前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇电路设计分析范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
1.1SⅡ-Ⅱ接发车进路信号机只点绿黄灯故障
1).检查SⅡ-Ⅱ接发车进路信号机DS6-K5B型计算机联锁驱动条件。TXJ:发车进路锁闭,且具备信号开放条件后,检查信阳上行场送来的SⅠ-ⅡLXJF、SⅠ-ⅡZXJF、SⅠ-ⅡTXJF时驱动TXJ,条件不满足时恢复落下。LUXJ:发车进路锁闭,且具备信号开放条件后,检查信阳上行场送来的SⅠ-ⅡLXJF、SⅠ-ⅡZXJF、SⅠ-ⅡTXJF,信阳客站送来的SKL4LXJF、SKL4ZXJF、SKL4LUJF、SKL4TJF时驱动LUXJ,条件不满足时恢复落下。
2).检查信阳下行场与上行场场间联系电路。查找采集信息发现,DS6-K5B型计算机联锁没有采集到SⅠ-ⅡTXJF条件,原因是上、下行场的场间联系传送SⅠ-ⅡTXJF的电缆断线,下行场SⅠ-ⅡTXJF,造成下行场SⅡ-Ⅱ接发车进路信号机TXJ不驱动,DS6-K5B型计算机联锁只驱动LUXJ,使SⅡ-Ⅱ接发车进路信号机点绿黄灯。
1.2Ⅱ-ⅡG1股道SⅡ-Ⅱ发送器错误发绿码
SⅡ-Ⅱ发送器发绿码需满足SⅡ-ⅡLXJF1、SⅡ-ⅡZTJ、SⅠ-ⅡLXJF、SⅠ-ⅡZXJF、SKL4LXJF、SKL4ZXJF。SKⅡLXJF、SKⅡZTJF这些条件,如在该编码电路中没有检查SⅡ-Ⅱ接发车进路信号机LUXJ、TXJ的接点条件,就会出现SⅡ-Ⅱ接发车进路信号机点绿黄灯,而地面错误发绿码,信号显示与接近区段发码不一致的情况。
2解决方案
关键词:非接触卡;MCRF200;读写器;PSK;负载调制
1MCRF200简介
MCRF200是Microchip公司生产的非接触式可编程无源RFID器件,它的工作频率载波为125kHz。该器件有两种工作模式:初始Native模式和读模式。所谓初始模式是指MCRF200具有一个未被编程的存贮阵列,而且能够在非接触编程时提供一个缺损状态其波特率为载波频率fc的128分频,调制方式为FSK,数据码为NRZ码;而读模式是指在接触或非接触方式编程后的永久工作模式,在该模式下,MCRF200芯片中配置寄存器详见后述的锁存位CB12置1,芯片上电后,将依据配置寄存器的设置并按协议发送数据。
MCRF200的其它主要性能如下:
带有一次可编程(OTP)的96位或128位用户存储器(支持48位或64位协议);
内含整流和稳压电路;
功率损耗极低;
编码方式可在NRZ码、曼彻斯特码、差分曼彻斯特码之间选择;
调制方式可在直接调制(ASK)、FSK、PSK1和PSK2(PSK1、PSK2定义见后述中选择);
采用PDIP和SOIC封装形式。
2MCRF200的工作原理
2.1应用系统构成
MCRF200的典型应用系统构成如图1所示。图中,引脚VA和VB接电感L1和电容C1构成的外接谐振电路,该LC谐振电路的谐振频率为125kHz。读写器边的LC电路也谐振于125kHz则用于输出射频能量,同时可接收MCRF200芯片以负载调制方式送来的数据信号。
2.2芯片内部组成原理
图3
MCRF200芯片的内部电路框图如图2所示,它由射频前端电路和存贮器电路两大块组成。其中,射频前端电路用于完成芯片所有的模拟信号处理和变换功能,包括电源、时钟、载波中断检测、上电复位、负载调制等电路。此外,它还用来实现编码、调制方式的逻辑控制;而配置寄存器电路则用于确定芯片的工作参数。该配置寄存器不能被非接触方式编程,因为它在非接触方式下已经被Microchip公司在生产时进行过编程。
