首页 > 文章中心 > 电路设计问题

电路设计问题

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇电路设计问题范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

电路设计问题

电路设计问题范文第1篇

【关键词】印刷线路板;注意事项;设计

一、引言

印制电路板{PCB线路板},又称印刷电路板,它提供电子元器件焊接的基础。它的发展已有100多年的历史了;它的设计主要是版图设计;采用电路板的主要优点是大大减少布线和装配的差错,提高了自动化水平和生产劳动率。因此我们在设计印刷电路板要注意些问题。

二、设计印刷电路板应该注意的事项

一块印刷电路板(PCB)上包括了整个系统所要用到的元器件,其中芯片有两种,一种为直插式,另一种为贴片式。因此在印刷板电路设计时应该统筹规划。具体表现在以下方面:

1.自动布线有时候会存在一些不满意的地方,为了设计一个美观的印刷电路板需要手工调整布局。

2.为了减小分布电容,布线时应该遵循最短路径原则。

3.为了提高印刷线路板的抗干扰能力,增加系统的可靠性,我们需要在电源与接地的地方进行处理。可采取的方法如下:在印制电路板时可通过接入电容或是采取地线与电源线和一些需要过电流较大的线加宽的办法,尽量缩短走线且长度差不多来减小地线的阻抗方法。在高频电路中,良好的接地对印刷电路板是非常重要。本印制板设计中采用多点接地法,这样可以增大接地面积,减小地线电感。

4.空余管脚的处理。从逻辑观点来看,当输入管脚闲置处于悬空状态时,相当于“1”的输入状态的逻辑关系。由于开路的输入端具有输入阻抗高,易受到外部的电磁干扰。因此为了提高系统抗干扰性能,需要对元器件的空余输入管脚进行处理。如今有两种处理方法:一种是将闲置输入管脚与使用输入管脚并联,此方法不足之处是增加了前级电路的输出负担;另一种方法是将闲置输入管脚通过串联大电阻拉到电源端(VCC)。本系统采用后者,其优点是简单易行。因此在电路设计中对元器件空余的输入管脚都拉到了高电平。

5.抗干扰有效措施:

a)为了减小对地的分布电容,在布线的时候,要尽量缩短数据线、地址线和控制线并且要使且其长短和走线方式尽量一致,以避免造成非同步干扰。

b)本设计的电路板采用双面布线,为了防止总线间的电磁串扰,两面的线尽量保持垂直。为了不把噪声耦合至芯片内部,尽量避免在高速器件DDS下方走线。

c)在线路板的边缘要留有一定的距离,因为信号线或电源线上电流会产生较大辐射,所以关键信号线尽量不要分布于线路板的边缘。

d)尽可能地减少过孔的数量,因为电路板的一个过孔相当于给电路加了一个10pF的电容,针对高频电路,这个将会成为引入干扰原因之一,而且过多的过孔也会造成电路板的机械强度降低。

三、杂散噪声处理

由前面分析可知,DDS本身存在众多杂散,且随着输出带宽的扩展,杂散会越来越明显。为了解决杂散噪声,采取以下几个措施来降低系统的杂散。

1.器件的选取

通过对杂散的分析可以得出,影响相位截断误差中所形成的杂散与以下三个参数有关,分别是频率控制字K,频率控制字位数M、相位截断位长B。经过分析可以看出,当数模变换器的分辨率Δf确定后,w每增加一位,DDS输出杂散可以降低6dB;当w确定后Δf每增加一位,输出杂散将降低8.5dB;

但是并不是位数越大,就越能改善输出杂散,因为输出杂散性能对DAC的位数也是具有饱和特性,一旦达到饱和,其输出杂散的变化就不明显。所以,本文选用AD9953芯片。

2.参考时钟的选取

时钟信号耦合到了DAC的采样周期中,将会导致输出信号被此时钟调制,进而使杂散分量更大了。为了克服参考时钟所带来的杂散噪声,本文选择20MHz晶振为参考时钟源。

3.确定合理的系统时钟和输出频率

由前面对DDS的原理分析,有如下公式:

fo/fc=K/2M (1)

