前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇通信信号技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
1雷达功能与特点
雷达是利用电磁波探测目标的电子设备,是通过无线电定位方式,来实现无线电探测与测距,通过回波测定发现探测目标空间位置信息,由于雷达通过无线电技术实现探测,所以也被称为“无线电定位”。其探测原理是通过发射电磁波,对探测目标进行照射,在通过天线接收其回波,提取回波信息,来获取测定目标速度、方位、高度等信息。探测通信过程中信息载体是无线电波,天线接收回波后,由接收设备进行处理,提取信息数据,当前广泛应用于:气象领域、军事领域、航空领域。雷达技术最早出现于一战时期,但由于当时受到技术水平限制,探测范围和准确性都存在局限。二战时期雷达技术得到实际运用,且已十分成熟,能实现地对空、空对空、空对地的探测识别。随后更融入了脉冲跟踪技术,能通过跟踪模式对目标进行跟踪探测,且探测中系统能自动修正干扰误差,提高探测准确性和有效性。二十世纪末,微处理技术与光学探测技术融入雷达领域,使雷达探测实现智能化、自动化,能自动进行多目标跟踪探测,在军事领域中做出了巨大贡献。
2雷达通信技术
雷达应用非常广泛,可探测飞机、舰艇、导弹。除军事用途外,还可用来为飞机、船只导航。另一方面,气象领域中的应用,可探测台风、雷雨、乌云,以实现预测天气目的。雷达通信基本过程是,发射机发射电磁波,由收发转换开关传送给天线,由天线将电磁波发送出进行传播,电磁波遇到目标后产生回波,回波被天线获取,通过接收设备进行信号处理。距离测量是根据回波延迟时间判断,计算公式为S=CT/2。方向探测通常利用天线方向性,测定方位角和俯仰角。速度测试方面则根据回波频率改变量确定,其基本原理是多普勒频移。但实际上雷达应用中,通信过程可能受到干扰设备或其他外部信号干扰,同时会被电子侦察设备探测到通信信号。因此,要加强雷达抗干扰,反侦察能力。现代雷达为提高通信稳定性与可靠性,融入了数据处理技术、加密技术、组网技术、分布式有源技术、自适应波束形成技术、光电子技术。这便使得雷达通信抗干扰能力大大提升,数据处理效率和水平明显提高,能实现多频道、多极化、多模式通信,而且通信数据形式更加多元。
3雷达信号处理机显控
通过前文分析不难看出雷达探测的应用优势。雷达设备种类繁多,技术含量高,应用范围广。根据用途不同可分为:军用雷达、预警雷达、引导指挥雷达、机载雷达、气象雷达、航行管制雷达等。雷达探测不受天气影响,穿透力强,探测效果好。但探测有效性和准确性,通常与信号处理机显控有直接关系。近些年来,现代雷达中接收采样数据量成倍增加,信号处理机显控难度提高,使得信号处理机显控成为雷达研究领域热门课题。为提升显控有效性,修正误差,一般情况应通过MAD抑制低速杂波信号,区分杂波与目标回波。由于杂波与目标回波频率不同,所以能通过滤波器消除。但实际上,由于杂波中心频率位于零频,多普勒频移未知,却容易被滤波器忽略,所以传统MAD抗干扰滤波方式,效果并不好,会出现显控判断现象。为解决这一问题,就应利用自适应恒虚警检测,通过CFAR检测抑制杂波。另一方面,还可选择匹配数字滤波器方式,利用脉冲压缩处理方式,进行波筛选,将杂波进行掩盖,避免杂波干扰。但实际应用中,由于模拟技术缺陷,掩盖效果与理论值可能会存在差异。杂波分为:地物杂波与气象杂波几大类,不同杂波波幅与干扰程度不同,但通常杂波也具有一定规律性。因此,为了弥补理论值误差问题,则可通过改进滤波方式,实现抑制杂波,保障显控准确性与有效性。例如,对多普勒滤波器进行利用。该滤波器能有效提高显控质量,通过FIR实现滤波,抗干扰性能非常好,而且容易实现。除以上几种技术手段还,近些年来,很多雷达也在开始MTD技术,该技术是通过窄带滤波器组的方式来实现抑制杂波,从而改善信号接收机性能,全面提高接收有效性,实现高质量显控,该技术杂波抑制效果非常明显。但各类技术手段有着不同特点和适用范围,具体应用中,要根据雷达信号接收机特点和显控要求及实际杂波特性规律选择抑制方式。
4结束语
雷达探测不受地形,天气情况影响,而且探测距离远,准确性与可靠性高,能应于海洋探测、地理探测、航空探测等众多领域。但随着雷达数字化的发生,接收机采样数据量越来越大,使得信号处理机显控难度随之提高,准确性出现下降,杂波处理面临挑战。因此,在实际应用中,要根据杂波特性与显控要求,合理选择滤波技术,保证显控质量。
作者:陈兵 单位:四川九洲电器集团有限责任公司
参考文献:
[1]梁成壮.雷达伺服系统功能仿真和性能测试软件平台研制[D].西安电子科技大学,2014,04:203-204.