配置寄存器各位的控制功能如下:
CB1:用于设置存贮器阵列的大小。当CB1为1时,用户阵列为128位;为0时,其用户阵列为96位。
CB2、CB3、CB4位:该三位编码可用于设置波特率,其编码表列于表1。
CB5用来设置同步字。CB5为1时,有1.5位同步字;为0时,无同步字。
CB6与CB7:用于设置数据编码方式,具体见表2所列。
CB8与CB9:调制方式选择位,具体见表3。
CB10:PSK速率选择位。该位为1时选择fc/4;为0时则选择fc/2其中fc为载波频率。
CB11:该位总为0。
CB12:该位为0时,存贮阵列未锁定;为1时,存贮阵列被锁定。
表1波特率设置表(fc为载波频率)
CB2CB3CB4波特率CB2CB3CB4波特率
000fc/128100fc/64
001fc/100101fc/50
010fc/80110fc/40
011fc/32111fc/16
表2数据编码方式设置
CB70011
CB60101
编码方式NRZ-L曼彻斯特编码差分曼彻斯特码反曼彻斯特码
表3调制方式选择(fc为载波频率)
CB9CB8市制方式
00FSK:0为fc/8;1为fc/10
01PSK1
10直接
11PSK2
3PSK读写器电路设计
3.1PSK调制
MCRF200的PSK调制方式有两种:PSK1和PSK2。采用PSK1调制时,每当相位在数据位的上升沿或下降沿时,将在从位起始处跳变180°;而在PSK2调制时,相位将在数据位为1时从位起始处跳变180°,为0时则相位不变。PSK1是一种绝对码方式,PSK2是一种相对码方式,因此,PSK读写器硬件只能按一种调制方式设计(如PSK1),而当要工作在另一调制方式时,可用软件进行转换。
图3所示是一个典型的PSK调制信号波形示意图,图中假设PSK速率为数据位速率的8倍。
3.2PSK读写器
PSK读写器的电路结构如图4所示。它由4MHz晶体振荡器、分频器、载波功放、包络检波器、滤波放大、脉冲成形器、相位比较器、微处理器及与主机接口电路等组成。
图4中,读写器发收两通道的信号流程已很清楚,这些电路的设计参考文献很多。下面仅就功率放大器、包络检波、PSK解调以及RS-232串口电路进行分析。
(1)功放电路
该PSK读写器的功放电路如图5所示。图中,T1、T2、T3用于组成B类放大器,L1、C1和C2串联谐振于125kHz,选通分频器输出的125kHz载波加至功放,L2和C3用于构成输出谐振电路,这样,在L2上将产生电磁场,从而保证卡芯片进入场区时能获得足够的载波能量而被激活。但L2所产生的场能量也有一定的限制,通常在30m处测试应不超过65dBμV(dBμV=20logμV)。
(2)包络检波电路
非接触IC卡的负载调制通常采用AM方式,读写器中的载波解调采用简单的包络检波电路,图5中,D3和D4的作用是对芯片负载调制信号进行全波检波,以检出PSK包络。
而R8和C5组成的低通滤波器则应满足包络检波条件,即:
R8C5≥(5-10)/ωC
式中:ωC为载波角频率。但应注意为了减小惰性失真,R8和C5不应取值过大。
(3)PSK解调器电路
PSK解调电路是读写器能正确将PSK调制信号变换为NRZ码的关键电路,其具体电路见图6所示。图中,从脉冲形成电路送出的62.5kHz的PSK方波信号假定配置寄存器CB10位为0,即PSK速率为fc/2加至触发器D3的时钟输入端。触发器D3的数据输入端D加入的是由125kHz载波基准形成的62.5kHz基准方波信号,这样,若时钟与D输入端两信号相位差为90°或相位差不偏至0°或180°附近,则触发器D3的Q端输出信号将是可由微控制器MCU读入的数据NRZ码。