式(1)中,fc是系统时钟频率,M是频率控制字的位数,K是频率控制字。

因为杂散的放大系数正比于倍频系数的平方N2。所以可通过提高DDS的输出频率fo以达到减小N值的目的,则N2会越小,进而可减小杂散的放大系数,该方法能有效抑制杂散放大。fo的提高也受到很大的限制,因为在提高输出频率fo的同时,输出杂散分量也会跟随放大;另外,fo具体参数的选取还将受到DDS系统时钟fc选择的影响,对于杂散信号大且接近主频的点,在实际工作中是很难去除的。因此应该通过实验合理地确定fo和fc的值。通过对杂散的分析,在DDS系统中设定出不同K和N的值,经过多次的测试DDS的输出信号、相位噪声以及杂散水平,可得出本系统的系统时钟频率fc为200MHz,输出频率fo为65.5MHz-84.2MHz。

4.电路输出接口的设计

系统产生的信号最后需要通过数字模拟转化模块(DAC)转化成模拟信号输出。AD9953的DAC输出信号为电流型,最大值可达20mA,根据以往的经验,当满量程通过AD9953的管脚DAC RSET进行设置RSET=39.9/IO时,系统能够取得较好的SFDR性能,此时RSET=3.9KΩ。

5.用滤波器来抑制杂散

由于输出信号中杂散比较大,所以要在DDS的输出信号的后面加一个低通滤波器来抑制输出信号的杂散。因为滤波器的通带带宽主要由系统时钟频率fc和输出频率fo两部分决定,因此低通滤波器的设计要综合考虑到滤波器的复杂程度fo和fc的选择等诸多因素。本系统采用的低通滤波器,它的输出驱动频率为86兆赫兹,通过并联一个200欧姆负载,使其等效负载为100欧姆,这样可以滤除DDS输出频率的镜像频率、杂散以及高次谐波。

四、小结

印制电路板提供电子元器件焊接的基础,它的设计主要是版图设计;采用电路板的主要优点是大大减少布线和装配的差错,提高了自动化水平和生产劳动率。并且对电路设计中的注意事项进行了详细分析;最后提出了解决一些降低系统杂散的措施,达到理想的效果。

参考文献

[1]张万奎.模拟电子技术[M].长沙:湖南大学出版社,2005.

电路设计问题范文第2篇

关键词:波纹;开关电源;晶体管

引言

在用电控制的仪器设备中,都需要稳压电源,由于价格、功率等的要求,因此设计人员更倾向于使用开关电源,而很少使用线性电源。开关电源的优势在于转换效率高,最高可以达到将近97%,另外开关电源重量轻、体积小。开关电源最大的缺点是输出的纹波和噪声电压较大,而这一性能影响到仪器设备的运行,特别是对于需要处理小信号的仪器中,电源产生的噪声可能会干扰输入的信号,使得仪器无法正确运行。如何处理好电源的噪声,有很多方法[1][2],本文通过一个典型电源电路分析开关电源产生纹波和噪声的原因及减小纹波和噪声的措施,并详细探讨了电源各部分电路的原理功能和实现的方法。

