首页 > 文章中心 > 电子电路设计与分析

电子电路设计与分析

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇电子电路设计与分析范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

电子电路设计与分析

电子电路设计与分析范文第1篇

利用硬件描述语言VHDL,数字电路系统可从系统行为级、寄存器传输级和门级三个不同层次进行设计,即上层到下层(从抽象到具体)逐层描述自己的设计思想,用一系列分层次的模块来表示极其复杂的数字系统。然后,利用EDA工具,逐层进行仿真验证,再把其中需要变为实际电路的模块组合,经过自动综合工具转换到门级电路网表。接着,再用专用集成电路(ASIC)或现场可编程门阵列(FPGA)自动布局布线工具,把网表转换为要实现的具体电路布线结构。目前,这种高层次设计的方法已被广泛采用。据统计,目前在美国硅谷约有90%以上的ASIC和FPGA采用硬件描述语言进行设计。VHDL的应用已成为当今以及未来EDA解决方案的核心,而且是复杂数字系统设计的核心。

一、VHDL的特点

VHDL是一种全方位的硬件描述语言,具有极强的描述能力,能支持系统行为级、寄存器传输级和逻辑门级三个不同层次的设计,支持结构、数据流、行为三种描述形式的混合描述,覆盖面广,抽象能力强,因此在实际应用中越来越广泛。VHDL的主要特点有:

1.功能强大。与其他的硬件描述语言相比,VHDL具有更强的描述能力和语言结构,可以用简洁的源代码描述复杂的逻辑控制。它具有多层次的设计描述功能,层层细化,最后直接生成电路级描述。

2.系统硬件描述能力强。VHDL具有丰富的数据类型,丰富的仿真语句和库函数,在任何大系统的设计早期就能查验设计系统功能的可行性,随时可对设计进行仿真模拟。

3.设计与工艺无关。用VHDL进行硬件电路设计时,并不需要首先考虑选择完成设计的器件。VHDL的硬件描述与具体的工艺和硬件结构无关,因此VHDL设计程序的硬件实现目标器件有广阔的选择范围。

4.设计方法灵活,易于修改。VHDL语言标准、规范,大多数EDA工具都支持VHDL。在硬件设计过程中,用VHDL语言编写的源程序便于管理,VHDL易读、结构模块化,方便修改、交流和保存。

5.支持广泛,移植能力强。VHDL是一个标准语言,在电子设计领域,为众多的EDA工具支持,因此移植能力好。

二、VHDL的结构和设计方法

1.VHDL的基本结构

VHDL的结构模型包括五个部分:实体、结构体、配置、程序包、库。前四种可分别编译,编译后放入库中,以备上层模块调用。

(1)实体定义了器件的输入输出端口,设计实体是VHDL的基本单元,可以表示整个系统、一块电路板、一个芯片或一个门电路。

(2)结构体定义实体的实现,即描述系统内部的结构和行为。

(3)配置用于从库中选取所需单元来组成系统设计的不同版本,为实体选定某个特定的结构体。

(4)程序包存放各设计模块都能共享的数据类型、常数和子程序等。

(5)库用来存放编译结果,包括实体、结构体、配置、程序包。

2.VHDL的设计方法

VHDL将层次化的设计方法引入到硬件描述中,自上向下的设计是从系统级开始,将整个系统划分为子模块,然后对这些子模块再进行进一步的划分,直到可以直接用库中的元件来实现为止。在设计方法上,将传统的“电路设计硬件搭试调试焊接”模式转变为“功能设计软件模拟仿真下载”方式。数字系统的设计采用自顶向下的方法,最顶层电路设计是指系统的整体要求,最下层是指具体逻辑电路的实现。一般的电子系统设计可分为两个阶段,第一阶段是系统的逻辑设计和仿真,得出的是门级电路的原理图或网表;第二阶段设计如印刷电路板的布局布线,集成电路的版图设计等,得出的是最终的物理设计。