2008年八月一日,城际列车开运,时速达到三百五十公里,标志着我国已经进入了高铁时代,通信信号作为最重要的核心技术,发挥着重要的作用,保证高铁运输的安全运行。我国由此成为法国之后,世界上第四个有能力制造时速350公里高速铁路移动装备的国家。技术发展一日千里,铁路通信信号日臻完善,任用3C技术,实现五个华丽转身,即由地面固定信号控制到列车车载设备控制的转变;由开环控制到闭环控制的转变;由分散孤立的控制到成区段集中控制的转变;由信联闭简单控制到速度综合控制的转变;由广播式简单通信到点对点和点对多点的多功能移动通信转变。
(一)电话交换网、铁路传输网、接入网、调度通信网全部优化为了提高铁路信息化的能力,促进铁路通信网的发展,推动铁路新型通信新型业务,与中长期铁路规划相匹配,铁路系统电话交换网、铁路传输网、接入网、调度通信网全部优化,现代化信息通信手段逐步实现。首先是铁路拥有自己的网络平台,以IP数据网做基础,实现会议电视网的扩大,基层站段全部实现会议终端。其次是区段调度与干线调度实现了通信数字化方面,二者自由联网;触摸屏调度台的使用,通信质量大幅提升,通信交换机的容量得到扩大。远程监控在无线列调区间的实施,提高了中继设施的性能,而且光纤直放技术的推广,技术装备精良,运行可靠;列车运行途中,频率或制式转换得到减少,频率规划方案趋于合理,点线结合,系统的使用频率得到优化。电话交换网、铁路传输网、接入网、调度通信网全部优化的最终目的就是适应社会需求,建立科学的统一号码通信接入平台,适应铁路营销需要。
(二)GSM-R专用系统GSM-R在铁路的日常运营管理发挥了重要的作用,其具备高级语音呼叫功能,兼有自动寻址和功能寻址的特点,是专用调度通信的羽翼,初提供无线列调外,其通信方面的强大功能可为列车自动控制与检测信息提供数据传输通道,并可提供列车自动寻址和旅客服务。
(三)综合视频监控确保运输无虞1)监控重点线路设备;2)车站区域安全监控,包括动车组站台、候车区域;3)货运装载区域的监控;4)安全设备的监控,全部受控摄像内容,保证画面清晰度。由于IP地址的一致性,监控中心的监控安全满足了铁路客运服务的安全,形成铁路综合视频监控网络的基本框架,通信平台提供了各类动态图像传送。
二、铁路信号的发展方向具体分为以下几个方面
(1)列控系统(CTCS)方面,其优势是实现路网之间彼此联通无碍,符合160~350km/h列控要求。2)调度指挥方面,TDCS管理系统覆盖全路,调度自如,信息准确无误,指挥透明,列车实际运行图自动绘制,自动过表,车站行车日志自动生成。无纸办公,及时高效。TDCS工程建成后,优化了运输调度指挥管理手段、提高了调度管理水平和运输效率。预计2020年前后,重要干线可基本实现CTC。3)闭塞与机车信号方面。自闭设备陆续淘汰,电气化工程实现,对ZPW-2000进行高可靠性和可维护性再设计,而且实现JT-C(2000)型信号车载设备的更新换代,机车信号通用于全线。4)联锁设备方面。全路统一计算机联锁,系统维护达到智能化,安全程度与世界先进水平比肩,并且结合运输情况,逐点试验推广区域联锁和全电子联锁。5)基础设备方面。所有的基础设备要求具备自诊、信息联网功能,运行日志可自动生成,配置实现冗余化;室外设备使用期间无需维护或者基本不用维护,优质防盗,抗雷防电;此外电缆径路设计合理,电源信号标准,性能可靠。
三、结语
关键词:站场、通信信号设备、雷击、防雷
Abstract: This paper introduces the application of the integrated lightning protection of railway station, station field communication, signal lightning protection effect is reliable. Must be at the station of power supply system, antenna system, signal acquisition and transmission system, program-controlled switching system, computer network system, computer room grounding system were reliable and effective protection, in the interception, shunt, equilibrium, grounding, wiring, layout and other aspects as complete, multi-level comprehensive protection.