分频器输出的125kHz方波基准信号经触发器D2变换为62.5kHz的方波,而异或门1利用触发器输出D1的高低电平变化则可使加至触发器D2的125kHz基准信号相位改变180°,该180°的相位变化在触发器D2的Q输出端会产生90°的相移。
而基准62.5kHz信号在经异或门4后将产生125kHz脉冲信号R3C3产生延迟。同样,也将产生62.5kHz的PSK数据信号,在经R2、C2和异或门后,也将产生125kHz的脉冲信号。这两信号可在触发器D4中进行相位比较以在触发器D4的Q端输出125kHz信号,其占空比正比于两信号间的相位差。当两个62.5kHz信号的相位差为90°时,其占空比为50%,这对于PSK解调是理想的,若它们的相位差偏离90°而向0°或180°偏移时,其占空比也将同时减小或增大。
由R1和C1构成的滤波电路输出的直流电平大小正比于相位差,该直流电压加至一个窗口检测电路。若直流电平靠近中间,则窗口检测器输出1为高,输出2为低,异或非后为低,因而不改变触发器D1的Q输出状态;若直流电平过高,则窗口检测器1、2输出端都为高;此时,若直流电平较低,则窗口检测器1、2输出端都为低。即触发器D4输出的占空比过大或过小时,窗口检测器的输出会使触发器D1的时钟输入端产生上跳变化,从而引起触发器D1输出Q的电平变化而使触发器D2输出发生90°相移,最终使触发器D3达到最佳的PSK解调状态。
1.1欠压锁定电路与过电流保护电路
欠压锁定(UVLO)是指当输入电源电压低于欠压锁定电路的预设值时,电源芯片不工作,以保证芯片安全并降低不必要的功耗。LT3748通过连接在VIN和EN/UVLO引脚之间的分压电阻R1与R2设定芯片工作的阈值电压。当芯片EN/UVLO引脚上的电压达到1.223V时,LT3748芯片内部所有电路都将启动。过电流保护电路是指在电源过载或输出短路时保护电源装置,防止负载损坏。此芯片通过SENSE引脚端的电阻R5来设定过电流,SENSE引脚的电压VS需要在0.1V以下。
1.2开关变压器设定
单端反激式开关稳压电源在设计开关变压器参数时的计算极为关键,设计中应尽量使开关管导通期间变压器所储存能量等于功率开关管关闭期间变压器所释放的能量,提高开关变压器的利用率,从而提高电路的转化效率。开关变压器的设定主要取决于初级线圈电感量和线圈的饱和电流两方面。开关变压器初级绕组的电感值须大于临界电感值(即当功率开关管截止期结束时,功率开关变压器中存储的能量正好释放完毕时开关变压器初级绕组所对应的电感值)。此外,开关变压器还应满足其线圈中的电流不能超过线圈自身饱和电流,因为一旦造成线圈中电流饱和,能量将不能存储在变压器的铁芯中,进而传输到次级端,而会被消耗在铁芯中。本设计中开关变压器选取为VP-0047-R,它具有体积小、自身电阻低、低噪声和紧耦合性等优点。VP-0047-R有六个独立绕组,每个绕组的电感量和饱和电流分别为3.8μH和2.81A,并可以根据需求的不同而连接成初次级线圈比不同的变压器。设计中将此变压器设置为初、次级线圈比为4∶1。其中初级线圈为四个绕组的串联形式,则初级线圈的电感量是60.8μH。次级线圈为两个绕组的并联形式,这种连接可增大绕组的饱和电流,避免次级线圈在输出电流较大时饱和。
1.3功率开关管及钳位电路设计
