首页 > 文章中心 > 简单电路设计方案

简单电路设计方案

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇简单电路设计方案范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

简单电路设计方案

简单电路设计方案范文第1篇

自主式课题教学法

针对目前课堂教学的现状,提出自主式课题教学法。其基本理念就是改革课堂教学,即在课堂上系统地讲授电路设计方法,而不是仅仅教会学生解题。此外,将学生分成若干个学习小组,给每个小组布置不同的电路模块设计课题,通过完成自己的课题达到初步实践电路设计方法的目的。同时,由于学生都是带着设计课题听课的,这样也会提高学生自主学习理论知识的积极性。具体实施步骤如下:

在课程教学初期,指导学生自由组成学习小组,提供若干模块设计课题供各小组挑选。选定的模块设计任务伴随该小组整个课程学习过程。这个阶段的教学要点如下:①尽量保证学生按照自己的意愿组合形成学习小组,这样小组成员在课题设计过程中才能有较好的默契,相互配合,依靠团队的力量完成设计任务。②该阶段是课程教学初期,学生对各个模块设计课题还不了解,教师应占用一定的课堂时间对课题进行解释和指点,充分激发学生自主学习的积极性,使学生自发地利用课余时间收集资料,选定设计方案。③当学习小组初步完成课题资料的收集和整理后,则安排一次课堂报告,由各个小组制作幻灯片向全班同学汇报其对课题的理解以及初步选定的设计方案,并由任课教师进行点评,指出其下一步工作重点。④模块设计课题应涵盖所讲授课程的各个章节,这样利于在讲课过程中通过讲解各个模块设计方法串联课程各章节的知识点。同时,讲课内容与学生正在进行的设计任务相关联,容易调动学生自主学习的积极性。

在课程教学中期,将模块设计课题融入到各个章节的课堂教学中,教会学生具体的电路设计方法,同时在实验课上指导学生进行电路调试以及指标测试。这个阶段的教学要点如下:①要求各小组通过课堂学习不断改进自己初期拟定的电路设计方案以及元器件参数计算方法。充分体现了自主式课堂教学法的教学理念,即激发学生的学习主动性,从而自主采用课堂讲授方法改进自己的电路设计,使其感受到如何将课堂所学理论知识运用到实际的电路设计中。②向学生灌输团队设计的理念,针对电路设计和调试过程中团队成员间的沟通和讨论,使学生认识到如何进行团队协作,同时在教师和团队间建立畅通的交流渠道,使学生的问题能得到解答,从而有信心完成课题设计任务。③安排课堂报告,各小组制作幻灯片向全班同学汇报课题设计进展,由任课教师对学生的设计进行中期考核并指出下一步工作重点。

在课堂教学后期,对各学习小组制作的模块电路进行验收和总结。这个阶段的教学要点如下:①督促各学习小组做好指标测试工作,验证自己设计的电路是否达到设计要求,同时总结整个设计过程的经验教训。②安排课堂报告,各小组制作幻灯片向全班同学汇报课题制作成果,由任课教师对设计成果进行总结。③各小组提交课题设计报告,详细介绍整个电路设计原理、参数计算过程,并记录系统的性能指标,总结电路调试过程中发现问题、解决问题的经验教训。

自主式课题教学法的应用实例

我们在通信电子线路课上使用了这种教学法。首先,根据整个课程内容设计8个模块的设计课题,将该课程的主要知识点都融合在这几个课题中,课题名称。

第一阶段:由学生自由组合形成学习小组并从这8个课题中选择一个,作为该小组在课程学习期间的设计任务。由小组成员相互配合进行资料收集以及设计方案的论证。在课程开始后的第二个教学周,组织各小组制作幻灯片报告该小组拟定的设计方案以及设计时间安排。需要说明的是,各小组进行方案设计的时候,相应的知识点还没有在课堂上进行系统地讲授,完全由学生先自学各自课题相关基础知识,然后进行资料收集整理,通过内部讨论,最终确定课题的初步设计方案。这个阶段需要学生充分发挥自己的主观能动性去熟悉课题、讨论方案以及确定初步方案。从实际情况来看,学生在这个阶段常常表现出很大的学习积极性,进行方案汇报时的现场气氛也很热烈。此外,由于设计课题涵盖了这门课程的主要知识点,相应课题方案的初步确定过程也是学生对课程知识的预习阶段。这样可以充分激发他们的求知欲,当教师在课堂上讲到相应的知识点时,能抓住学生的注意力,获得较好的教学效果。