1干扰产生分析

电信号干扰分为:噪声(nois)和纹波(ripple)两种,其表现形式为图1形式。噪声的定义是指在直流电压或电流中,叠加了振幅和频率上完全无规律的交流分量。该分量会干扰电路的分析、逻辑关系,影响其设备正常工作。纹波是指叠加在直流电压或电流上的交流信号,会降低电源的效率,严重的波纹更有可能会损坏用电设备,另外波纹还会干扰数字电路的逻辑关系,影响设备工作状态。通常的开关电源输出的直流电压中叠加了由噪声和波纹引起的交流信号。波纹主要是由于开关电源的开关动作造成的,而波动的频率跟开关的频率是一致的,大小取决于输入、输出电容的参数。作为开关的元件都有寄生的电感与电容,当元件在电流流动变化工作时,会产生电压与电流的浪涌,这些浪涌信号都会在电源产生干扰信号。浪涌电流指电源接通瞬间,流入电源设备的峰值电流。该峰值电流远远大于稳态输入电流,这种瞬时过电流称为浪涌电流,是一种瞬变干扰。噪声电压主要跟电源的拓扑结构、电路中的寄生参数、工作的电磁环境以及印制电路板的布线有关。当信号较小的时候,会产生干扰的信号。图2(a)是实验信号波形,(b)是小信号上叠加了干扰的波形。干扰可以表现为尖峰、阶跃、正弦波或随机噪声,干扰的产生来自多方面,电路设计不合理、器件使用不当、工作环境干扰、电源噪声等,其中电源产生的噪声是常见主要的原因,而这些干扰信号会造成后续电路一系列的处理误差,所以在要求较高的场合,这样的噪声是必须要解决的。

2解决措施

开关电源电路一般由整流平滑电路、集成开关电路、浪涌电压吸收电路、电压检测电路、次级侧整流平滑电路等构成。其工作原理:开关电路供应稳定电压和平滑的电流,是本电路的主要部分,开关晶体管的集电极电流决定电源的输出电流。纹波的解决措施[3][4]主要有:调整电感和电容参数、增加电容电阻缓冲网络。

2.1调整电感和电容参数

电流波动与电感参数、以及输出电容大小有关,通常电感值越小,波动越大,输出电容值越小,波纹越大。因此可以通过增大电感值和输出电容值来降低波纹。在这里以BUCK型开关电源为例,当开关电源工作时,提供的电压不变,但是电流会变化,为了稳定电源的输出电流,在如图4(a)的指示位置并联一个电容C+。通过增加电感值的方法来减小波纹的做法是受限的。因为电感越大,体积就越大。电感的取值可以这样计算:假定输入电压为Vin,输出电压为Vo,工作频率为f,输出电流为I,电感中电流的波动值为驻I的话,有:在电路调试过程中发现,随着C+不断增加,减小波纹的效果会越来越差,同时增加f,会增加开关损失。因此可以通过再加一级LC滤波器的方法来改善,如图4(b)所示。LC滤波器抑制波纹的效果较好,只要根据需要除去的纹波频率选择合适的电感电容即可。

2.2增加电容电阻缓冲网络

在二极管高速导通截止时,要考虑寄生参数。在二极管反向恢复期间,等效电感和等效电容成为一个RC振荡器,产生高频振荡。为了抑制这种高频振荡,需在二极管两端并联电容C或RC缓冲网络。电阻与电容取值要经过反复试验才能确定,一般选择电阻为10Ω-100Ω,电容取4.7pF-2.2nF。如果选用不当,反而会造成更严重的振荡。

3电路设计及实测

根据以上分析,设计出了一种开关稳压电源如图5所示,采用可控硅触发方式。通过整流放大后的波纹去触发可控硅的导通,当整流电压值为零时,可控硅自动关断。只要用输出电压的变化来控制触发信号的前沿,即可实现稳压。稳压电路主要由可控硅、4个晶体管和1个变压器等组成,如图5所示。我们在multisim环境下对该电路进行仿真,效果非常好。再用实际电路搭试,并加上30欧姆纯电阻阻抗后,选取了7个测试点,测试波形见图6所示。图中变压器T、二极管D1~D4和电容器C1-4组成整流滤波电路,测试点1电压纹波波形见图6中1的图像,显然是在全波整流后的纹波出现;电阻R2、R3和隔直电容C5组成取样电路,测试点2电压纹波波形见图6中2的图像;控制可控硅的纹波信号测试点3、4电压纹波波形见图6中的3、4的图像;隔直后的测试点5电压纹波波形见图6中的5的图像;线圈T2控制信号的初级波形见图6中7的图像;线圈T2次级控制可控硅信号见图6中6的图像。当电压没有纹波时,线圈T2不发挥作用,但当电压有波动时(纹波),则自动控制可控硅工作,抑制电压的波动。在电路中的电感对抑制电压的波动也起到了良好的作用,其电感值可以根据电压的大小和对纹波的要求进行适当的选择。该电路在最后的输出功率可以达到110W,当负载发生变化10-104欧姆时,电压变化的范围大约是1毫伏。

