Multisim仿真软件不但提供了各种丰富的分立元件和集成电路等元器件, 还提供了各种丰富的调试测量工具:如各种电压表、电流表、示波器、分析仪等。是一个全开放性的仿真实验平台,用Multisim进行仿真模拟实验,实验过程非常接近实际电路的效果。各种元器件选择范围广,参数修改方便,不会像实际操作那样多次地把元件焊上焊下而损坏器件和印刷电路板,而且电路调试也变得方便快捷。并且《电子技术基础》课程中的大部分实验电路都能应用Multisim进行仿真。

我们在授课的过程中,抽几节课讲解Multisim仿真软件的使用方法。在电子技术实验课之前,学生必须先将电路进行仿真,得到实验结果以后,再进行实际的安装、焊接、调试。学生做实验的兴趣提高了,自信心得到了增强,实验教学质量大大提高,特别是在简单的设计性实验中,可以随时修改元件参数,并能马上获得仿真结果,直到满足电路设计要求。学生可提出各种设计方案,从而大大提高了分析问题、解决问题的能力,激发了他们的创新意识,也大大提高了学生电子电路的设计水平。

3.虚拟仿真实验应注意的问题

虽然采用虚拟仿真辅助教学,改善了教学手段,丰富了教学内容,也能更形象生动地将难以理解的知识用仿真的形式表现出来,能激发出学生设计电路的创新意识。但如果完全用虚拟实验取代实物实验,就只会在电脑上进行操作,学生对真实元器件的封装、检测等认知程度会大大降低,对使用实际仪器的操作能力会大大削弱,缺少对实际电子产品设计的布局能力、布线能力、安装调试能力。为了避免其弊端,使之与传统的教学相得益彰,融于一体,我们采用虚实结合的方式,一方面强调仿真实验对教学的辅助作用,另一方面认识到实际动手能力的重要性,两者必须相辅相成,有机结合。既要合理安排仿真实验课时,又要在实验课堂上进行实际电路的安装调试工作;精心选择仿真实验课题,为学生提供科学、合理的仿真实验题目,让学生通过实验,掌握知识,提高兴趣。还让学生做一些简单的设计性实验,自己设计、制作安装调试电子电路,使虚拟仿真实验变成看得见摸得着的电子电路。

总之,将Multisim仿真软件应用于教学中,不仅可以把许多抽象和难以理解的内容变得生动有趣,化难为易,而且能模拟一些用语言难以清楚表述的,以及现实实验不易进行的内容。它不仅提高了课堂教学效率,而且对于培养学生的创新能力、分析和解决问题的能力都起到了积极的作用。当然,也要注意仿真教学的辅助教学作用和学生实际的操作能力,两者必须相互结合,取长补短,而不能用虚拟仿真完全代替实际操作训练。

参考文献:

简单的电子电路设计范文第5篇

NIMultisim10是美国国家仪器公司(NI,NationalInstruments)推出的Multisim最新版本,是以Windows为平台的仿真工具,可以设计、测试、仿真和演示各种电子电路,包括电工学、模拟电路、数字、电路、射频电路及微控制器和接口电路等。可以对被仿真的电路中元器件设置各种故障,如开路、短路和不同程度的漏电等,从而观察不同故障情况下的电路工作状况。在进行仿真时,软件还能存储测试点的所有数据,列出被仿真电路的所有元器件清单,以及存储测试仪器的工作状态、显示波形和具体数据等。NIMultisim10具有详细的电路分析功能,可以完成电路的瞬态分析和稳态分析、时域和频域分析、器件的线性和非线性分析、电路的噪声分析和失真分析、离散傅里叶分析、电路零极点分析、交直流灵敏度分析等电路分析方法,以帮助设计人员分析电路的性能。与传统的电子电路设计与实验方法相比,具有如下特点:设计与实验可以同步进行,可以边设计边实验,修改调试方便。设计和实验用的元器件及测试仪器仪表齐全,可以完成各种类型的电路设计与实验。可方便地对电路参数进行测试和分析。因此,特别适合课堂教学。

2使用Multisim10进行仿真的步骤

(1)打开Multismi10,首先进行简单的设置。选择Options|GlobalPreferences菜单命令打开参数设置喜好选择(GlobalPreferences)窗口,可以进行各种选择设置。创建电路。1)选择电路元件,选择元件时单击元件工具栏中的工具按钮,弹出元件库窗口,选择需要的元件,在电路窗口中可看见鼠标拖动着该元件,将其拖动到要放置的位置,再次单击,即放到当前位置上。双击该元件,弹出一个虚拟元件设置对话框,可以进行参数设置。2)元件的连接,单击要连接的元件的引脚一端,当出现一个小黑点时,拖动光标至另一元件的引脚处并单击,系统就会用导线自动将两个引脚连接起来。电路中可以使用多个接地符号,但至少要使用一个接地符号,因为没有接地符号的电路不能通过仿真。3)放置要使用的仪表并进行相应的设置。与使用实际仪表非常相似,放置仪表后要进行测试线的连接。按以上方法连接、设置完电路后,将电路保存。4)调试、仿真。单击仿真开关或单击Simulate菜单的RUN,调节仪表设置,观察到合适的波形。(2)利用分析功能。Multismi10提供了18种分析方法,可以通过选择Smiulate菜单中的Analysis命令项来实现,点击设计工具栏也可以弹出该电路分析菜单。(3)后处理和传输。后处理功能可以对分析的数据结果进行各种运算处理,可以将已经设计好的电路传输到布线软件进行PCB设计,也可以导出各种电路数据[2]。

3Multisim仿真在《电工技术》教学中的应用

在电工技术中,动态电路的过渡过程是十分短暂的单次变化过程[1],通常在教学中都是以理论讲解为主,涉及到的瞬态变化波形,一般直接呈现给学生,如果利用仿真电路来展示瞬态过程的变化以及参数对于过渡过程时间长短的影响,将有助于激发学生的兴趣并加深理解。下面以一阶RC电路为例说明Multisim仿真技术在课堂教学中的应用[3]。在Multisim环境中创建一阶RC电路。零输入响应:一阶电路仅有一个动态元件,如果在换路瞬间动态元件已储存有能量,那么即使电路中无外加激励电源,电路中的动态元件将通过电路放电,在电路中产生响应,即零输入响应。对于图1所示电路,当开关J1闭合时,电容通过R1充电,电路达稳定状态,电容储存有能量,电容电压值恒定为8V,如图2前半段波形所示。当开关J1打开时,电容通过R2放电,在电路中产生响应,即零输入响应,仿真波形如图2所示,后半段波形所示,电压从8V按指数规律变为0[4]。零状态响应:当动态电路初始储能为零时,仅由外加激励产生的响应就是零状态响应。对于图1所示的电路,若电容的初始储能为零,即开关断开。当开关J1闭合时电容通过R1充电,响应由外加激励产生,即零状态响应。全响应:当一个非零初始状态的电路受到激励时,电路的响应称为全响应。对于线性电路,全响应是零输入响应和零状态响应之和。电容电压全响应电路如图4所示,反复按下空格键使开关反复切换,通过示波器XSC2就可观察到电容电压全响应波形。在教学中电路直接使用Multisim软件创建,先引入零输入响应和零状态响应的概念,然后进行仿真让学生观察波形的变化,加深对概念的理解,再讲解全响应的概念,并对电路进行仿真,让学生通过观察仿真波形,加以分析、总结,得到全响应是零输入响应和零状态响应之和的结论。为了进一步讲解时间常数对响应速度的影响,可分别改变参数R和C改变时间常数,观察波形,得出结论。