第二阶段:主要完成各个章节知识点的讲授,这一阶段应该注意在课上重点讲解如何充分运用教材中的知识完成模块设计课题,让学生意识到,这些书本知识并不是抽象的理论知识,只要稍加变通就可以有效地指导生产实际。例如在讲到求解高频功率放大器的题目时,计算电路输出功率用到公式(1):200cmVPR=(1)其中P0为电路输出功率,Vcm为电路输出电压幅值,R0为电路负载电阻。而在真正设计功放电路时,电路的输出功率及输出电压幅值常常是已知条件(见表1),而具体的电路以及电路中所采用元器件的参数如电阻阻值是需要进行计算的。因此只需要将公式(1)转化为公式(2):200cmVRP=(2)转化后即可用于电路中所采用负载电阻的计算。整个课程讲授过程都要将知识点具体化,让学生意识到,只要将这些公式进行简单的变化(常常是翻转)就可以用于电路设计过程中元器件的参数计算,从而使学生可以一边学习课堂知识,一边将所学知识应用起来,真正做到活学活用。此外,在实验课中要指导各小组的电路焊接以及调试工作,并监督其设计进度,从而掌握学生对所学内容的理解程度。在这个阶段,真正实现了本教学法所强调的理论联系实际,即学生可以做到边学习,边使用,边检验,整个课程的教学效果良好。最后一个阶段是课程的结束阶段,主要做好各小组课题的验收工作,并对各小组所设计的模块进行点评,最后安排一次期终汇报作为整个课堂教学的结束。本教学法已经实践了两年,学生对这种教学法的满意度较高。此外,学生的平时成绩与模块设计课题制作情况挂钩,因此各学习小组都投入了较多精力用于电路模块制作,成功率也较高。并且学生通过电路模块的制作过程也了解到了如何运用课堂所学知识进行电路设计。

简单电路设计方案范文第2篇

【关键词】医用x光机 控制单元 设计

医学医用X光机是医疗的先进设备,其中的控制单元为了便于进行临床诊断,需要负责在设备的设计中对X射线图像进行处理和分析,通过X射线图像获得准确的信息,是提高诊断技术水平的关键。医用X光机的组成部分包括电气部分和机械部分,其中电气部分主要由X线成像单元、图像处理和控制单元、存储单元及图像显示单元组成。X光机图像处理是一款高性能、高密度的FPGA 芯片,它支持Nios1I嵌入式处理器,FPGA和 NiosⅡ处理器的结合进一步完善了处理器、外设、存储器和I/O接口的组合,使设计难度大大降低,提高了设计灵活度。目前,如何从X射线图像获得更多的信息,已经成为提高医疗设备诊断技术水平的一个新方向,也是医学界研究与应用的热点。

一、X光机控制单元设计内容

医用X光机的中心部分是医用设备的控制单元,它主要处理X线成像单元输出的12bit、lkxlk、30帧/秒的数字视频信号,设计的两个主要模块是图像处理模块和系统控制模块,主要通过这两个模块来完成高质量的医学视频图像信息。

图像处理模块: 主要负责输入的数字图像的处理,包括圆消隐、阴影校正、递归滤波、自动增益控制AGC、边缘增强、直方图均衡、Gamma校正、图像反转等算法,图像处理模块是图像处理和控制模块的核心。

系统控制模块: 为了实现图像处理和控制单元和设备的X 线成像单元,改善控制图像的主要功能,简要处理模块的操作模式,实现了存储单元和显示单元的联用,以及PC机和状态显示灯等部分的连接和参数的传递,确保CPU对外部接口和存储器等部分进行合理的控制。