三、VHDL的应用实例

笔者以Max+plusⅡ软件作为平台的一个空调机控制器的设计为例,谈谈VHDL在数字电路设计中的具体应用。

实现一个控制器,常用有限状态机方法实现。传统的设计方法主要包括5个过程:确定原始状态图,状态简化,状态编码,触发器类型的选择及控制逻辑方程和输出方程的确定,画出电路原理图。采用这种方法设计复杂状态机将会十分繁杂。

利用VHDL来设计有限状态机,可以充分发挥硬件描述语言的抽象能力,进行功能描述,而具体的逻辑化简和电路设计可由计算机自动完成,从而提高了设计的工作效率,并且条理清晰,修改起来也更方便,所以很适合复杂时序电路的设计。应用VHDL设计状态机的步骤如下:第一,根据系统要求确定状态数量、状态转移的条件和各状态输出信号的赋值,并画出状态转移图;第二,按照状态转移图编写有限状态机的VHDL程序;第三,利用EDA工具进行功能仿真验证;第四,编程下载。

空调机控制器的设计。它的两个输入来自温度传感器,用于监测室内温度。如果室内温度正常,则temp-high和temp-low均为‘0’;如果室内温度过高,则temp-high为‘1’,temp-low为‘0’;如果室内温度过低,则temp-high为‘0’,temp-low为‘1’。根据temp-high和temp-low的值来决定当前的工作状态,并给出相应的制冷和制热输出信号。

按照绘制好的状态转移图编写VHDL程序,编程中采用case语句来描述状态的改变,它具有直观、条理清晰及易于修改等特点。也可以采用不同进程来实现状态的改变,所以编程方法多种。

功能仿真。利用Max+plusⅡ软件工具对所编程序进行编译、仿真。当temp-low为“1”,即温度过低,则heat为“1”(制热);当temp-high为“1”,即温度过高,则cool为“1”(制冷)。经综合后的仿真分析表明,该方案是合理可行的。通过仿真后,即可编程下载。

四、使用VHDL应注意的一些问题

由于VHDL语言是描述硬件行为的,相对其它开发软件的高级语言而言,在编程过程中有一些特殊性,所以经常会出现语法正确但无法综合的问题。其原因多半因为编程者对硬件内部的工作原理了解不够,写出的代码硬件无法实现。在此总结出一些应注意的问题:

电子电路设计与分析范文第2篇

【关键词】Pspice 模拟电子电路 电子电路设计

在电气、电子、自动化、计算机等类型的专业中,模拟电子电路设计是基础的技术课程,其理论知识较为抽象且电路的原理较为复杂,对于学生来说比较困难,教师也难以教好。本文提出将Pspice应用在模拟电子电路设计中,有了该软件,就等于有了电路以及实验室,完美地将理论与实践结合,为教师和学生提供便利。

1 Pspice软件概述

Pspice软件由Schematics(电路模拟器)、Pspice(仿真软件的数据处理器)、Probe(软件的图形后期处理器)、Stmed(产生信号的工具)、Parts(为器件建立模型的工具)和Pspice Optimizer(软件的优化设置工具)等组成,能够提供强大的电路图绘制、电路模拟仿真、图形后期处理等功能。

Pspice包括以下主要功能:直流特性分析,其中包囊直流静态工作点分析、直流灵敏度分析、直流扫描分析以及直流小信号传递函数值分析;交流扫描分析,包括频率特性分析和噪声分析;瞬态特性分析;蒙特卡罗分析;温度特性和参数扫描分析;最坏情况分析等。

在设计电子电路期间,以既定的功能及技术参数来制定设计方案,可以应用Pspice模拟和连接电路并检测电路设计有无达到预期效果,也可以在计算机上对电路的结构和相关参数进行修改,不断测试、观察输出的波形,直至达到设计要求,以便取得电路的最优技术指标,为电路设计的精准性评价提供便利。此外,还能够分析容差、敏捷性、最坏状况、温度特性等,这些都是传统的方法难以完成的,还能够比较各种设计方案的优劣,方便选择最优的方案,使电路设计最优化。

2 Pspice软件的仿真实例

Pspice软件在电子电路设计中的应用可以提高教学效率,仿真电路的步骤大致分为五步:第一,绘制电路图;第二,分析电路的特性和仿真参数;第三,仿真测验;第四,显示仿真的结果;第五,分析并输出相应的实验结果。下面对Pspice软件的仿真实例进行分析。