开关管的选取主要由漏源之间的耐压值以及最大漏极电流决定。由于在开关管关断的瞬间,变压器产生的漏感将生成尖峰脉冲电压,并且在初级线圈上也会有感应电压生成,这些都会叠加在直流输入电压VIN上。而在开关管导通时,功率开关变压器初级绕组的充电电流将产生尖峰电流,所以功率开关管的漏极电流应大于该尖峰电流。设计中Q1选择Si7464DP。为了减少漏感对电路产生的影响,并吸收已经由漏感产生的尖峰电压,在开关管的漏极设计了钳位保护电路。通常钳位电路的形式有DZ、RCD以及RC等,考虑到电路的简单和小型化,本设计采用RC钳位电路,取值为66Ω和150pF。在Q1截止的瞬间,储存在漏感中的能量通过电容C6后,就被电阻R8消耗掉了。钳位电路的设计非常必要,尤其在输出电流较大的情况下,可通过钳位电路将漏感吸收,从而保证输出电压的稳定。
2测试结果与分析
由于输入电压为-48V,所以测试中将稳压电源的正端接在PCB电路板的地端,稳压电源的负端接到PCB上的电源输入端,此时在PCB的电源和地之间就能得到负的电压。测试前应注意以下两点:首先由于开关电源在供电初始会产生较大的浪涌电流,所以在测试时对稳压电源限流值的设定要比实际输出电流值稍大一些。其次单端隔离反激式开关电源测试时不能空载。从测试结果可以看出,此电源电路不仅实现了电源从负到正的极性变换,并且电路最大输出电流为3.245A,输出电压接近8V,证明本电路设计已经达到了最初要求输出8V/2A电源的目的。将电源的电压输出端接4Ω、50W的固定负载电阻,输入端接到可调稳压电源输出端。调整输入稳压电源在36V~54V之间变化时,测量输出端电压。根据电压调整率的公式,可计算出电路的电压调整率为0.7%。当输入电压变为20V时,输出电压有0.06V的变化,可看出输出电压波动不大。
3结论
关键词:数字集成;放大器;整体电路
本文主要介绍的设计思路,是以运用TDA7481为主进行设计的思路。使用这种芯片为核心,可以在多种模式下做到对电路的自由切换,大大提升了整机的实用性。而且,这套设计采用的是数字轻触式的按键控制系统,可以更加轻松地实现对音量的控制,这种设计相比于传统的按键设计而言,不仅可以方便操作,而且能够大大增加机器的使用寿命。另外,这种设计比传统的设计输出功率更高,传出的声音也不容易失真,成为很多音响制造企业应用的首选。正是因为如此,本文才会选用这样的设计进行介绍。
1.音频功率放大器的发展历程以及研究的目的与意义
音频功率放大器是一个技术已经相当成熟的领域,最近的几十年以来,随着无数科学工作者的不懈努力,功率放大器无论是线路技术还是元器件,甚至于人们的思想认识都有了长足的进步。回顾一下功率放大器的发展历程,我们可以很清楚地发现,音频功率放大器的发展与电子技术的发展是紧密联系的。正如电子计算机经历了电子管、晶体管、集成电路的发展历程一样,音频功率放大器也经历了类似的发展过程。从最初的电子管放大器,到现在的数字集成放大器,音频功率放大器正在一步步走向成熟。在现今,数字集成功率播放器已经成为了一种越来越主流的发展趋势,这种功率放大器以其较高的输出效率、较好的声音保真效果,正在受到更多人的青睐与肯定。长期以来,高品质的音频放大器的按照工作类别进行划分,只有A类和AB类两种。造成这种现象的主要原因就是,一直以来,功率放大器的元器件都是以电子管为主,在这种情况下,单纯的B类功率放大器的播放效果会严重失真,难以被人们所接受。而只有A类功率放大器能有效保障声音的真实性。现在,随着科技的发展,以数字集成方式进行工作的功率放大器开始出现,这种新型的功率放大器以输出的功率大、效率高、生意失真小等优势一跃成为音响制造企业的新宠儿。然而对于我国的企业来说,这项新技术我们还知之甚少,相关的研究工作困难重重。虽然一些科研团队已经取得了不错的成绩,但是这还远远不够。只有真正了解了数值集成功率放大器的整体电路设计,才能在之后的设计工作中事半功倍,真正生产出属于我们自己的数字集成功率放大器。