4结束语

本文对开关电源噪声与纹波的产生原因和抑制方法进行了分析和讨论,并设计出了一种晶体管开关稳压电源电路,观察仿真实验,可以得出该设计能够抑制一定的电源噪声与波纹。在实际中,需要依据产品的参数,如体积、成本等问题综合考虑,选择合适的设计方法。

参考文献:

电路设计问题范文第3篇

关键词 CMOS电路;噪声问题;抗噪声优化设计

中图分类号 TN432 文献标识码 A 文章编号 1673-9671-(2012)071-0183-01

1 CMOS电路及其噪声

硅半导体的CMOS电路技术因为其容易大规模集成的特点,及其自身的性价比优势和日渐成熟的技术和工艺,得到了广泛的应用,并且在今后相当长的一段时间内在规模集成电路中将会占据主导地位。随着个人数字系统、通讯终端的不断发展,CMOS不断向着高密度、高速率的方向发展。但与此同时,现代CMO系统内部的器件尺寸不断缩小,集成密度扩大,各个金属线之间的间隔缩短,因噪声干扰或电路跳变过程中产生的毛刺都有可能使数字电路出现逻辑故障。因此要尽可能减少噪声,提高系统稳定性和准确性。CMOS的噪声影响到电路系统的稳定性,近几年来对抗噪声的研究设计也层出不穷。笔者将在下文中对现代CMOS电路的抗噪声优化设计做出详细的阐述。

2 现代CMOS电路的抗噪声优化设计

在本次设计研究中,笔者以动态电路噪声问题、同步开关噪声问题以及衬底噪声问题为主要研究对象,针对这几种CMOS中常出现的噪声问题展开分析。

2.1 深亚微米CMOS抗噪声动态电路设计

静态电路本身具有相对较好的抗噪声特性,但是其具有低速、高耗能的缺点,因此在电路的关键部分,还需要动态电路来提高线路的整体性能,尤其是提高速率和降低能耗。伴随着深亚微米工艺水平的发展,器件的尺寸更进一步减小,密度增大,这对动态电路的抗噪声性提出了更大的挑战。

动态电路中的噪声源主要包括了电源噪声、节点噪声、串绕噪声等。改善动态电路的抗噪声性能其中一个方法便是提高逻辑门的阀值电压。但是提高阀值电压就会降低电路的速度,提高功耗,削弱了动态电路的优势,因此在优化方案的设计中减少噪声是目标,但是也不能让电路的其他性能遭到过分损害。针对动态电路,笔者认为可以利用镜像NMOS网络来构建具有高能量效率的抗噪声电路。设计图如图1所示。

由图可见,镜像抗噪声动态线路需要两个相同的NMOS求值网络,附加NMOS管M3,其工作原理大致为:预充电阶段时,时钟信号φ将M1打开,将输出电压Vout充电达到最高水平,Vx的电压达到VDD-Vm。另外由于晶体管体效应,顶端的NMOS网络的开关阀值电压相对应增加,从而达到了改善动态电路抗噪声性能

的目的。

2.2 同步开关噪声优化设计

由于深亚微米电路规模的不断增大,电路系统的中门电路翻转频率逐渐提高,再加上电源电压的降低,低电平电压的开关噪声突显粗来,影响了数字电路的稳定性。同步开关噪声主要由带有大负载电容的I/O缓冲器开关和内部电路的开关这两种开关引起地“跳动”。集成电路的高速高密度化发展使得与I/O输出缓冲器相联的电源和地上出现大量的噪声。其次从内部电路开关噪声来看,要提高同步开关的抗噪声性能,首先需要减小电感,主要办法是通过特殊的地线PAD,将其与衬底直接相离并且连接到地平面上;其次是减小恒定电流,通过恒流电压转换器利用镜像电流源提供恒定的电流。