Key words: station, communication signal equipment, lightning, lightning protection
中图分类号: TU856 文献标识码: A 文章编号:
1.引言
随着现代化的进展,铁路站内设备越来越先进。雷击发生时,雷击放电诱发雷击电磁脉冲过电压和过电流,经站场电源系统、通信信号传输通道、接地系统及建筑物直击雷防护系统,通过传导、感应的方式损坏站内通信信号设备及网络通信设备,造成损失巨大,直接威胁铁路正常的安全运输生产。
2.对铁路站场雷电防护的分析
铁路站场设备遭受过电压和过电流攻击的途径可分为直击雷、感应雷、传导雷、操作过电压四种。结合站场设备的分布特点及雷电攻击的途径类型,铁路站场雷电防护存在以下特点:
2.1 铁路站场占地面积较大,站场主要设备(如数字微波通信、车站数字通信分系统、站场广播机、无线列调通信、平面调车通信、信号微机联锁等设备)集中在信号楼、通信楼。信号楼、通信楼的避雷针应能满足对整个信号楼、通信楼区域的保护,有效防止直击雷的袭击。
2.2 铁路道轨是接受直击雷和传导雷感应雷的良好导体。与道轨连接的相关铁路信号设备,如信号机、轨道电路箱、道岔电动转辙机等,将受到雷击的严重威胁。
2.3 信号楼微机联锁及通信机房、通讯楼通讯机房等重要区域的户外线路可能遭受到直击雷后,线路中的大电流串入各机房内部,从而引起对内部设备的损坏。当雷雨云之间、雷雨云对大地之间放电时,雷闪电流的高频电磁场对暴露在空间或室内的电源线、信号线、数据线上产生远远超过设备抗电强度的感应雷击过电压,使设备损坏。
从以上分析中可以得出:为了提高铁路站场建筑物安全、机房设备及计算机、通信网络的运行可靠度,整个站场的雷电防护系统一定要有良好的避雷针、下引线和统一的接地网,采取完善的直击雷防护措施。
3.直击雷防护
3.1避雷针
普通避雷针,通常即为一根铁棒,将端部磨尖,通过接地引下线将地电位(通常认为零电位)引至针尖,利用针尖的高度(比被保护物高出许多),比被保护物优先产生上行先导,与雷云的下行先导相遇,从而达到引雷入地的效果,保护其它建筑物免受雷击的侵害。
预放电型避雷针为先进的纯结构型预放电避雷针。它利用雷云在空中感应的电场强度,使针头的感应电极(空中场强)与针尖(地电位)之间产生强烈的火花放电,使针头周围空气电离,在电场的作用下形成一条向上的雷电先导,从而使迎面先导提前与雷云的下行先导相遇,形成主放电通道,从而大大提高了避雷针的效率,使保护半径大大提高。由于其内部无任何电子元件,避免了老化问题,所以更加可靠,不需维护。该类避雷针的特点如下:
(1)最快的抢先预放电时间86us,即优先引雷入地,保护半径大大增加,为目前国际上中抢先时间最快的预放电避雷针。
(2)在相同的安装高度下,比普通避雷针的保护半径大十几倍,大大提高了防护效率。
(3)避雷针内部无电子部件,更加安全,减少故障隐患,无老化,不需维护。
(4)选用了世界最好的防腐316L不锈钢材料,永不生锈。
(5)重量很轻,何载小,对支撑物的荷载要求低。
3.2直击雷防护技术
铁路站场直击雷防护重点区域是通信楼、信号楼和户外岔群咽喉区设备。
3.2.1通信楼直击雷防护
利用通信楼附近的高约45米微波塔,在塔顶上安装IF3 避雷针,避雷针安装高度超出塔顶2.5米。经计算,避雷针对地面的保护半径可达119米。引下线采用截面大于12mm×4mm的镀锌扁钢。防雷接地装置接地电阻小于1欧。该避雷针可保护通信楼、部分铁轨和场区部分咽喉区的部分信号机等铁路设备,免受直击雷的侵害。
3.2.2信号楼直击雷防护