2.1 限幅电路的设计实验

限幅电路的示意图如图1所示,二极管的型号为DIN4148,电阻为1kΩ,电源电压为3伏特,当输入电压达到6sin wt的时候,电路要达到限制输入电压幅值的目的。

设置直流扫描分析以及瞬态分析,得出输入电压Ui以及输出电压U0的波形,如图2所示,可见电路对输入电压幅值的限制效果。

在限幅电路的瞬态分析结果示意图中可见(图3),当输入的电压超出固定范围时,超出的部分就会被截止,这样就能使信号的电压在一定的幅值内,防止电路受信号电压的影响出现故障。

2.2 RC正弦振荡电路设计实验

RC振荡电路在电子技术中得到广泛应用,振荡电路在自动进行振荡的过程中,其达到平衡的条件所花费的时长极短,在课堂上,教师直接讲授相关的理论会令学生难以在有限的课堂时间内理解并掌握,因为学生难以根据抽象的理论想象出波形。就此,将Pspice运用到其中,可以观察出振荡电路建立振荡的过程以及振荡器在稳定之后的波形,同时,可以改变电阻或电容,观察其对振荡电路会产生怎样的影响,更加便捷、直观地掌握振荡电路的设计原理及运行原理。

3 总结

从上述的设计实验中可知,在模拟电子电路设计中应用Pspice能够使设计仿真的效果精准且直观形象,为电子电路的设计提供极大便捷。Pspice是应用极广的电路设计及分析软件,具有绘制电路图、模拟仿真电路、图形后期处理等强大功能,在建立真实的电路之前,在该软件上设计、绘制仿真电路,依据具体的需求来设置相应的参数,断定电路设计是否科学、性能是否可靠、能否达到设计的要求、有无必要修改电路等,还可以对元件的变化会对电路造成怎样的影响进行综合评估,同时也能对一些电路的特性进行测量分析。总之,Pspice的应用能够为电子电路的模拟仿真设计带来很好的内外部条件,帮助设计者设计出最优电路,提高教师的教学效率和学生的掌握速率,从根本上减少成本支出,使电路设计最优化,提高电路性能的可靠性,是模拟电子电路设计中必不可少的仿真设计软件。

参考文献

[1]杨慧梅,朱勇.PSPICE仿真软件在《低频电子线路》教学中的应用[J].合肥工业大学学报(社会科学版),2010(05).

[2]付巍.Pspice在模拟电子电路设计中的应用[J].机械工程与自动化,2006(03).

[3]段天睿,滕照宇,姚勇,李兴红.柔性线路板串扰Pspice仿真分析及应用[J].安全与电磁兼容,2009(05).

[4]宋国民,王宁,张爱云,周维.Pspice仿真平台在共轨ECU设计中的应用[J]. 现代车用动力,2009(03)

[5]周润景,张丽娜,王志军.Pspice 电子电路设计与分析[M].北京: 机械工业出版社,2011

电子电路设计与分析范文第3篇

【关键词】电子电路设计;调试方法;步骤

当前,随着社会经济的不断发展和科学技术的不断进步,我国的电子行业已在市场经济领域中得到了大规模的发展,同时也得到了广泛的应用。其中,对于电子设备来说,电子电路的设计是其中的一个关键性内容,为了有效地满足社会对电子行业的需求,人们对电子电路的设计质量也提出了更高的要求,而电力的调试工作作为电子电路设计中的一个核心内容,重视和完善电路的调试工作便显得尤为重要,其对优化电子电路的设计质量具有非常重要的影响。