噪声控制的结构方案主要有三种,一是采用局部倒相器数据总线结构,一般情况下,当所有总线同时开关时,理想情况下是一半是0一半是1,上拉下拉开关电流由旁路电容供给,从而使得较少的AC电流通过电源和地线上的电感,最终达到减小电压跳动的目的。二是采用时钟偏移化方案,其规则大致与动态电路相同,避免所有时钟在同一时刻内开关,减小电压跳动。

2.3 衬底噪声加固设计

伴随着硅器件技术的飞速发展,电路的整体构造和设计变得愈加复杂,在SOC中也已经实现了混合技术,并且将模拟数字集成在了统一衬底上。但随着数字时钟频率的不断上升,复杂性进一步提高,电路系统中工艺器件和单元面积的缩小,集成电路设计中的衬底噪声问题的解决成为了设计中的难点和重点。I/O缓冲器开关以及内部罗继电器的开关也是引起衬底噪声的主要噪声源,另外电离电流也是引起衬底噪声的原因之一。衬底噪声的优化方法主要有四种:一是保护环,保护环是指IC设计中防止衬底噪声常用的方法,其工作原理是指在敏感器件周围形成法拉第隔离,使得敏感器件受到保护,减少衬底噪声对其造成的干扰;二是N阱沟,主要是指可用于噪声电路和敏感电路之间,阻止衬底电流的衬底表面流动;三是较小电源跳动;四是平面布局的方法,在空间电路布局时充分考虑减小衬底噪声的耦合效应。

综上所述,随着电路规模的逐渐扩大,现代CMOS电路的抗噪声优化设计成为了当前电路设计的重点和关键。本文主要针对动态电路的抗噪声性能以及同步开关噪声优化设计和衬底噪声加固设计做了详细阐述,相信随着电路技术的飞速发展,CMOS的抗噪声优化设计会日渐完善。

参考文献

[1]陈曦,庄奕琪,罗宏伟,胡净,韩孝勇.深亚微米CMOS IC抗噪声ESD保护电路的设计[J].微电子学,2003,05.

电路设计问题范文第4篇

关键词 输电线路;设计问题;分析

中图分类号 TM 文献标识码 A 文章编号 1673-9671-(2012)012-0098-01

1 安全原则,维护系统运行

1.1 意识方面

思想观念上对110 kV~220 kV输电线路设计中必须引起重视,这样才能确保线路设计安全的前提条件。而且设计人员安全意识不足,所设计出来的方案肯定会存在安全隐患。电力施工单位在安排设计师时要经过相关的职能考核,在思想、专业、技能等方面挑选经验丰富的设计师参加设计,为后面的安全施工提供保证。

1.2 路径方面

由于各种输电设施的结构存在差异,在输电线路路径设计上应该从实际情况出发。设计人员应先具体勘察分析输电布置情况,再制定切实可行的运行方案以指导设计。线路勘测是路径设计不可缺少的工作,在监测阶段可以找准线路沿线施工的状况,从多个角度把握输电线路的

设计。

1.3 杆塔方面

杆塔是输电线路设计的核心基础,杆塔自身的稳定性直接决定了输电线路能否长期运行,影响了线路输电功能的发挥。设计过程中应该严格把握杆塔的设置点,控制好每个杆塔之间的距离。1)可以防止电力聚集造成输电线路损坏。2)能避免施工阶段出现各种安伞问题而危害人员安全。

1.4 线路方面

110 kV~220 kV线路是一个极为复杂的结构组成,没计时若没有把握好其中的结构形式则难以准确布置线路。设计人员要充分考虑到输电线路的使用性能需要,结合杆塔周围的自然环境来布置线路组织。此外,在线路材料的选择上也要经过相应的质量检测,以达到正常使用状态下的需要。

1.5 工具方面

电力系统的作业需要运用到小同的电力工具,在使用工具时若选择不当会引起不同的意外事故。一般情况下,技术人员在安装输电线路时需选择绝缘工具,防止线路电压带来的不利影响,这些对于维护电力施工作业的安全性都是很重要的。