利用被保护建筑物信号楼,高度约为10米,在信号楼顶部安装IF3避雷针,针的安装高度超出楼顶5米。经计算,保护半径可达109米。楼顶预埋 350mm×350mm×10mm厚钢板,便于焊接避雷针底座,从底座延相反方向焊接引出两条引下线,引下线采用大于8mm的圆钢沿楼外墙引下入地,与楼的接地环相连。防雷接地装置接地电阻小于1欧。将避雷针与接地装置贯通。保护信号楼及场区附近的铁轨避免由于直击雷击中铁轨雷电流窜入信号楼,对设备及人身安全造成危害。
3.2.3户外岔群咽喉区直击雷防护
铁路站场岔群咽喉区的特点是设备分布较为集中,岔群咽喉区段长度约145米,在岔群咽喉区附近各建立12米高的铁塔,塔顶安装IF3避雷针。经计算,保护半径可达111米。引下线采用截面大于12mm×4mm的镀锌扁钢。防雷接地装置接地电阻小于10欧。对咽喉区内大部分的轨道电路箱、道叉电动转辙机及信号机等设施进行了直击雷的保护,免受直击雷的侵害。
4.雷击电磁脉冲防护
4.1信号楼雷击电磁脉冲防护
1直接扩频通信系统基本原理及仿真
1.1系统工作原理
扩频通信即扩展频谱通信,系统将发送信号经过信息调制成数字信号,然后利用扩频函数产生的伪随机码将信号进行传输。在接收端进行的是发送过程的逆过程,即将接收到的信号用扩频函数将伪随机码进行解扩,再将信号进行解调从而得到原始发送信息。基本模型分为发送模块和接收模块两部分,如图1和图2。模型中的发送模块进行了3次调制后发送射频信息进行传输,接收模块同样也进行了3次解调。本系统中重要的是扩频调制和解扩调制,这2个关键环节需使用同一时钟进行控制,且过程中的伪随机码序列必须是绝对一致的。
1.2衡量扩频系统性能参数
(1)误码率。是衡量数据在规定时间内传输精确性的指标。误码率=传输中的误码/所传输的总码数*100%。如果有误码就有误码率,它反映了数据传输质量。
(2)信噪比。信噪比(SNR)r是信号的平均功率S与噪声的平均功率N之比,即r=S/N,将其表示成分贝形式r(dB)=10lg(S/N()dB)。信噪比越大说明噪声在传输信息里所占的比例越小,对信息传输影响越小,可靠度越高。
(3)处理增益。为了衡量扩频系统的抗干扰性的提高程度,将解扩器输入端信噪比和输出端的信噪比的比值定义为扩频系统处理增益,由以下公式表示:(1)用分贝数表示为:(2)扩频通信系统独具扩频调制和解调两个过程,用处理增益表明扩频调制前后信噪比的改善程度,反映了对干扰的抑制程度。(4)噪声容限。存在干扰信号时,干扰信号比有用信号高出一定范围的情况下系统仍能够正常工作。在此情况下,接收机能承受的干扰信号比有用信号高出的倍数定义为噪声容限,用分贝数表示为:Mj=Gp-[(S/N)min+Ls](3)式中,Mj为噪声容限;Gp为系统处理增益;(S/N)min为信息被正确解调时所需的最小信噪比;Ls为系统损耗。
1.3系统仿真
该仿真是在matlab环境下实现的,程序主要由调制部分,解调部分和伪随机序列生成部分构成。数据输入后先转化成ASCII二进制码进行传输,通过调用m序列生成函数进行相加,产生扩展后的数据,然后将扩频码转换为BPSK(1,-1)序列,数据传输时进一步将BPSK双极性转换到单极性,最终在数据输出端进行m序列解扩,再结合解调过程将ASCII二进制码转换为输出数据。从图3(b)中可以看出数据展宽后可以明显降低信号功率密度,调制后传输的信号和白噪声具有很大的相似度,可以实现高隐蔽性传输。从图3(c)和图3(d)对调制信号包络,相干载波相位模糊度及其对解调数据的影响等性能对比,得出BPSK调制出传输过程中具有高的抗干扰能力和频谱利用率。最终解扩和解调后的输出数据图3(e)和输入数据图3(a)具有高度的一致性,可见此扩频方式具有很强的抗干扰性。
2干线铁路信号传输的优势
2.1性能参数优势比较
