前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇基础工程论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:基础加固;顶升纠编;沉降观测;验算
1工程概况
邵阳市某工程是一座六层的框架结构建筑,基础采用340mm锺击沉管灌注桩,设计单桩承载力250kN,工程施工到封顶后突然发生较大沉降及倾斜,3d时间西北角向西倾斜达41.60cm,停工后制定了处理措施并完成后续工程。
2建筑物基础加固方法及施工要点
2.1楼房下沉倾斜的原因分析
2.1.1工程桩成桩质量差,承载力不能满足结构荷载要求。场区土层地质资料不准确也是桩承载力低的原因。
2.1.2工程桩上的第一级承台混凝土离析严重,承台断裂破坏,甚至已反转破坏。
2.2基础加固的静力压桩方法
基础加固采用静力压预制桩方法,预制桩是由反力架和油压千斤顶所组成的压桩机压入的,千斤顶所需反力是通过反力架由楼房自重提供的。预制桩采用30×30cm的方桩,制桩压入的终止条件为压入荷载大于或等于600kN。
为避免施工引起新的附加沉降,静力压桩施工前先对所有已破坏的承台采用工字钢进行支撑。
2.3静力压桩的质量检查
根据现场预制桩时取样的试件试验,预制桩的混凝土抗压强度达到设计要求;预制桩施工完成后对3根桩作静力载荷试验,预制桩的极限荷载均大于600kN。
2.4条形基础承台的设计及施工
基础承台的设计是由现场实际情况而定的。受首层的净空不能减小的限制,采用薄承台结构。同时为增加整体作用能力,将西面1#~8#及东面9#~16#柱分别做成条形基础承台。承台的设计荷载主要考虑以下几个方面:
2.4.1柱的设计荷载,东面9#~16#柱荷载1500kN;西面1#~8#柱荷载1900kN。
2.4.2原有承台、柱的现在荷载按800kN考虑,但由于在现有荷载800kN作用下,沉降并未完全稳定,当基础加固后原有承台的荷载将转移给新加固的桩。从安全考虑,将原有承台承担的800kN荷载的30%转移给新加固的桩平均分配。
2.4.3根据上面1、2两个条件则可计算出承台设计计算时新加固桩的荷载为西面1#~8#承台的桩设计荷载P=335kN,东面9#~16#承台的桩设计荷载P=313kN。
新设计的条形基础承台是在原有承台的上面,破环反转的承台必须将其凿平至新加固的承台底标高,由于原有承台还承担着楼房的现有荷载,为减小施工对楼房沉降的影响,采取了有效的加强支撑的措施,施工中尽量减少震动,并密切监测大楼沉降的动态。根据施工期间的沉降观测结果,在静大压桩及承台的施工期间,各柱的沉降速率与施工前增加很小,说明采用的施工方法是切实可行的,对大楼的沉降影响较小。在承台浇注混凝土3~5d后承台已停止下沉,说明新的承台已发挥作用。
3基础加固后倾斜楼房的顶升纠偏处理措施
3.1顶升纠偏的设备及施工安装
顶升纠偏的设备主要有,钢支承梁和混凝土支承墩及顶升用的油压千斤顶等。施工安装时每根柱要装两条钢支承梁,支承梁与柱接触面用水泥砂浆充填,保证紧密接触,用穿过柱子的高强螺栓的拉力使柱与支承梁紧密连接在一起,钢支承梁的两端支承于两边的混凝土墩上。然后等待水泥砂浆有足够的强度后,将柱子凿断安装千斤顶。顶升纠偏前割断柱的钢筋,则整个顶升纠偏的设备安装完成。
3.2顶升纠偏方法