2.数字集成功率放大器整体电路的设计理念
本文所要介绍的数字集成功率放大器采用以TDA7481芯片为核心的设计理念,主要由数字音量控制器、音频选择集合而成的D类功率放大器。具体的设计可以分为三个部分进行介绍,即输入切换部分、音量调整部分以及功率放大器部分。采用这样的设计,功率放大器的输出效率可以达到80%以上,真正实现对音频的高清播放。
3.输入切换部分的设计
3.1设计原理
在该设计中,输入切换部分采用的是TC9052P的电路。在电路中设置了五个连接端口,并分别用五个数字轻触式按键进行控制。届时通过操作这五个按键就可以对即将输入的五组音频信号进行控制与调整,使音频播放更加真实与优美。而每个按键上方都会有一个LED指示灯,可以时刻提醒操作者那个端口已经输入了信号,那个端口没有输入信号。这里需要注意的是,当操作者同时输入多组信号的时候,该系统只能选择支持一种信号。这样就可以避免因为操作者的疏忽造成混乱。
3.2相关电路的使用说明
TC9152P的立体声线路开关具有五个功能,对于单、双电源都具有良好的适应性。一般情况下,功放器的运行电压在7.5~30V之间,而本文所介绍的设计则主要使用于运行电压在12V左右的电路。在该设计中,两个主要引脚将分别接在+12V与-12V的端口,两个引脚分别连接左右声道的输出端。另外还有两组一共十个引脚分别对应五个按键的左右声道输入端。还要有五个引脚分别负责对五个按键的开关控制。而当任意按键的开关处于闭合状态时,另外四个按键的开关将会自动跳开。
4.数字音量控制部分的设计
4.1电路的使用说明
在这一部分的电路中,分别有两个引脚作为信号的输入端口,两个引脚作为控制之后的音量输出端口。还要有两个引脚分别接入正负直流电压,两个引脚为音量的控制端口,在预留几个引脚接地,这个电路就基本完成了。
4.2元件的参数与电路屏蔽
这一部分的各个元件的参数如下:输入电流1mA到3mA。输入电压9V,电容4.7u。一般情况下,电路的工作环境中很难真正做到排除电磁干扰,一旦这些干扰正常信号的电磁波进入电路,经过放大器地层层放大,就会形成一个非常大的干扰电压,具体表现在音频的输出中,就是一个突如其来的尖锐噪音,严重影响音频播放的质量。在这样的情况下,功率放大器中必须采用电路屏蔽措施以杜绝干扰。一般情况下经常采用的电路屏蔽措施主要有静电屏蔽与磁场屏蔽两种,屏蔽结构所用的材料多数采取比较导电的铜或者铝制作成的薄板,在实际的工作中,这样的薄板主要起到的是屏蔽罩的作用,从而隔绝干扰源,将其进行妥善的接地处理。
5.功率放大器部分的设计
对于本次设计来说,其真正的核心是功率放大器,其他的部分最终都是要为功率放大器来服务的。由于数字集成功率放大器具有无可比拟的优势,因此对于其设计指标必须严格要求。其综合的设计指标必须高出政绩效率的80%以上想要完成如此之高的指标,采用TDA7481作为功率放大的核心部件是一个不错的选择。然而由于TDA7481只是一款单声道的放大器,因此在整体电路的设计中必须同时用到两块同样的TDA7481,这样才能实现单双声道的自由切换,保障功率放大器与音响设备整体的质量。
6.总结
对于音响设备制造企业来说,开发出数字集成功率放大器对提高企业的竞争力,获得更大的收益是一个非常有效的途径。然而至今我国不少企业的研发团队依然不得其门而入,导致这一部分的设备长期以来进口。为改变这一状况,本文对数字集成功率放大器的整体设计思路进行了简单的介绍,希望能对相关企业有所帮助。
参考文献
[1]潘文光,于云丰,马成炎,叶甜春.一种增益可控音频前置放大器电路的设计[J].微电子学,2010,02:186-189.