直接扩频通信系统在误码率、信噪比、处理增益等参数上表现优异,较其它通信方式具有较大的优势。具体的通信系统衡量参数比较,如表1。
2.2理论优势
(1)抗干扰能力强。直接扩频通信系统中,解扩器端输入与输出信号功率保持不变,而对于干扰信号解扩过程相当于进行扩频,干扰功率被扩展到很宽的频带上,功率谱密度下降,这使得解扩过程中输入端的干扰信号功率大大降低。通过带通滤波器的滤波,大部分的干扰信号被滤除,有用信号则被保留。另外,扩频系统对各种恶劣天气时通信链路造成的影响进行抵抗,与传统微波相比可以进行跨江传输,在海面的长距离优质传输。这些优势适用于铁路系统在复杂环境下安全可靠的进行信号传输。
(2)可以实现多址通信系统。多个通信在信息发送端和接收端使用相同的伪随机序列,而不同的通信则使用不同的伪随机序列,这样就实现了在相同载频下互不干扰的通信,实现频率复用,从而充分利用了频谱资源。由此可以进行机动灵活组网,有助于统一规划,分期实施,便于扩充容量,有效地保护前期投资。
(3)有效抗多径干扰。在直接扩频通信系统接收到电波后,将同步锁定直达路径且信号最强的电波,其余电波由于非直达,会延时到达,在相关解扩作用下只作为噪声。另外,接收端把多路径来的同一码序波形相加使之得到加强,从而实现抗多径干扰。
(4)隐蔽性强,对其它系统干扰小。扩频过程单位面积信号发送功率极低,隐蔽性强。低的功率谱密度,不容易被探测到,被截获的可能性降低,所以实现了其安全性方面的要求。同时,低功率谱密度让发射信号近似于噪声信号,而扩频信号可以在信道噪声和白噪声背景中传输,降低了对其它系统的干扰,增强了与其它系统的共存度。由于此系统的无线铁路信号传输过程中电磁干扰大幅度降低,不仅有利于将扩频通信系统应用于电气化铁路区段和弱场强区电磁环境,而且适于将其大规模应用到干线铁路中。
(5)精确测距和定时。将应用周期长及伪随机码作为传输信号,比较从目的地反射回来的伪随机序列与原序列的相位,就可以得出时间差,由此也可实现定时操作,进一步利用传输速率和时间差的相乘即得出距离。相对于传统的轨道电路定位,扩频通信系统传输容量较大并且适合长距离传输,这有助于减少铁路测距定时设备,降低设备投资,便于维护。也可以作为原有测距定时设备的冗余,与原测距设备值进行比较,提高测距定时的安全可靠度。
关键词:通信设备 数字技术 铁路信号技术 促进
中图分类号:TP277 文献标识码:A 文章编号:1674-098X(2014)04(c)-0020-02
我国自开展现代化建设以来,社会不断向前迈进,科学技术水平也愈见增长。我国铁路运输已经逐步实现了提速、重载以及车站、区间和列车联合控制的一体化运行等各种目标,然而仍存在长足的发展空间,其现代化、智能化、自动化还需要通过新兴的通信设备以及数字技术的科学结合来达成。
1 铁路信号技术以及通信设备、数字技术的概念
1.1 铁路信号技术的定义
铁路信号具体来讲是指利用一些指定的物体和设备等等使铁路的行车人员了解相关车辆的运行条件、行车设备的状态以及接收行车指令信息,通常采用灯等易识别的物品,通过改变其颜色、数量、形态或位置来传达信息,或是直接用仪表、音响设备等器械来传达。铁路信号技术的良好发展能够提高铁路的车站、区间通过能力,并且提高铁路员工工作效率,从而达到增加铁路经济效益的目标。
1.2 通信设备的定义及分类
通信设备,即Industrial Commun ication Device,包括有线通讯设备和无线通讯设备,主要用于工控环境。有线通讯设备包括路由器、光端机、交换机、modem、PCM等设备,主要解决工业现场的串口通讯、专业总线型的通讯、工业以太网的通讯以及各种通讯协议之间相互的转换;而无线通讯设备则包括无线网卡、无线网桥、无线AP、天线、无线避雷器等等设备。