二、X光机控制的设计方案

(一)设计原理。多种图像处理算法的流程,采用C语言确保 NiosIICPU对外部DDRSDRAM的读写操作功能的顺利进行,使用VHDL语言达到了易于操作的算法,并在QuartusII软件工具中进行编译、综合和仿真,实现了图像处理模块。在NiosII开发板进行上下载和调试,对FPGA的硬件设计程序和软件设计程序进行调整。

(二)设计方案

1.数字系统硬件的设计方法

一直以来,人们习惯性采用传统的硬件设计方法来完成系统硬件的设计。设计方法是自下至上的具体操作步骤,从系统对硬件的要求来看,技术规格书和系统控制图的设计都要首先完成系统控制流图的简单描画;然后对系统重要的部分划分功能模块;接着就是进行各功能模块电路设计,最后完成整个系统的硬件设计。而目前的设计是采用逻辑电路设计方法,对元器件各独立功能模块设计需要从选择具体元器件开始。采用通用的逻辑元器件来构成所需要的逻辑电路,从而完成系统的硬件设计。随着微处理器的出现,许多系统的硬件功能可以由软件功能来实现,但这种选择构成系统的通用的元器件中的硬件电路的方法并未得到根本性改变。后期进行的仿真和调试应该在系统硬件设计的. 系统仿真器、逻辑分析仪和示波器等是仿真和调试的仪器,对系统设计时存在的问题会及时发现。通过传统的硬件设计方法对系统进行设计,并完成调试,最终实现硬件设计。

2.嵌入式处理器硬件电路设计方法

利用硬件描述语言的硬件电路设计方法。利用VHDL语言设计系统硬件的方法,采用TopDown的设计方法,这种方法是逐步将设计内容细化,最后完成系统硬件的整体设计。

(1)设计优点

利用VHDL语言设计硬件电路的优点:这种设计具有可靠性,具有重复定义的逻辑功能。因此,现场可编程门阵列使数字电路系统的设计,缩短了系统研制的周期和数字电路系统的体积和所用芯片的种类。而且设计文件适合于组合等逻辑电路应用场合。设计技术齐全、方法灵活、支持广泛 VHDL语言可以支持自上至下的设计方法, VHDL语言标准、规范,易于共享和复用。

(2)设计方案,首先是行为描述,其次是Register TransferLevel的描述

最后是逻辑综合。此后,将网络表转换成 FPGA的编程码点,利用FPGA完成硬件电路设计。接下来要进行行为层次仿真、RTL层次仿真和门级层次仿真,目的是便于早期发现设计中存在的问题,降低了硬件电路设计的难度。

3.采用FPGA设计ASIC电路设计。

(1)优点

FPGA具有设计周期最短、开发费用最低、风险最小的优点,设计人员只通过相关的软硬件环境就可以实现最终功能设计。不需要设计人员承担投片风险和费用,主要功能就是更换不同的软件FPGA的平均性能,使得医疗设备的逻辑容量大幅度提高。

(2)设计方案,具体方案

数字信号处理(DSP)块可以提供专用乘法器、加法器、减法器、累加器和求和单元,每个DSP块能支持不同的乘法器。能与用户逻辑相结合,编程至AlteraFPGA中。NiosII处理器具有可变时钟周期操作的定制指令。设计中应针对不同的性能范围和系统成本选择合适的内核,针对最少逻辑占用说明 ,优化平衡性能和尺寸进行优化流水线的嵌入式设计。NiosII处理器的接口它可以用VerilogHDL和VHDL源代码方式交付使用,参照设备接口设各接口说明,把用户逻辑模块连接至USOPCBuilder生成的系统中。DMA控制器与存储器进行批量数据交换,减轻CPU的负担。 用户通过用户逻辑接口,创建自己的设备,并通向导线传送到Nios II处理器系统中。用户还可以通过反复设计,轻松得出优化系统的最好方式。注意事项:1SOPCBuilder系统要选择合适的CPU和器件,并采用HDL设计文件进行,将配置文件下载到开发板上。系统软件所需的具体软件要编写独立于器件的C/c++程序;SOPC技术是一种特殊的嵌入式系统。具有灵活的设计方式,丰富足够的片上可编程逻辑资源。