顶升时分级同步进行,在柱的支承梁未离开支承点时,顶升加载采用压力控制,共分4级进行,每个千斤顶都基本上以同步压力上升,每级加20t施加。在柱的支承梁离开支承点后即按上升高度控制。每根柱的上升在同一级基本上同步进行,每一级顶升完毕后均作详细的观测。为了保证楼房顶升纠偏后东、西方向的倾斜值不超过40mm这一标准,西边各柱的顶升量的大小是采用实测的二、四、六层楼面相对于同一基点柱(16#柱)沉降差的平均值作为顶升的依据,同时也考虑西边桩顶升时相邻柱不应有超过结构容许沉降差这一条件。
3.3现场观测及观测结果分析
3.3.11#~8#柱顶升出力和顶升量的测定
1#~8#柱在顶升纠偏时各柱的上升高度与千斤顶顶出力的关系曲线如图1所示,千斤顶出力随上升高度变化无一定规律,主要是受相邻千斤顶在不是完全同步上升情况下,上升得快的千斤顶的出力将增大,反之则出力小,因此出现千斤顶出力变化比较大的情况。为了有利于原有裂缝的闭合,适当调整了个别柱的顶升量。
3.3.29#~16#柱承台的转动量观测
在9#~16#柱每柱靠近承台面(离承台面约20cm)柱的内、外侧各装一个百分表观测承台在西边柱顶升时每级的变形值,根据两个表的差值除以两个表的距离即可求出承台的转角。9#~16#柱的承台的转角θ0与相对应的1#~8#柱的顶升高度W关系曲线如图2所示。从图2可看出θ0~W基本成线性关系,9、10柱的承台的转角θ0要比其它柱的基础承台基础刚度大。
3.3.3梁的裂度观测及观察
梁的裂度观测选择了2~10、7~15柱的一楼连接大梁。在靠近10#、15#柱的大梁梁底分别安装千分表,测量顶升过程中的应变变化情况。测量结果如图3(为拉应变),从图中可看出,梁底应变与顶升高度的关系,2~10梁应变与顶升高度和变化比较有规律。而7~17梁的梁底的~W变化规律性差。主要原因是由于7#柱顶升时支承梁底打入铁垫块时敲击震动影响。而2~10梁以上的所有隔墙未拆除,可削弱由于2#柱顶升时支承梁底打入铁垫块时敲击震动影响,其观测结果比较可靠。根据现场观察7~15梁,并未产生裂纹,所以7~15梁的应变观测结果受震动影响大,未能真实反映梁底的应变变化情况。同时在顶升过程中派专人观测梁的动态,观察结果是所有东西方向的大梁在顶升过程中均未产生裂纹,而且西边横梁的原有裂缝在顶升纠偏后都有闭合的迹象。只是在西边顶升高度达到10~11cm后9#、10#、11#柱的内侧开始产生裂纹。顶升纠偏终止后,最大的裂缝宽度发展至约0.5mm。产生裂缝的主要原因是顶升产生的附加弯矩作用拉裂的,而9#、10#梯形的加固后的承台刚度大,因此其相应的附加弯矩也较大。由于裂缝较小并不影响其支承强度,而且在长期荷载作用下通过应力调整裂缝将逐渐闭合。
3.3.4顶升纠偏的回复量观测及9#~16#柱的沉降观测
在楼房的四个角观测顶升后的纠偏量,图4所示曲线是东北角楼顶在顶升过程中的水平移动量与1#柱的顶升高度的关系。W~u关系近似为线性关系。
从表可以看出已施工加固承台的9#、10#柱的沉降要比其它未施工加固承台的柱要小。
3.3.5顶升纠偏的终止和柱的复原
按上述顶升纠偏方法进行顶升至第24级时,东北角用经纬仪观测基本达到垂直状态,从其它三个角的楼顶吊垂线至地面的目测结果也是大致垂直状态。终止顶升纠偏。
顶升纠偏结束后立即施工11#~16#柱加固的基础承台,对柱进行基础加固及纠偏工程已圆满结束。
4顶升纠偏过程中的结构内力分析及楼房最终沉降计算
4.1顶升纠偏过程的结构的内力分析