1电子电路设计常用的调试方法

电子电路设计常用的调试方法主要有两种,即分别为分块调试法和整体调试法。下面主要对此两种方法进行了一定的分析。

1.1分块调试法

在进行电子电路设计时,分块调试法的应用主要是将整个电子电路按照一定的规律分成不同类型的模块,然后再对每个模块进行调试。通常情况下,其主要是按照电路的不同功能进行划分的,由此则可以对不同电路部分的性能进行单独地调试。其中,在实际调试作业过程中,为了保障电子电路分块的科学合理性以及调试工作的正常开展,相关工作人员应首先对电子电路的工作方式、工作原理进行具体地掌握,然后在实际的调试过程中应严格按照电路的信号流通线路进行具体地划分,从而便可以将电子电路划分成多个级别。在此前提下,工作人员则可以对电子电路进行一级一级地作业,以更加有效地完成对电子电路的调试。此外,分块调试法还适用于边安装边调试的情况下,即在整个电子电路中每安装完一个模块就可以对其进行相应的调试工作。与在电子电路安装完毕之后再进行分块调试的模式相比较的话,虽然该调试方式会在一定程度上增加调试工作的难度,但是该工作的效果却是比较理想的,其不仅可以在电力电路安装的过程中立即发现其间可能存在的故障模块,且当电子电路安装完毕之后,与之相对应的调试作业也便同时完成了。在实际作业过程中,分块调试法常被普遍应用于较小的电路中。

1.2整体调试法

与分块调试法不同,整体调试法主要是在整个电子电路都安装完毕之后再对其进行一次性地总调试,而并不对每一模块进行单独地调试。一般情况下,整体调试法常被应用于结构简单的电子电路中,但其也可以取得良好的调试效果,尤其是对于一些无法分块调试的产品来说,整体调试法的应用在其中具有着极其重要的意义。

2电子电路设计常用的调试步骤

在对整个电子电路进行调试的作业时,相关工作人员需掌握具体的调试方法和调试步骤,以保证调试工作的正常开展。其中,在进行电子电路调试工作之前,其需做好相应的准备工作。①工作人员需准备好相关性的技术文件,这是保证调试工作正常运行的首要内容,如准备好电子电路的线路图、电力系统的设计原理、设计说明书等文件,这些重要的文件都可以为调试工作提供良好的理论依据。②在进行调试工作时,其也需要借助相应的仪器设备,因此工作人员需准备好相应的使用仪器。一般情况下,调试工作的开展需要的仪器工具主要有万用表、示波器、信号发生器等,因此在进行电路调试的时候,工作人员还需掌握仪器的性能和使用,以更加有效地完成调试工作。除此之外,在准备好相应的仪器设备后,工作人员还需检查仪器是否完好。③调试场地的准备也是调试工作中的一个重要内容,工作人员需做好调试场地的准备工作,如保证场地的清洁、无漏电风险等。在做好相应的电子电路调试前的准备工作之后,则需开始进行具体的调试步骤。一般情况下,电子电路设计常用的调试步骤主要有四步,则分别为线路检查、通电检查、功能检测以及指标检测。下面主要对此步骤进行了具体地分析。

2.1线路检查

在电子电路设计调试作业中,开展线路检查的内容主要包括两个方面。①线路检查即为直观性的检查,在该作业过程中,其主要是检查电子电路的线路连接是否正确,看是否存在错线、少线、多线的情况。此时,为了保障检查工作的质量,相关检查人员可根据电路的设计图纸进行一定的对比,并可在检查的过程中在图纸进行相应的标记,以此不仅可以保障检查工作的思路清晰性,且还能全面地提升线路检查的效果,避免出现漏查的现象。②线路检查还需对元器件的连接方式进行相应的检查,此时在作业过程中则需要借助一定的仪表检查元件的连接是否正确、元件的连接是否到位等。例如,在实际检查作业中,工作人员可以运用数字万用表进行测试,其主要需观察连线两端连接的元件引脚位置是否与设计图纸的相对应,而通过观察则可及时发现引脚与连线接触不良的故障等。

2.2通电检查

通电检查主要是对接入电源的电子电路进行通电性的检查,以保障整个电路的安全性能。其中,在实际检查作业中,通电检查是不接入任何信号源的,其主要是在接入电源之后观察整个电子电路是否存在冒烟、冒火、出现异味等一些异常的情况,且只有首先进行最初的观察与判断才利于后续的进一步检查。对于正常运行的电子电路来说,其在通电之后并不会出现发热、发烫的情况,因此当观察到通电检查中存在任何的异常情况时,相关人员也无需太过紧张,其首先需要做的事便是立即切断电源,然后根据实际发生故障的位置进行相应的处理,如可将发生故障的元器件拔出,待排除其存在的故障之后再对其进行电源测试。此时,在接入元器件时,其需认真检查元器件的引脚连接是否正确以及检查电源电压是否处于正常状态下,待确定电子电路所处的状态为正常状态时,其可再一次接通电源实行通电检查。