简单电路设计方案范文第3篇

关键词:步进电机调速系统 STC89C52单片机 起动 停止 加减速

中图分类号:TP273 文献标识码:A 文章编号:1007-9416(2015)03-0159-01

电机可以细分为很多种,步进电机是其中的一种,它的工作过程是“走一步停一步”的循环过程,在一些小功率的应用环境,比如打印机、复印件、银行自动柜员机、绘图仪,机器人,等等设备都以步进电机为动力核心。步进电机最突出的优点是它能够瞬间启动和急速停止,可以在宽广的频率范围内通过改变脉冲频率来实现调速,快速起停、正反转控制及制动等,其在办公自动化设备以及各种控制装置等众多领域有着极其广泛的应用。随着微电子和计算机技术的发展,步进电动机的需求量与日俱增,研究步进电机驱动器及其控制系统具有十分重要的意义。

1 系统总体设计方案

系统总体设计方案如图1所示,主要包括:控制模块、电源模块、显示模块、测速模块、驱动模块、输入模块等部分。整个系统采用AT89S52单片机为控制核心,主要完成控制运算,单片机输出控制信号给驱动电路,实现步进电机的启动、停止、正反转、分级加减速控制。系统中的输入电路主要用于发出电机的启动、正反转、停止以及分级正反转信号,测速电路采用霍尔传感器来检测电机的转速,并通过显示电路实时显示电机的当前状况以及实际转速,而整个系统的功能实现离不开电源电路。

2 系统硬件设计

2.1 驱动电路设计方案

驱动模块主要采用芯片ULN2003A。ULN2003A有7路输出,由于系统中电机为三相六怕工作方式,则只需要采用ULN2003A的三个输出端。

单片机接口信号功率不够大,通过ULN2003A芯片,可以对信号放大。由单片机产生的脉冲频率和方向控制信号从P3.0~P3.2口输出,送入芯片ULN200A进行功率放大,达到步进电机所需的驱动电流和电压5V,驱动步进电机工作。

2.2 速度采集模块设计方案

本系统采用了霍尔传感器来进行速度的采集,霍尔传感器是根据霍尔效应制作的一种磁场传感器。它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种,本系统采用开关型霍尔传感器。

2.3 显示电路设计方案

在电机转速控制系统中,采用1602LCD液晶显示屏显示电机当前运行状态,该显示器控制方法简单,功率低、硬件电路简单、超薄轻巧、可对字符进行显示等优点。

本设计所使用的显示元件是LCD1602液晶显示屏,能够满足设计温湿度的分行显示功能。LCD1602液晶显示屏使用的较为普遍,它的工作电压为4.8V-5.2V,分为带背光和不带背光两种,

2.4 输入电路的设计

本设计输入电路采用独立式键盘.独立式键盘的特点是键盘接口中的按键与I/O线是对应的,键盘中各按键的独立性较好,互不干扰,方便进行程序编码。

3 系统软件设计

系统主程序流程图如图2所示。

在本系统中,以步进电机的三相六拍工作方式的控制为例,由于步进电机的转速通过控制输入脉冲的频率来控制,而电机的转向则可以通过控制通电顺序来控制正反转,如三相六拍的正向通电顺序为AABBBCCCAA ……,而其反向通电顺序则为AACCCBBBAA……。

4 结语

本系统能够实现步进电机的启动、停止、正反向转动和调速,并将步进电机的当前状态通过1602液晶显示屏实时显示。

参考文献

[1]王效华,张咏梅.单片机原理与应用[M].北京交通大学出版社,2007:17-26.

[2]冯博琴.微型计算机原理与接口技术[M].清华大学出版社,2002:33-74.