1.3 数字技术的定义
数字技术,即Digital Technology,是指利用相关设备将图、文、声、像等各种信息转化成电子计算机能够识别的二进制数字0与1之后,再进行加工、储存、发送、传递、还原的一种现代技术,是同电子计算机相辅相成的一项科学技术。
2 我国铁路信号技术的发展进程和通信数字化
2.1 我国铁路信号技术的发展历程
随着我国铁路运输不断提速,铁路信号技术也有相应的变化、进步。
铁路运输的最初阶段主要采用人工闭塞的形式,通信设备制式杂乱无章,信号显示无法统一,通信装备少、技术水平也比较低下。
而改革开放为铁路信号技术的迅速发展提供了一定的机遇,使铁路制式的人工闭塞逐渐由半自动闭塞、三显示自动闭塞、四显示、多显示自动闭塞乃至准移动闭塞所取代,ZPW-2000系列轨道电路已经成为全路统一的轨道电路制式,与区间同制式的轨道在站内得以应用;现在营业线上的机车信号已经基本上都配置成功了,接近连续式和连续式机车信号都在迅速发展中,列车的超速防护系统也在部分区间进行了科学的试验;不同速度等级的ATP设备相继安装至CRH动车组,车载设备向更安全发展,比如CRH-200H、CRH-200C、CRH-300H、CRH-300S、CRH-300T等等;在一些大站以及主要干线的中间站上,车站联锁已逐步实现继电集中化,所研发出的不同型号的全电子式微机联锁也已经在现场逐步推广应用中;高速铁路上逐渐全面地采用调度集中系统,综合调度系统技术也正在推进;DMIS一期工程已经到了竣工阶段,这说明行车指挥现代化已经进入了实质阶段;提速道岔分动外锁闭转换设备已经上道应用了,这就基本保障了提速列车能够安全运行及提高过岔速度;CTCS-2、CTCS-3级列控系统已广泛应用于客运专线和高速铁路建设中,同系统相应的配套设备也都已经成功上道,如列控中心、临时限速服务器、无线闭塞中心RBC等;交流外锁闭转辙设备成为主要应用产品,如700K、ZDJ9、ZYJ7等;信号监测系统正在向集中化、智能化、网络化发展。迄今为止,我国铁路信号技术已经接近工业发达国家,而若要超过他们则需要进一步的努力,并且尤其需要在通信设备的数字化上更加下功夫。
2.2 通信设备与数字技术的结合对于我国铁路运输信号技术的促进意义
促进铁路运输的不断发展,使其达到提速、重载的目标,通信设备硬件质量和技术水平在其中起到了举足轻重的作用,是铁路信号技术的重要支撑。这一点在我国青藏线ITCS中GPS、高铁CTCS-3中GSM-R已然得到了充分的证明。为了促进铁路信号技术的发展,我们需要全面引进计算机技术,充分利用计算机的高速分析计算功能,而数字信号处理技术(DSP,Digital Signal Processing)就在此时适时出现了。
以往我国铁路运输中的信号技术不够纯熟,通信设备也不够高端,主要依托轨道电路来传达信息,在安全保障以及工作效率等方面还存在许多问题。
自21世纪起,在铁路运输的信号工作中就开始充分运用计算机设备和网络通讯技术,与早前的简单设备和模拟信号处理技术相比较而言,通信设备网络化、数字化的可靠性及实时性显然更高,通信质量更高,传播距离更长,保密性更强,设备更加小型化,运算精度以及抗干扰性能更加优化,功能也更多。现在铁路管理中数字化的通信系统具有集中管理、远程维护、故障自动诊断、自动切换等功能,还可以自动记录相关信息;不仅能够满足当前铁路调度、指挥的需求,还可以开展环境监测、电源检测及预留容量空间等工作;不仅能够实现全双工通信,还可以进行有效回波抑制、AGC自动增益控制、自行适应线路条件等,能够确保通信系统在强噪音环境之中正常运行;在拓扑结构之中的数字通信系统拥有数字环自愈保护功能,当采用网型网和环形网的时候,能保证数字环任意一处的断开都不会对系统的正常运行产生影响;数字通信系统还具有一定的兼容性,同有些区段仍在运行的模拟通信设备能够兼容,使数字通信方式和模拟通信方式能够起到互相备用的作用。