一栋已完工的混凝土框架楼房,尽管采用截柱顶升纠偏方法纠正楼房的倾斜,但仍然对框架各节点产生一定的附加弯矩,这种附加弯矩之后会对框架结构造成损害,必须预先考虑,现对其作些分析计算。由于二楼至六楼所有楼板及梁组成了刚度较大的多层单跨梁体系。可以将楼房取图5的简图来分析计算。A点为用千斤顶支承,在垂直方向有水平方向可自由的支点,N为结构自重,L为顶升纠偏时附加上千力。F点为固定端但在偏心荷载作用下仍能作相应转动(θ0)的。BCDE由梁、板组成刚度远大于EF的一楼柱的刚度,因此现假定BCDE为近似刚架。则当在A点顶起时产生一附加上升力N,在EF段则受一弯矩M作用(图6为弯矩图)。则E点的转角可用悬臂梁受纯弯的公式求得:
θE=ML/EI+θ0
A点顶起高度为Wcm时楼房所产生的转动θ=W/970,现考虑θ=θE则BCDE部分由于楼房转动将不受影响,因此可得出顶升高度W与弯矩M及F点承台的转动θ0关系:
W/970=ML/EI+θ0
M=EI/L(W/970-θ0)
在已知1#~8#柱每级的顶升W和实测的相应9#~16#柱的承台转角θ0的情况下,即可求出相应的9#~16#柱一楼部分柱段所受的弯矩M。考虑到弯矩M在大于钢筋混凝土柱的抗裂强度后,由于柱产生了裂纹,则EI将减小的影响,求出的弯矩M与顶升高度W的关系曲线。根据柱的尺寸为40×60cm及配筋为8Φ22即可计算出抗弯能力为25.4Mpa;当顶升高度大于100mm后9#、10#柱开始发现有几条小的裂缝,随着顶升高度的增加,裂缝宽度也有所发展。这与计算分析是较一致的。梁的裂度观测及观察也表明,在西边术顶升开始至顶升结束,所有大梁及楼板均未产生新的裂缝。这也说明整个楼房的偏转完全靠西边各柱顶升后在东边的柱受弯矩产生了转动和承台转动提供偏转的,所以对梁及楼板无甚影响。
4.2楼房最终沉降计算
基础加固后,从建筑物的观测结果,在目前现有荷载80~1200kn作用下沉降已趋于零。以后楼修复后每个承台将受设计荷载作用。现取东面9#~16#柱的承台的设计荷载为1500kn,西面1#~8#柱的承台的设计荷载为1900kn,现有荷载按800kn计算,并假定承台新增加的荷载P全部由新的加固桩承担,则承台的沉降S为:
S=P/nk
西边1#~8#柱承台加桩为每个承台4根桩P=190-80=110吨,桩的刚度系数K由静力压桩时的桩的静载试验的P~S曲线可计算出:K=3636/m。则可计算出西边3#~8#承台可能产生的沉降约7.6mm。1#、2#承台以后增加的荷载很小则沉降将较小约5mm。东边9#~16#柱的承台每个按加3根桩考虑。P=150-80=70吨,由上述公式可计算出11#~16#承台可能产生的沉降约6.4mm。同样9#、10#承台以后增加荷载很小其沉降将较小。
考虑到桩在长期荷载作用下,其沉降将略有增加,本楼房在基础加固后至楼房修复竣工后的最终沉降将在10~15mm左右。
5结论及建议
5.1本工程基础加固采用静力压桩方法,共压入30×30cm预制桩61根,由于静力压桩方法最终的压入荷载大于等于60t,其承载力是很清楚的。同时根据抽查的7根静载试验结果,7根试验桩的容许承载力均可达到40t。因此在基础加固后完全可以满足设计荷载要求。
5.2采用了条形基础承台增加了整体作用能力,承台施工质量均满足设计要求。
5.3在西边1#~8#柱安装千斤顶进行顶升纠偏,使大楼东西方向纠偏后达到垂直状态,顶升纠偏过程中,大楼原有结构完好,只是在9#、10#、11#柱在一楼的柱的内侧产生裂缝,裂缝宽度小,已作修补处理。楼房的纠偏达到了预期的目的。
5.4根据沉降分析结果,大楼在加固后至修复竣工后在新的荷载作用下将产生10~15mm左右的沉降。
5.5建议以后大楼的修复采用轻型材料或减小内部隔墙的厚度,减轻大楼的自重,可以增加大楼的安全度。
参考文献:
[1]赵国藩.钢筋混凝土结构的裂缝控制等.海洋出版社,1991.