2.3功能检测

通常情况下,功能检测也是不需要接入信号源的。在电子电路设计调试中,功能检测的主要内容是检测电路在静态工作下的参数值,即主要是测试电路静态的工作状态,看其所显示的相关数据是否合理。例如,在实际作业过程中检测放大功能的元器件的工作状态是否处于正常的放大区域内;检测数字电子电路中的各个电路输入端、输出端的电瓶电压值是否合理,以及检测其内部的逻辑关系是否正常等;对于运算放大器来说,工作人员在检查电路中的正、负电源之外,还需进一步检查调零电路是否存在零点漂移的情况,以此保障整个电子电路的正常运行。此外,为了在一定程度上实现全面化的电子电路功能检测,在进行功能检测作业时还需在电路输入端接入一定的幅度、频率的信号源,与此同时可通过双踪示波器的运用来进一步观察输入、输出信号的波形形状、信号幅值、相位关系、频率等相应的参数值,而检测人员即可逐级对此进行全面地检测。

2.4指标检测

在经过前面几个步骤的检测作业之后,则可以基本上确定电子电路的正常运行状况。其中,指标检测是整个调试作业中的最后一个步骤,其主要是在前面三个步骤的基础上对电子电路的应用效果进行一定的检测。对于整个电子电路的设计来说,其首先便会具备一定的设计要求,而指标检测作业的开展则是根据设计的实际需求对其中的相关性技术指标进行测试。在实际作业过程中,其可以通过准确地记录测试数据来进行全面地分析与研究,以通过确定电子电路中的技术参数是否合格来实现指标检测的目标。其中,如若相关参数标准存在不合格的现象,则相关人员需对整个电子电路设计图纸进行再一次地分析与研究,以通过不断开展调试作业来实现设计图纸的合理性。

3结束语

综上所述,在电子电路的设计过程中,人们应对电路的调试工作给予高度的重视,并需在实际作业过程中加强对电路的调试管理,以根据实际情况采取有效的调试方法,从而通过对电子电路进行有效性的调试管理来优化电子电路的设计质量,以在一定程度上实现电子电路的真正实效性设计。

参考文献

[1]张泓.电子电路设计常用调试方法与步骤[J].电子技术与软件工程,2016,24:124.

[2]王向东.浅谈常用电子电路的设计和调试方法[J].科技与企业,2012,22:304.

[3]电子电路设计、安装与调试完全指导[J].现代电子技术,2013,22:34.

电子电路设计与分析范文第4篇

电子技术是一门实践性很强的课程,其中电子电路设计是一个重要的实践环节,掌握单元电路的设计方法是每个电子工程师必备的能力。具体介绍了单元电子电路设计步骤及几种重要单元电路的设计方法。

电子技术是一门实践性很强的课程,加强技能的训练及培养,是提高工程人员的素质和能力的必要手段。在电子信息类教学中,电子电路设计是一个重要的实践环节,着重让学员从理论学习过渡到实际的应用,为以后从事技术工作打下坚实的基础。

设计电子电路系统时,首先必须明确系统的设计任务,根据任务进行方案选择,然后对方案中的各个部分进行单元的设计,参数计算和器件选择,最后将各个部分连接在一起,画出一个符合设计要求的完整的系统电路图。因此,掌握单元电路的设计方法和实际设计电路的能力,是电子工程师必备的能力。

一、电子技术及单元电路概念

所谓电子技术是根据电子学的原理,运用电子器件设计和制造某种特定功能的电路以解决实际问题的一门学科。包括信息电子技术和电路电子技术两大分支。信息电子技术包括模拟电子技术和数字电子技术。电子技术是对电子信号进行处理的技术,处理的方式有信号的发生、放大、滤波、转换。