简单电路设计方案范文第4篇

智能汽车作为当今科技时代下的新兴产物,集中运用了计算机、现代传感、信息融合、自动控制、人工智能及通讯等现代科学技术,是未来汽车发展的重要方向。本文详细介绍了基于摄像头传感器的智能竞速汽车控制器的设计方案,分别介绍了智能车的硬件组成、路径的检测识别方法和智能车的控制策略。利用摄像头传感器采集、识别道路信息,规划最优路径,采用PID控制算法控制电机和舵机实现自动控制。

关键词:

摄像头;智能汽车;设计方案

本设计是基于MK60DN512ZVLL10单片机开发实现的,该系统采用摄像头采集、识别道路两旁或者中央的引导线,在此基础上利用合理闭环的算法控制智能车运动,从而实现智能车快速稳定的寻迹行驶。

1智能车整体结构的选型与设计

1.1图像传感器的选择

图像传感器,即数字摄像头。目前市场主流的两种摄像头传感器:以金属氧化物半导体元件为感光材料的CMOS摄像头和以电荷耦合元件为感光材料的CCD摄像头。综合两种摄像头解析度、灵敏度、成本、功耗比、模块电路、体积、重量,CMOS摄像头可以满足于4米/秒速度以下智能车行驶,并且CMOS摄像头功耗低,工作电压只需3.3V-7V,完全可以由智能车稳压后得到,稳定经济,所以选择CMOS摄像头中的OV7725摄像头。

1.2起跑线检测传感器选择

起跑用的是发车灯塔控制方式,发车灯塔不仅发出起跑信号,而且发出终点信号。我们使用基于使用HS0038B传感器的基础电路作为接收灯塔光信号一个基础电路,OUT口接MK60的C5。

1.3速度检测传感器选择

一个完整的控制系统是闭环控制的,所以需要测速装置,用以精准反映智能车实时速度。我们采用了由欧姆龙公司研制的一款200线的小型编码器。

1.4车模选型

本次设计采用由飞思卡尔半导体公司赞助的G768型车模,即为竞赛中的C车模。

2智能车硬件电路设计

2.1硬件设计方案

本设计方案采用模块化方式完成总设计,模块化设计使思路清晰,在使用出现错误时容易修理。

2.2电路设计方案

本次设计将智能车系统电路分成两个主要部分,以MK60N512ZVLQ10为核心的控制电路和以电源为核心的驱动电路。考虑到MK60最小系统电路板比较大,所以将整个系统电路分为两块规则PCB板(主控板和驱动板)。

2.3控制电路

以MK60为核心的单片机系统的硬件电路设计主要包括以下几个部分:电源电路、时钟电路、JTAG接口、复位电路。

2.4驱动电路

因为本次比赛摄像头组使用的电机是RS-380SH直流电机,小车驱动芯片决定选用集成的高电流半桥电机驱动应用BTN7971B,它的输出电流足以带动电机转动并且较稳定。

2.5电源模块

比赛使用飞思卡尔专用电池,2000mAh的镍镉电池1块,标准电压7.2V。

3智能车软件算法设计

3.1软件控制整体设计

本次设计所用的软件调试工具支持C语言和汇编语言混合编程的IAREmbeddedWorkbench软件,由于C语言操作简单,可修改和移植性强,所以本次软件设计大部分程序都使用C语言编写,只有在某些地方加入了汇编语句。

3.2主程序结构

在系统初始化方面,我们所用到的底层硬件资源进行初始化和上层模块初始化。在方案选择及参数设定上,我们在主板上设置了一组四位的拨码开关和三个按键结合OLED显示屏实现的方案和参数的可调,以在比赛时对车作适当地调整。在图像获取上,对于Ov7725数字摄像头,使用场中断加高速DMA传输的方式来获取图像。图像处理则采用黑线提取和中心线提取。

3.3控制算法

控制算法是智能车的灵魂,为了使小车能以稳定的速度通过跑道,精确的速度控制是关键,采用速度闭环控制方案。

4智能车开发与调试

4.1软件开发环境

系统编译下载是在IARIDE开发环境下完成的,EmbeddedWorkbenchforARM是IARSystems公司为ARM单片机开发的一个集成开发环境,这一开发环境使用方便、入门容易和代码简明紧凑。此外,由于在IAR软件中进行编写,调用,修正函数比较复杂繁琐,所以使用了Sourceinsight3软件进行辅助编写小车程序。

4.2硬件开发环境

本次毕业设计所用的硬件开发平台为著名硬件开发公司Altium公司的AltiumDesigner10,这已开发环境在板级设计特性、软设计特性、数据管理特性、通用特性都较有优势。