2 在线监测,发现异常问题

2.1 气象监测

由于输电线路都是暴露于自然之中,正常使用状态下会受到不同环境因素的影响,使得线路的运行状态受到影响,不利于电力系统的长期运行。气象监测系统的运用能对外界环境的变化进行监控,防止受到风偏、雷击、污秽等多方面的影响,对于在线传输数据也能起到很好的控制作用。

2.2 视频监测

这是最近几年电力系统施工采用的先进技术,能够满足110 kV~220 kV输电线正常监控的需要。在市场经济不断发展的同时,我们需要重视对电力行业线路设计的调整,避免在线路使用时受到其他因素的干扰。设计人员应积极编制有效的监控、监测手段,以合理调整输电线路的设计模式与结构。

2.3 覆冰监测

覆冰是输电线路在冬季常见的问题,对整个线路安全运行有着较大的影响。设计输电线路的在线监测中,应该对覆冰区域加以关注,对线路上的覆冰情况进行24 h监测。设计师可创建一个实用的数字模型,包括:导线自重、风压系数、绝缘子倾斜角等,可及时预告线路的覆冰

情况。

2.4 杆塔监测

因受到建筑施工的影响,杆塔在建造过程中常会受到多方面因素的限制而造成倾斜问题。对杆塔创建监测系统,主要是针对塔身的垂直度监控,这样在杆塔发生异常状况后可及时调整。设计时对杆塔倾斜仪相关设备进行有效控制,把握好程序设计传输时间的控制,当异常状况发生后可及时整理。

2.5 防盗监测

近年来,很多不法分子开始盗取输电线路以谋求经济利益,这不利于我国电力行业的发展。防盗监测主要借助于对应的报警系统,以此来做好输电线路的安全防范。可为电力线路设计一个探测器,如温度感应等,在盗贼接近线路时自动发出报警信号,以提醒工作人员尽快处理。

3 硬件结构,注重各个环节

3.1 软件结构

软件是电力系统的另外一个组成部分,软件注重系统内部结构的控制,其对于系统的运行同样有着较大的影响。软件结构的设计应该根据硬件装置进行,如操作系统、控制系统等,这些都应该根据现有的硬件结构装置设计才能达到理想的功能。

3.2 传感结构

在输电线路中安装传感器,这样能够加快数据信息的收集处理。传感器能够及时收集感触各方面信息,做好不同的数据信息传输工作。在设计传感器位置时要结合线路的运行状况进行,将传感器安装到具体的位置后再实施调控模拟,保证线路传感能及时收集到各类数据信号,这对于工作人员的线路控制能提供真实信息。

3.3 电源结构

自动化电力系统必须要充足的电源才能实现运行,对电源部分严格维护是很有必要的。电力系统负责人应根据线路的实际需要,安排设计人员实施电源装置的检查,保证各项装置连接的有效性,防止电源接触不良等。经过这些工作之后开展设计,才能保证电源装置的合理分配,确保后期用电力系统各装置的顺利运行。

3.4 采集结构

电力系统中的采集器是极为关键的装置,影响着电力系统的数据信息收集状况。设计这一装置时需要做好多方面的电力系统试验,对各装置结构的状态进行仔细检查,如采集器指示灯状态等。对于采集器的通讯口的通讯线接头和各传感器的接地接头等也要加强设计,使电力发生故障之后能及时处理好各类问题。

3.5 防雷结构

由于承受着外界自然环境的影响,电力系统在运行过程中会面临雷电问题,特别是110 kV~220 kV输电线路。这就要求设计人员加强防雷接地的设置,在设计自动化运行模式时充分考虑到计算机设备的全面保护,控制好雷雨天气电路的电压、电流大小,防止强电流、电压带来的线路损坏问题,创造良好的输电线路运行环境。