电子电路是由两部分组成,即电子元件和电子器件。电子原件是指电子设备中的电阻器、电容器、变压器和开关等,而电子器件通常由电子管、离子管、晶体管等构成。电子电路按组成方式可分为分立电路和集成电路。单元电路是整个电子电路系统的一部分,常用的单元电路有放大电路,整流电路,震荡电路,检波电路,数字电路。总体来说是与门,非门,或门及其组合的计数电路,触发器,加减运算器等。单元电路的设计训练是为了能提高整体电子电路的设计水平。

二、单元电路的设计步骤

1.明确任务

单元电路设计前都需明确本单元电路的任务,详细拟定出单元电路的性能指标,这是单元电路设计最基本的条件。通过计算电压放大的倍数、输入及输出电阻的大小,并且根据电路设计的简单明了、成本低、体积小、可靠性高等特点进行单元电路的设计。

2.参数计算

参数计算是为了保证单元电路的功能指标达到所需的要求,参数计算需要电子技术知识,对这方面的理论要求很高。例如,放大器电路中我们通常需要计算各电阻值以及他们的放大倍数;振荡器中我们通常需要计算电阻电容以及震荡频率。进行参数计算时,同一个电路可能得出不止一组数据,我们要注意选择数据的方法,选择的这组数据需要完成电路设计的要求,并且在实践中能真正可行。

3.画出电路图

为详细表述单元电路与整机电路的连接关系,设计时需要绘制完整的电路图。通过单元电路之间的相互配合和前后之间的关系使得设计者尽量简化电路结构。例如对于单元电路之间的级联设计,在各单元电路确定以后,还要认真仔细地考虑它们之间的级联问题,从而到达减少浪费,从而降低工作量。注意各部分输入信号、输出信号和控制信号的关系,模拟输入、输出,使得输入、输出、电源、通道间全隔离,将

转贴于

直流电流、电压信号分成多路相同或不同的电流、电压信号,实现不同设备同时采集控制。

(1)注意电路图的可读性

绘图时尽量把主电路图画在一张纸上,比较独立和次要部分画在令一张纸上,图的端口和两端做好标记,标出各图纸之间信号的引入及引出。

(2)注意信号的流向及图形符号

一般从输入端和信号源画起,又左至右或者由上至下按信号的流向依次画出单元电路。图中应加适当的标注,并且图形符号要标准,

(3)注意连接线画法

各元件之间的连接线应为直线,并且尽量减少交叉。通常情况下连接线应水平或垂直布置,无特殊情况不画斜线,互相连接的交叉用原点表示。

三、几种典型单元电路的设计方法

单元电路的设计是否合理,能够关系到整个电子电路的设计是否能够正常运行。因此,各个单元设计的工程师纷纷致力于单元电路的设计。

1.对于线性集成运放组成的稳压电源的设计

稳压电源设计的一般思路是让输入电压先通过电压变压器,再通过整流网络,然后经过滤波网络最后经过稳压网络。在单元电路中,对于串联反馈式稳压电路大体上可分为调整部分、取样部分、比较放大电路、基准电压电路等。经过这样设计的线路,具有过流及短路保护功能,当负载电流到达限额是能起到保护电路的功能工作。其具体设计方法为:对于整流出来的直流电是很少用来直接带动负载,还必须滤波后降低其纹波系数,但这种电路不能起到稳压的作用。所以稳压电源都应满足一定的技术指标。

2.单元电路之间的级联设计

各单元电路确定以后,还要认真仔细地考虑它们之间的级联问题。如电器特性的相互匹配、信号耦合方式、时序配合以及相互干扰等问题。

对于电气性能相互匹配的问题有些涉及到的是模拟单元电路之间的匹配,有的涉及到的是数字单元电路之间的匹配,有的则需要两者兼顾。从提高放大倍数和负载能力考虑,希望后一级的输入电阻要大,前一级的输入电子要小,但从改善频率响应角度考虑,则刚好相反。