[2]王济川,卜良桃编著.建筑工程结构鉴定、改造与加固.湖南科学技术出版社,1999.
水利工程建设常常会遇到岩溶地段,这样的地段在处理上必须要格外注意,一旦处理不当,就会给工程的安全埋下隐患,除了灌浆处理技术,目前尚没有特别好的处理方法。在对岩溶地区进行基础施工时,要先对所在地段进行详细的勘察,根据施工情况、地质特点、岩溶深浅、分布情况等进行全方位的了解,然后制定相应的技术方案,对于岩溶地区的基础施工,一般分为有填充物和没有填充物。在进行基础处理时,一般采用不冲洗高压水泥灌浆,这种方式能大大提高基础的稳定性、抗渗性,也可以采用使水泥浆液以条带状向土体中穿插,凝结后,会形成网络包裹进而提高地基的稳固性能。高压喷浆技术主要是利用高压喷嘴,通过灌浆管不断钻进,把喷嘴送到指定位置,水泥喷浆强大的压力会把原有土层破坏,水泥浆液会和被破坏的土层泥土进行充分混合相融,凝固后形成一个结实的柱体结构,这样会使岩溶地区的基础变得稳定坚固。高压灌浆技术在处理岩溶地段的地基应用较为普遍,效果不错。
2浅层岩溶地区和深层岩溶地区的基础灌浆
对于浅层岩溶地段,因为岩溶埋藏的不是很深,可以利用机械先把填充物全部挖掘出来,然后再用水泥进行回填,完成灌浆,此种地段的灌浆基本都在露天完成,施工相对容易一些,工序也较简单。对于埋层较深的岩溶,在灌浆时,一般不适合用高压喷灌浆技术,因为水泥浆进入深层岩溶时,会对里面的填产物充生排斥,然后形成固化,对进一步灌浆造成阻碍,使得灌浆面不大,影响基础的稳定,多数采用钻孔注浆技术进行处理。
3大吸浆量情况的灌注在基础灌浆
作业时,常常会遇到大量吸浆的情况,使灌浆作用不能在预计施工作业时间内完成。通常的岩缝灌浆在1~3个小时内都会结束,对于水泥浆量的消耗也都正常。但遇到大吸浆情况,这样的地层结构会使浆量消耗很大,因为灌进地层的水泥浆会从别的地方涌出,使灌浆时间延长。遇到这种情况,一定要做好相应的处理,采用妥善的解决方案,首先要进行限流,控制注浆的速度,减少注浆量,使浆液的流动速度变慢然后慢慢凝结,但一直要保持灌浆结束的最终要求才能结束。再有就是采用降低压力或者是自流的方法进行施工处置,等到泥浆全部都凝结之后,可以采取多次灌浆的方法,在进行基础灌浆施工时,可以适当将灌浆压力降低,在灌浆凝固之后,没有别的原因可按设计压力进行灌浆。
4严重漏水的情况下灌浆施工
水利施工过程中选址十分关键,但因地形地貌的不同,一些工程所处位置不得不面对复杂的地基情况,由于各种原因,常常会遇到漏水的情况,这时施工条件变得困难,如不采取有效的方案,会出现跑浆现象,消耗大量的浆液,延长灌浆时间,使成本增加。这时可采取充填级配料处理方法和采用模袋灌浆的方法进行施工,两种方法都各有优点,可以根据具体的情况适当采用。模袋变形能力强,适应环境形状的变化,有效堵塞溶洞,另外也较耐磨,而且浆液定形凝固后强度增强。充填级配料的时候如果使用砾石的效果不好,也可利用粘稠度较高的水泥冲灌级配料,水泥冲灌级配料的材料和数量应该灵活掌握。
4.1充填级配料处理方法这种方法就是用粘稠状的水泥浆,直接灌入砂砾中,水泥浆与砂砾结合而形成坚固的凝结体,从而增强地基的抗渗性能及稳固性。在灌注时,要注意砾石的直径,一般都是呈逐渐变大的趋势。对于灌入量要进行细致、准确的判断,避免浪费填料,填料可以是水泥浆,也可以是水泥、粗砂、砾石等混合物,实践证明,混合物充填是相对自然的,灌后会产生反过滤层,把一些裂缝有效堵住,同时使水利工程的抗渗水性能得到提高。