关键词:输电线路;路径;杆塔
随着国民经济快速增长,各地电网建设迅猛发展,从过去的“几年建一条线路”到现在的“一年建几条线路”实现了跨越式发展,供电可靠性进一步提高,电网输送能力大大增强,但输电线路建设的内部环境和外部空间却越来越小。各地进行土地开发线路路径选择困难,施工占地的民事工作难以协调,线路改造停电时间短,工程建设资金短缺等是电网建设中遇到的新问题。如何应对新形势,最大限度地满足电网建设需要已成为技术部门不断研究的课题。本文从设计角度围绕方便施工、降低造价、利于运行等方面,对输电线路设计中应注意的问题进行了探讨。
1设计中应注意的问题
1.1路径选择
路径选择和勘测是整个线路设计中的关键,方案的合理性对线路的经济、技术指标和施工、运行条件起着重要作用。为了做到既合理的缩短路径长度、降低线路投资又保证线路安全可靠、运行方便,一条线路有时需要徒步往返3~5趟才能确定出最佳方案,所以线路勘测工作是对设计人员业务水平、耐心和责任心的综合考验。
在工程选线阶段,设计人员要根据每项工程的实际情况,对线路沿线地上、地下、在建、拟建的工程设施进行充分搜资和调研,进行多路径方案比选,尽可能选择长度短、转角少、交叉跨越少,地形条件较好的方案。综合考虑清赔费用和民事工作,尽可能避开树木、房屋和经济作物种植区。
在勘测工作中做到兼顾杆位的经济合理性和关键杆位设立的可能性(如转角点、交跨点和必须设立杆塔的特殊地点等),个别特殊地段更要反复测量比较,使杆塔位置尽量避开交通困难地区,为组立杆塔和紧线创造较好的施工条件。
1.2杆塔选型
不同的杆塔型式在造价、占地、施工、运输和运行安全等方面均不相同,杆塔工程的费用约占整个工程的30%~40%,合理选择杆塔型式是关键。
对于新建工程若投资允许一般只选用1~2种直线水泥杆,跨越、耐张和转角尽量选用角钢塔,材料准备简单明了、施工作业方便且提高了线路的安全水平。对于同塔多回且沿规划路建设的线路,杆塔一般采用占地少的钢管塔,但大的转角塔若采用钢管塔由于结构上的原因极易造成杆顶挠度变形,基础施工费用也会比角钢塔增加一倍,直线塔采用钢管塔,转角塔采用角钢塔的方案比较合理,能够满足环境、投资和安全要求。
针对多条老线路运行十几年后出现对地距离不够造成隐患的情况,在新建线路设计中适当选用较高的杆塔并缩小水平档距可提高导线对地距离。在线路加高工程中设计采用占地小、安装方便的酒杯型(Y型)钢管塔,施工工期可由传统杆塔的3~5天缩短为1天,能够减少施工停电时间。
1.3基础设计
杆塔基础作为输电线路结构的重要组成部分,它的造价、工期和劳动消耗量在整个线路工程中占很大比重。其施工工期约占整个工期一半时间,运输量约占整个工程的60%,费用约占整个工程的20%~35%,基础选型、设计及施工的优劣直接影响着线路工程的建设。
滨州市位于山东省北部,属于黄河冲积平原,土质大部分为粉质粘土,而且地下水位高,一般为±0.0~1.0m,地基承载力又低,一般为70~90kN/m2。通俗讲基础越深受力越好、体积越小,但由于受地下水的影响,基础深埋后泥水、流砂现象出现的几率就会加大,给施工带来极大困难,既影响工期又增加投资。
由于地质的特殊性和埋深的局限性,当前的基础型式只有采取浅埋式,通过适当加大基础地板尺寸,增加基础自重来满足上拔稳定才是比较安全经济的。直线塔埋深控制在2m左右,承力塔埋深控制在3~4m左右可减少地下水对施工的影响。
根据工程实际地质情况每基塔的受力情况逐地段逐基进行优化设计比较重要,特别对于影响造价较大的承力塔,由四腿等大细化为两拉两压或三拉一压才是经济合理的。
2结束语
纵观近年来的输电建设工程,每项工程都有各自特点,设计中脱离工程实际,一味生搬硬套是无法保证设计质量与满足电网发展需要的。只有结合实际,因地制宜,通过优化方案,科技攻关,不断探索与创新,才能满足建设坚强电网的要求,才能开创工程设计“技术先进、安全合理”的全新局面。
参考文献
[1]110~500kV架空送电线路设计技术规定.国家经贸委,1999,10.