信号耦合方式有直接耦合、间接耦合、阻容耦合、变压器耦合和光耦合。直接耦合方式最简单,但是在静态情况下,存在两个单元电路的相互影响,因此在电路分析时应加以考虑。

时序配合的问题比较复杂,先对系统中各个单元电路的信号关系进行详细的分析,来确定系统的时序,以确保系统正常工作下的信号时序。最后设计出实现该时序的方法。

3.对于运算放大器电路的设计

运算放大器是具有很高放大倍数的电路单元,在实际电路中通常结合反馈网络共同组成某种功能模块。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。运算放大器的设计中,其基本参数应当选择单、双电源供电,电源电流。而且应当输入失调电压、输入失调电流、输入电阻。并且转换速率、建立时间。设计中应当正确认识、对待各种参数,不盲目片面追求指标的先进。其中值得引起重视的是:依据推荐参数在规定的消振引脚之间接入适当的电容消振,这是为了消除运放的高频自激,同时为了减小消振困难这一情况,应尽量避免两级以上放大级级连。

电子电路设计与分析范文第5篇

一般情况下,半导体集成电路常用直流电压,电网中的电压通常是交流电压,若要将电网中交流电的电压换成直流电压,则需要借由电压变压器进行降压,再经由整流电路实现交流电压转换为直流电压的目的。但是,整流过后的直流电压内还存在着交流电压的成分,应采用滤波电路滤除夹杂的交流电压,得到平滑纯正的直流电压。通过利用Protel98软件进行模拟仿真和分析发现,没有接连滤波电路之前,整流电路所输出电压的波形呈现为直流电压。而将滤波电容器加在电路中以后,不仅可以降低整流输出脉动直流电压,并使电容器的容量得以改变,还能够改变电路开关电源的波纹。如果需要较小的电路开关电源波纹,受负载电流大小的影响,应该将电容量调大。由于电流大的时候,放电的速度比较快,最电容量的要求就会增大。而当电路交流成分减少时,也会使电容器的容量减少,因此容量改变以后所输出的计算结果也会不同于容量改变前的计算结果。通过采用示波器进行测试后发现,利用Protel98软件模拟仿真后输出来图形同实际电路测试输出的波形相同。由此可见,若要改变电子电路中的某个元件,只需要利用Protel98软件修改参数就可以实现,从而达到模拟仿真应实现的目标。Protel98软件成为修改和优化设计电子电路的有效辅助工具,也是电子电路设计模拟仿真的重要手段。利用Protel98软件模拟仿真电路设计的具体步骤包括以下几个方面:第一,根据电子电路设计的主要目标和所需规模绘制准确的电路原理图。在绘制原理图时,应选用比较简单和普及的电路,从而有效实现模拟仿真的目的。第二,绘制完电路原理图之后,借由Protel98软件设置元件的参数,通过鼠标选中元件并双击元件的性质项目后,就可以修改元件的参数。修改结果可以利用电子电气法进行测试和检查,从而找出出现错误的地方,再通过有效的分析和科学的修改,就可以完善电路设计。第三,再用Protel98软件模拟绘制出的电路原理图,并对电路功能进行仿真和验证,从而判断所设计的电路是否具有可行性。

2基本逻辑门电路的模拟实验

Protel98软件的仿真器由实用的数模与模拟混合而组成,利用网表文件将电路的所有元素结合起来,使数字仿真与模拟间的壁垒被有机的打破,再利用波形记录分析系统将数字波形的结果同模拟结果一起显示出来,组合成一个各种门电路。在进行模拟实验时,应首先输入绘制出来的电路图,并编辑激励信号波形和跟踪误差信号的波形,再从电子元件的数据库里找出相关的数据,利用这些数据进行电路模拟,并计算出波形模拟的结果。而从绘制的波形图中可以发现,当输入信号的电平组合表现为高—高、高—低、低—低和低—高时,基本逻辑门电路输出的信号和输入的信号之间具有可行的逻辑性关系。由此可见,利用Protel98软件对数字电路进行模拟仿真,不仅能扩大模拟电路设计规模,而且对其进行定时的精确度也非常高,通过采取输入不同激励信号波形的方式,可以准确修改基本逻辑门电路数据库的特性。不但如此,Protel98软件进行电路模拟仿真,其良好界面对于分析电路设计和修改电路设计具有重要的意义。

3结束语