4.2模袋灌浆处理方法在水利工程建设中,常常使用模袋灌浆,利用聚酯、尼龙等材质制成模袋,在袋中进行灌浆,这些特殊材质具有较高的耐磨性,可以根据需要设计成不同形状的模袋,在灌浆阶段应用,由于模袋具有一定的透性,浆中的水分能够渗出,但浆中的颗粒存在于浆中,所以袋中能保留颗粒。使水灰比得到降低,所以一方面能缩短水泥浆的凝固时间,另一方面,凝固后的强度也大大提升,提高灌浆的质量。
5结语
对于浅基础的施工,在不进行放坡作业的情况下,首先需要沿着测量基准灰线的直边切割出一个槽边的轮廓线,然后将作业面分别展开。为了有效预防和避免破坏地基土结构,必须结合实际情况,综合考虑各种可能的影响因素,如当地工程地质资料、挖方尺寸等,进而实施地下水位的降低和地面排水系统的建造。
2、控制地基与基础的强度
对于水利水电工程的基础施工,地基和基础的强度一定要满足建筑的施工要求,在承受建筑物上的全部结构荷载的情况下,还必须满足稳定性的要求,这就要求地基和基础的工作面要足够大。此外,基础还应该具有耐久的特性,因为水利水电工程是一项长期使用的工程,为延长工程的使用寿命,地基和基础一定要牢固耐用。因为地基的建筑特点是埋于地下的,因此,对于其防潮性和耐侵蚀性也有一定的要求。为了避免建筑物的开裂、倾斜或者标高变化,还要对地基变形值进行控制,使其在允许的范围之内。
3、水利水电不良地基处理技术
有些地基存在着天然的性能缺陷,也就是所说的不良地基。这一类地基稳定性差,无法满足水利水电工程的要求。
3.1可液化土层的处理
对于可液化土层的处理,需要将其清除,替换为具有较高强度和良好的防渗性能的材料,也可以进行振冲挤密或分层振动压实等。可液化土层对于地基的危害在于,其在静力或振动力的作用下,会导致孔隙水压力上升,抗剪强度突然消失,进而引起地基下沉、产生滑移,失去稳定性。对于建筑物来说,地基的稳定性是至关重要的,一旦地基失稳,就会给建筑物带来极大的安全危机。
3.2软土地基的处理
我国幅员辽阔,各地区的土质特征各有不同,东南沿海地区的土质以软土为主,这对于水利水电工程的建设来说是非常不利的。软土地基的存在引起不对称沉降的发生,进而导致水利水电建筑产生裂缝和渗漏,这些无疑都会对工程的质量造成极大的危害。通过长期的学习和实践,我国在水利水电施工方面已经掌握了丰富的理论知识和实践经验,对于软土地基的处理技术也逐渐发展和日趋完善。有很多成熟有效的方法已经被应用到软土地基的改造中去,并取得了很好的效果,需要注意的是,需要结合各地的实际条件和工程要求,科学合理地选择适当的方法。淤泥地基是一种较为普遍的地质结构,通常采用水泥搅拌桩基础的方式进行处理。
(1)排水固结法
这种方法不仅能够保持淤泥软土地基的稳定性,而且也能防止淤泥软粘土地基沉降现象的发生,有加压系统和排水系统两个组成部分。
(2)换土法
这种方法顾名思义就是把不能满足要求的土进行替换,通常在淤土层的厚度不太厚时采用。
(3)强夯法
该法将80kN的夯锤起吊到至6-60m处,夯锤作自由落体运动,势能转化为动能,作用在软土上,从而将软土夯实,主要应用与河流冲积、滨海沉积层等,可以获得非常令人满意的效果。
(4)旋喷法
此种方法通过旋喷机具把带有特殊喷嘴的注浆管置于土层预定浓度,然后进行提升,使得水泥固化浆液与土体在高压下混合,进而渐渐凝固并最终硬化,结成桩子,从而使地基防渗性能提高。
(5)振冲法