4 防雷保护,多方开展设计

4.1 屏蔽保护

现代化电力模式的运行需要借助于计算机装置性能的发挥,在设计维护方案时需要做好不同方面的检测处理。对于一些外来的干扰信息可以重点屏蔽处理,以此来达到对电力系统设备的保护作用。如:对信号线、电源线结合屏蔽电缆或穿金属管屏蔽,且保证线路的有效链接。

4.2 设备保护

防雷技术发挥作用要依赖于各个设备的运用,尤其是先进的计算机装置结构。电力系统工作人员需定期对各设备进行检查,一般周期在半个月左右。对于一些常见的装置问题要及时处理,若有需要则更换装置,如避雷器、计算机设备等,通过这些更换能增强防雷效果。

4.3 接地保护

接地保护是防雷技术的常见方式,通过接地可以把电力系统上的强电流、电压引入地下以达到防雷效果。维护自动化电力系统时需要借助于不同的施工技术,将相应的防雷器安装在适当的位置,各传感器设备与防雷地网之间要保证良好的搭配,对防雷结构实施必要的划分处理。

4.4 线路保护

线路是电网正常运行的保证,在设计过程中要考虑到线网自身承受的载荷大小。对线路实施保护最终是为了避免雷电波从信号线、电源线传输到自动电力系统室内,由此会给电力系统设备带来巨大的损坏。设计人员应该合理选择线路结构,布置好有效的线路安排。

4.5 装置保护

对于防雷结构设计中运用到的各种装置,设计人员要加强保护处理,如避雷器、避雷装置等,采取综合性的装置保护方案,这样才能达到理想的输电线路保护需要。正常使用情况下,还需要定期实施装置结构保护,对防雷体系进行及时优化改进。

5 结束语

综上所述,110 kV~220 kV输电线路在电力系统中是很重要的结构组成,设计人员必须全面考虑多方面因素控制好线路结构的安排。设计者要从线路的安全性能、在线监测、硬件结构、防雷装置等方面深入分析。此外,设计阶段还需要注重先进技术的引进,通过技术改造的方式来保证设计效果。

电路设计问题范文第5篇

关键词:高压输电线路设计 路径优化选择 导地线选型 基础设计 新型节能金具 全寿命周期管理

中图分类号:TM7 53 文献标识码:A 文章编号:1672-3791(2012)02(a)-0140-01

高压输电线路是电网的骨架,随着国民经济快速增长,各地电网建设迅猛发展,电力建设实现了跨越式发展,供电可靠性进一步提高,电网输送能力大大增强。但在电网建设中,要充分考虑各个方面的问题,优化设计、合理施工,最大限度降低工程成本,实现社会效益与经济效益的最大化。

1 路径优化选择

输电线路路径选择是整个线路设计工作中的关键,方案的合理性对线路的经济、技术指标和施工、运行条件起着重要作用。在这个过程中,首先要了解当地的气象、水文、地质条件。根据当地地形特点,合理选择路径。在此基础上,对线路沿线地上、地下、在建、拟建的工程设施,尤其是采矿区的资料,进行充分的收集和调研。并应用卫片选线技术,进行多方案路径比选。应用全寿命周期成本(LCC)管理方法,比选出最优路径。

路径应避开不良地质、水文及气象地段,提高工程抵御自然灾害和突发事故的能力和水平;避让了危及线路安全可靠运行的设施,减少了线路建设对地方规划及其它设施的负面影响;尤其是最大程度地避让了采矿区,提高线路的安全运行条件。在各方面条件允许的情况下,本次工程线路尽可能与已有及拟建电力线并行,减少交叉跨越,降低建设成本。做好输电线路对环境影响的各项评价工作,对涉及外部条件的环境影响评价、压覆矿产评估、地质灾害评估、文物调查及评估、地震安全性评价等工程前期工作都需得到相关行政管理部门的许可批准后,工程才能实施。