铁路信号技术中专用通信设备的数字化是铁路通信发展的必然趋势。通信设备数字化的根本原理即为将通信设备与数字技术结合起来运行,主要形式为把先进的计算机软件运用于列车的运行控制系统中,以将现代化的铁路通信设备与数字化控制系统科学地组合起来,从而达到建立新型信号操作系统开发平台的目的,最终促进铁路信号技术的充分发展。
3 通信设备与数字技术结合的发展趋势
虽然由于社会经济的发展速度越来越快以及铁路运输的需求压力越来越大,使对列车运营的速度和安全性的要求也越来越高,然而因为我国现代科学技术水平不断提高,使我国铁路信号技术也足以保障铁路运输的高效率、安全性。铁路信号技术的网络化能够保障铁路运输的安全运营及集中调度,依托高端的计算机网络技术,通过将现代化通讯设备与数字控制技术有效结合,促进铁路信号技术系统全面实现智能化、网络化、信息化。随着通信设备与数字技术结合的新发展,铁路信号技术中将陆续引入各种高新技术,包括ZFFT(ZOOM-FFT)、小波信号处理技术、现代谱分析技术等等。
3.1 通信设备与数字技术结合的智能化
智能化主要体现在两个方面,一是系统智能化,二是控制设备智能化。系统智能化是指铁路高层管理部门依托先进的计算机设备,依据铁路运输系统的自身实况来科学合理地控制列车的运行,优化铁路的整体通信技术系统,从而使铁路运输得到整体控制、科学管理;而控制设备的智能化则指建立高效能的执行机构,使其精确、迅速地获取道路指挥者所需信息,并且依据信息来指挥、控制列车的运营。
3.2 通信设备与数字技术结合的网络化
现代化的铁路通信技术不再是仅仅把各种通讯设备进行简单组合,信号技术系统内部的各项要素在各自独立进行工作的基础上还互相联系沟通、交换实时信息,共同组建功能完善、层次分明的铁路运输网络化结构及控制系统。铁路通信网络化便于运输指挥者迅速地、全面地获取辖区内的各种实时信息,从而下达正确、及时的指令,灵活配置系统资源,以保障信号系统的安全、高效工作,保证铁路运输和行车安全。
3.3 通信设备与数字技术结合的信息化
铁路信号技术发展的必然趋势即为以信息化带动铁路产业现代化。全面、有效、精准地获取交通线路上的各种信息才能够保证高速列车能够安全运营,现代铁路信号系统正在将各种先进的通信设备和通信技术投入使用中,比如光纤、无线、卫星通信与定位技术等。
在铁路通信技术未来的发展中,还需要提高数字通信设备的质量水平并优化其功能;进一步完善数字技术体系和技术标准;围绕优化数字通信系统以及提高信号设备的安全完整性等级(SIL)等方面进行相关的探究;通过创新数字技术或是引进、消化、国产化国际技术的方式,对不同等级的数字信号技术设备进行改善更新;发展联锁、闭塞和列车运营管理一体化技术;采用北斗卫星定位技术和云计算等先进技术来促进铁路的信号技术数字化发展;发展信号动静态检测、监控及智能分析技术等。
4 结语
总而言之,我国铁路的信号技术随着铁路的发展进程也在不断发生变化,并且达成了将列车、区间、车站三者共同控制的高效运作模式。而通过铁路通信设备与数字技术的结合,也促进了行车调度指挥自动化等技术领域的革新,让过去控制分散、功能单调以及通信信号相对独立的情况不再出现,从而使铁路信号技术逐渐趋向智能化、网络化、数字化,铁路操作系统亦更加完善。
参考文献
[1] 朱婉婷.高铁信号系统中新技术的应用与发展[J].科技创新与应用,2013(11).
[2] 王蕊.铁路信号问题及对策研究[J].科技致富向导,2011(6).
[3] 杨杰.基于安全运行的铁路信号系统影响因素分析[J].科技资讯,2013(31).