振冲法主要采用振冲器对混凝土进行振冲,利用振动和冲击荷载的作用对土层进行分层振实或夯实,以加固地基。
(6)土工合成材料加筋加固法
这是一种通过将荷载平摊于地基,从而使得地基的承载能力获得提高的有效方法。这种方法,需要将土工合成材料平铺于地基表面,对于可能发生的塑性剪切破坏,在某种程度上可以进行抑制,减轻破坏的程度,阻止破坏的进一步扩大,进而实现提高地基承载能力的目的。
(7)灌浆法
灌浆法主要是将水泥砂浆、水泥浆、粘土浆、粘土水泥浆及各种化学浆材进行液化,而后将其注入地基介质中或建筑物与地基的缝隙部位,从而达到加固淤泥软土地基的效果。
(8)硅化加固法
这种加固方法来源于对于电渗原理以及电动硅化法的充分利用。通常采用轮换等操作手段,通过使用网状的带孔眼的注浆管,在土中注入硅酸钠溶液和氯化钙溶液。融入土中的溶液经过特定的化学反应,能够生成一种胶凝物质,这种胶凝物质不仅可以提高土颗粒之间的连接性,还能够有效提高土体力学的强度。硅化加固法还可以活化土颗粒的表面,同样起到对土体进行加固的效果。
(9)加筋法
加筋法是为了减少整体变形,并且同时达到增强整体稳定的性能的目的。将抗拉能力强的土工合成材料埋置于土层中,土颗粒与拉筋之间产生摩擦力,使土与加筋材料形成一个完整的整体,从而提高地基强度。
(10)桩基法
由于公路工程的复杂性,影响其工程质量的因素较多,监理工程师必须对公路工程的相关技术规范、规程以及合同文件内容熟练掌握,严格按照规范、文件的要求对施工的全过程进行有效的监控和管理,包括原材料的审查、施工工艺的采用及施工的过程,加强工作主动性和责任心。原材料是保证公路工程质量的根本,因此必须加强所有原料的检测和检验,在材料的进场前后不间断的进行抽样,拒绝不合格原料的使用,从根源上消除影响工程质量的因素。全过程监理是控制工程质量的基本方法,包括事前控制、事中控制和事后控制三个方面。事前控制在工程的准备阶段,包括测量成果复核、实验数据审核及施工工艺的审批等内容;事中控制在施工过程中,包括人为因素的监督、事件、事故的处理等内容;事后控制是指工程结束后的返工处理等。隐蔽工程具有隐蔽性强、不易控制的特点,是工程质量的隐患点,也是公路工程监理工作中工程质量控制的重点内容。工程监理的过程控制可以有效解决这个问题,在隐蔽施工的关键工序时,做到全面细致的检查和全方位的旁站措施,及时对发现的质量缺陷予以提出,并督促改造,避免对工程质量造成更大影响。以巡视、旁站、抽样和检查为主要形式的现场监督,是公路工程监理监控的重要措施。根据监理细则,监理工程师需要对工程施工中的每一道工序进行巡视、旁站、抽样和检查,并对监督结果进行详细的记录,对已出现的问题及时提出,确保工程质量问题的可查性和工程资料的完整性。
二、公路工程监理对工程进度的控制
公路工程的工期在合同中有明确的规定,按时完成工程涉及到业主及施工方的利益问题。公路工程的工期一般较长,工期对工程投资的影响也较大,因此,工程进度的控制也是公路工程监理工作的重要内容。施工计划的是施工单位控制工期的有效措施,制定过程中要充分考虑各种不确定因素对工程工期的影响,并制定相应的应当措施,以消除不利影响。监理工程师要及时对施工单位的实际进度与计划进度进行对比,对延后现象及时提出,并协助施工单位调整工作计划,确保工程在工期内保质完成。在监理过程中,需要注意:1.要求现场监理人员对分部分项工程的进度逐一分解,单独控制,对自己控制管理的工程细目作出相应的月进度、旬进度控制图和形象进度表,以便明确的找出实际进度与计划进度之间的差距,并及时了解分析原因,督促施工单位采取补救措施,以便施工进度与计划同步。