2 导地线选型

送电线路的导线长期在旷野、山区或湖海边缘运行,需要经常耐受风、冰等外荷载的作用,气温的剧烈变化以及化学气体等的侵袭,同时受国家资源和线路造价等因素的限制。因此,在设计中,对电线的材质、结构等必须慎选取。线路的输送容量、传输性能、环境影响问题对输电线路的技术经济指标都有很大的影响。要从导线的电气特性、机械特性、投资分析及施工等多个方面对各种导线截面进行技术经济比较,特别在导线选型造价分析中按全寿命周期费用最小为原则分析比较,而不是只考虑基建初投资,这样可以全面考核各导线方案的技术经济性,最后推荐出在技术和经济上最优的导线型号及截面。导线在线路建设投资中所占的比例较大,110kV线路一般要占工程本体投资的12%左右,且它也影响到铁塔荷载的大小和铁塔高度、地线支架高度的选择,如果再考虑因导线方案变化而相应造成的杆塔工程量和基础工程量的变化,其对整个工程的造价影响极其巨大。合理选择导线截面是安全运行和降低建设投资的关键问题之一。因此,按全寿命周期费用最小为原则选择导线结构,对降低输电线路投资具有重要的意义。

3 基础设计

杆塔基础作为输电线路结构的重要组成部分,它的造价、工期和劳动消耗量在整个线路工程中占很大比重。其施工工期约占整个工期一半时间,运输量约占整个工程的60%,费用约占整个工程的20%~35%。目前我国高压输电线路所采用的普通基础(不包括桩基础)均属于浅基础类型,分回填土和原状土两大类。分别按土重法和剪切法计算。输电线路杆塔基础在受力上与其它建筑物基础有所不同,主要是输电线路杆塔基础除了受下压力作用外,还要受大小基本相等的上拔力作用,同时还有水平力作用。而一般的建筑物结构的自重大,基础只受下压力,不出现上拔力。因此在输电线路基础设计时都要既能满足上拔力又能满足下压力的要求。既要利用土的地耐力承受压力,又要利用土的重力抵抗拔力。输电线路杆塔基础有一个显著的特点,基础在全路径内分散,沿线地形地貌、地质条件、地基力学性质差异性极大,交通运输条件也是千差万别。在输电线路基础设计时,要结合塔位地质情况、基础荷载特性、地基承载能力、基础施工方法等因素综合比较基础的技术经济性、环境保护和施工条件。

4 新型节能金具

输电线路中的金具节能问题已经引起极大关注。在国家电网颁布的《“两型三新”线路设计建设导则》中明确了采用节能型金具,如铝合金悬垂、预绞式悬垂、预绞式耐张、预绞式间隔棒、预绞式防振锤等新能节能型金具。

通过大量实验证明,铝合金金具线夹节能效果明显,在发达国家已普遍采用,在我国也已引起有关部门的高度重视,在部分供电部门开始应用,在技术上已经过关。节能金具结构先进,减少营运维修频率,大幅度节约了线路维修费用,但金具价格为传统金具的数倍,如果将其节能效果计算进去,一般2年左右就可以收回全部投资,而且长此以往将会产生巨大的经济效益。

5 全寿命周期管理

全寿命周期成本管理,是指从设备、项目的长期经济效益出发,全面考虑设备、项目或系统的规划、设计、制造、购置、安装、运行、维修、改造、更新,直至报废的全过程,即从整个项目生命周期出发进行思考,侧重于从项目决策、设计、施工、运行维护等各阶段全部造价的确定与控制,使LCC最小的一种管理理念和方法。此方法科学的划分设备在寿命周期内的一切费用项目,又利用统计资料和方法建立费用估算关系式和费用模型,从而可按不同需要相当准确地估算出设备寿命周期费用,供决策和管理之需。其核心内容是对设备、项目或系统的LCC进行分析,并进行决策。

对于输电建设项目而言,系统效率我们认为由下述三个效率的乘积来表述。

输电线路的系统效率=输送能力×可利用率×运行的可靠性。

此外,由于寿命周期费用是在一个长时期内发生的,对费用发生的时间顺序必须加以掌握。材料和劳务费用的价格一般都会发生波动,在估算的时候对此要加以考虑。还有,在计算费用时必须考虑“金钱的时间价值”。