4.3软件调试

软件调试主要包括:程序在线仿真调试,上位机调试。在线调试主要使用的是IAR中的调试器IARC-SPY。上位机调试主要是通过蓝牙模块将智能车运行过程中的状态和SD卡采集的图像及时地反馈到PC机上。

4.4现场调试

现场的调试包括摄像头调焦以及固定、PID参数整定、速度控制算法的参数整定、智能车运行状态等方面的调试。

5结语

简单电路设计方案范文第5篇

关键词:低噪声放大器;噪声系数;增益;稳定性

1 无线传输

近年来,系统在各行业的应用越来越广,为了适应这一市场需求,需要优化低噪声放大器的设计方法,降低产品调试成本。传统的低噪声放大器输入输出匹配电路需要反复迭代、灵活性不高、后期电路调试复杂,产品一致性差。本文通过研究低噪声放大器的设计理论,提出了一个简单易行的低噪声放大器设计方案,通过该方案可以最大限度地降低放大器的噪声系数,提高放大器的稳定性,并且可以方便地在放大器增益、噪声数和定性之间进行折中设计,设计的电路后期调试简单、产品一致性高,与其他射频部件级联时不需要隔离器。完全能满足无线传输系统的技术要求和批量生产。利用该设计方法设计的放大器已经成功进行批量生产。

2 低噪声放大器的设计

本文设计的低噪声放大器主要由输入匹配网络、晶体管放大器、输出匹配网络、偏置电路构成。

2.1 放大器的主要技术指标

(1)工作频率:300~400 MHz;(2)增益:≥30 dB;(3)噪声系数:≤1.2 dB;(4)端口驻波:≤1.5;(5)供电电压:+5 VDC±0.5 V;(6)电流:≤ 80 mA。

2.2 放大器设计方案分析

由于设计指标要求的放大器增益要大于30 dB,所以设计中采用两级放大晶体管进行设计,每级放大器单独进行输入输出阻抗匹配,然后进行两级放大器级联。设计中选择安华高的低噪声放大器晶体管MGA-53543,该晶体管在300~400 MHz频段内高达19 dB的增益和1dB的噪声系数足以满足本文中要设计的低噪放的指标要求。

2.2.1 MGA-53543的S参数和噪声系数分析

根据MGA-53543的数据手册采用内插法可以得到MGA-53543在350 MHz时的S参数:

S11=0.327∠-123,S21=9.471∠141.3,

S12=0.079 5∠13.3,S22=0.206∠-128.3

由上面的S参数可以得到Δ=S11S22-S12S21=0.729 1∠-21.6

采用外推法可以得到MGA-53543在350 MHz时:

NFmin(dB)=1.06,Γopt=0.108∠156.5,Rn=0.1

2.2.2 放大器稳定性分析

根据器件S参数可以得到MGA-53543在350 MHz时的稳定系数:

所以MGA-53543在350 MHz时是不稳定的,需要对输入、输出稳定圆进行判定。

(1)作输入稳定圆。

圆心:

半径:

(2)作输出稳定圆。

圆心:

半径:

(3)作器件在350MHz的噪声系数圆。

圆心:

其中:

半径:

当噪声系数NF分别取:1.07 dB,1.2 dB,1.3 dB,1.4 dB,1.5 dB时,参数结果如表1所示。

如图1所示,通过在Γ平面作输入稳定圆、输出稳定圆、1.2 dB,1.3 dB,1.4 dB,1.5 dB等噪声系数圆、19 dB等增益圆发现在绝大部分情况下MGA-53543可以稳定工作,完全可以满足设计要求。

为了获得最低噪声系数,令

则有:

为了使则要求

此时,输入驻波比

输出驻波比 ,资用功率增益:

3.2.3 放大器匹配电路和PCB版图设计

(1)输入、输出阻抗变换电路的设计。输入匹配网络的设计就是把ΓS所对应的归一化阻抗变换到1,输出匹配网络的设计就是把ΓL所对应的归一化阻抗变换到1。

(2)具体设计的输入、输出阻抗变换电路如图2所示。

3.3 测试结果

对本文设计的两级级联低噪声放大器电装以后,用噪声仪和网络分析仪进行指标测试。