2.采用网络计划对工程进度进行监督和控制,因为它是一种科学的管理模式,它在编制网络计划时,已经对各种不利或有利的影响因素作了科学系统的分析归纳。这样使用它就可以随时检查工程进度进展情况,掌握关键线路改变情况,以便及时地调整、优化、指导施工计划。3.业主对计划的实施起到很大的影响作用,这主要是指政策和资金方面,因此监理工程师要协调好业主和施工单位之间的关系,尽量为进度计划的落实提供有利条件。
三、我国的公路工程监理工作存在的问题
(一)监理单位的体制问题我国目前的监理单位以股份制的民营企业为主,内部人员间是股东与雇员的关系,除了股东本身和注册在公司的监理工程师外,其他监理工作人员的流动性较大,甚至是在一个工程的周期之内,监理人员都会出现很多的更换现象。同时,还存在人员挂靠、公司资质挂靠等违规行为。(二)监理人员的业务素质问题我国从事公路监理的人员来源比较复杂,既有刚毕业的专业院校的毕业生,也有退休返聘的老工程师,还有大量从公路行业的设计、施工、业主等部门跳槽而来的人员,甚至还有一部分半路出家的非专业人员。虽然监理行业的准入制度已经实施多年,我国的监理人员总体素质有了很大提升,但仍存在基层监理人员文化水平普遍偏低的问题。(三)监理人员的工作态度问题监理工作是一项主观性较强的工作,监理人员的工作态度直接决定着监理工作的效果。由于基层监理人员业务水平参差不齐、流动性较大等原因,造成了实际监理工作效果不理想的现象。特别是现场隐蔽工程旁站及巡视等重点工作的不到位,极易出现工程质量问题。
四、结语
关键词:水利水电;工程;基础施工;技术
1探究并剖析水利水电工程基础施工技术
在我国水利水电工程建设中,基础施工技术的应用情况直接关系到整个工程项目的建设质量,这是因为基础工程承担着重要的荷载作用,再加上水电工程施工建设结构和地理位置的特殊性等,这些都会对建设产生不同程度的影响,因此,工程在建设中,一旦出现技术不达标或者是不按照相关建设要求进行,极易导致整个水利水电工程出现严重的质量缺陷和不安全事故等。这种情况下,必须要通过加强基础施工技术来确保整个水利水电工程的建设质量,重视施工技术和工艺,才能避免该项工程在建设过程中出现的风险事故,确保建设质量。水利水电工程作为国民经济的支柱行业之一,为经济和储备能源资源发挥着非常重要的作用,在很大程度上弥补了我国能源分布不均匀、地区性能源缺陷等局限性,所以确保该项工程施工技术并做好施工建设的质量控制十分关键。就基础施工技术而言,通过提升自身施工质量来保证整个水利水电工程的建设质量。笔者结合自身工作实践及水利水电工程施工资料,总结并归纳出几点有关基础施工技术,具体表现在:①锚固技术。锚固技术作为基础施工建设的常用技术之一,该技术的作用是:提高水利水电工程结构的整体性能。由于我国大部分水利水电工程建设在复杂的地理环境下,如山区等,锚固技术的应用能够减少施工过程中的人力、物力和材料等,保证施工工程稳定性、可靠性的前提下,进一步提高工程的建设效率,此外,这种技术还能够在一定程度上避免对周围自然环境对工程建设带来的不利影响。②水泥土加固技术。该技术是一种非常常见的地基处理技术,在应用过程,通过控制拌合来保证施工质量。但要注意在拌合过程中要确保水和水泥的强度,只有重视这两大因素,才能帮助施工单位来提升工程建设的质量。工程界将水泥土加固技术应用到水利水电工程的建设中,其目的是:保证整个工程的地基承载能力,提高其稳定性。所以施工技术人员要控制好水泥灌浆的深度(50cm左右)、土壤质量等因素,确保施工质量符合建设标准,避免出现质量缺陷及其他不良影响。③预应力管桩技术。该技术主要采用锤击灌入或者是静力压入等方法,将桩送入地基持力层的一种常用地基处理方式,将其应用于水利水电工程的基础施工中,能够帮助施工单位进行质量检验。一旦出现质量问题时,则需要及时制定解决策略,确保预应力管桩技术的整体质量符合建设标准。除此之外,基础施工还包含软土处理技术,该技术应用时,一般采用重锤夯实法、排水固结法、挖出置换法等方法,对水利水电工程建设中的软土地基进行处理,最终确保基础工程的整体性能满足其承载力的要求。
2控制水利水电工程基础施工技术的对策
针对上述基础施工技术及其在水利水电工程施工中的应用情况,为了进一步规范基础施工技术,保证基础施工技术在水利水电工程中的建设质量,发挥该项技术的稳定性、牢固性等作用,笔者阐述了上述锚固技术、预应力管桩技术、水泥土技术等,并结合实践经验,从实际情况出发,提出几点有关控制水利水电基础施工技术的对策和建议,希望这些建议能够进一步提高施工技术的应用质量,更好的满足工程项目建设的要求,具体包括以下几点:
2.1完善机制,加强施工管理
水利水电工程项目在建设过程中,必须严格按照国家行业标准制定科学的管理制度,以此来加强基础施工的管理。另外,在施工建设中,还需要结合施工现状,及相关数据,及时排查工程项目建设过程中存在的质量问题及安全隐患,制定有效的解决对策,进一步提高水利水电工程的建设质量。
2.2创新技术
科学技术的迅猛发展,为各行各业提供了诸多技术保障。在水利水电工程的基础施工建设过程中,使用的设备要以先进的技术进行定期检修,并且要不断改进设备的使用性能,这就提出了创新技术的理念。所以施工建设单位要定期对施工人员和技术人员进行培训,不断提升他们的专业理论水平和技术操作水平,同时要求他们要熟练掌握各个设备的使用方法和新材料的使用情况,从而进一步提升基础施工的建设效率。
2.3提倡使用GPS定位系统
GPS定位系统应用于水利水电工程的基础施工中,能够大大提高该项目的建设效率和质量,并且在一定程度上减少了工程投资。GPS定位系统主要利用卫星的连接,对水利水电工程的基础施工进行信息搜集,并与地面定位技术进行对比,以此来为施工提供技术保障,精确相关测量等。总之,将GPS定位系统应用到水利水电工程的基础施工中,对于促进整个工程项目的技术发展有着积极的影响。
3结语
综上,水利水电工程项目建设的质量直接影响该项工程的使用情况及使用年限,同样也是关系着人们生产生活,所以,要通过加强基础施工技术来保障整个水利水电工程项目建设质量。文中在研究基础施工技术过程中,分别从:锚固技术、水泥土加固技术、软土地基基础及预应力管桩技术方面进行探究并剖析,促使其为水利水电工程项目创造了良好的条件,保证整个工程顺利进行。尽管如此,但该技术在应用过程中,还存在一些质量缺陷、技术不到位等问题,诸多因素限制了施工进度,所以,在后期施工应用中,需要技术人员注意施工质量控制要点,不断总结施工经验,从实践工作情况出发,更好的把握基础施工的各个环节,从而推动我国水利水电工程的建设步伐。
作者:李莎 单位:广东省水利水电建设有限公司
参考文献:
[1]张海学,吴昌新,周凤扬,等.真空预压软基处理技术在江苏省沿海水利水电工程中的应用[J].治淮,2013(10):104-106.