前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇集成电路原理与设计范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:课程体系改革;教学内容优化;集成电路设计
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)34-0076-02
以集成电路为龙头的信息技术产业是国家战略性新兴产业中的重要基础性和先导性支柱产业。国家高度重视集成电路产业的发展,2000年,国务院颁发了《国务院关于印发鼓励软件产业和集成电路产业发展若干政策的通知》(18号文件),2011年1月28日,国务院了《国务院关于印发进一步鼓励软件产业和集成电路产业发展若干政策的通知》,2011年12月24日,工业和信息化部印发了《集成电路产业“十二五”发展规划》,我国集成电路产业有了突飞猛进的发展。然而,我国的集成电路设计水平还远远落后于产业发展水平。2013年,全国进口产品金额最大的类别是集成电路芯片,超过石油进口。2014年3月5日,国务院总理在两会上的政府工作报告中,首次提到集成电路(芯片)产业,明确指出,要设立新兴产业创业创新平台,在新一代移动通信、集成电路、大数据、先进制造、新能源、新材料等方面赶超先进,引领未来产业发展。2014年6月,国务院颁布《国家集成电路产业发展推进纲要》,加快推进我国集成电路产业发展,10月底1200亿元的国家集成电路投资基金成立。集成电路设计人才是集成电路产业发展的重要保障。2010年,我国芯片设计人员达不到需求的10%,集成电路设计人才的培养已成为当前国内高等院校的一个迫切任务[1]。为满足市场对集成电路设计人才的需求,2001年,教育部开始批准设置“集成电路设计与集成系统”本科专业[2]。
我校2002年开设电子科学与技术本科专业,期间,由于专业调整,暂停招生。2012年,电子科学与技术专业恢复本科招生,主要专业方向为集成电路设计。为提高人才培养质量,提出了集成电路设计专业创新型人才培养模式[3]。本文根据培养模式要求,从课程体系设置、课程内容优化两个方面对集成电路设计方向的专业课程体系进行改革和优化。
一、专业课程体系存在的主要问题
1.不太重视专业基础课的教学。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”是集成电路设计的专业基础课,为后续更好地学习专业方向课提供理论基础。如果基础不打扎实,将导致学生在学习专业课程时存在较大困难,更甚者将导致其学业荒废。例如,如果没有很好掌握MOS晶体管的结构、工作原理和工作特性,学生在后面学习CMOS模拟放大器和差分运放电路时将会是一头雾水,不可能学得懂。但国内某些高校将这些课程设置为选修课,开设较少课时量,学生不能全面、深入地学习;有些院校甚至不开设这些课程[4]。比如,我校电子科学与技术专业就没有开设“晶体管原理”这门课程,而是将其内容合并到“模拟集成电路原理与设计”这门课程中去。
2.课程开设顺序不合理。专业基础课、专业方向课和宽口径专业课之间存在环环相扣的关系,前者是后者的基础,后者是前者理论知识的具体应用。并且,在各类专业课的内部也存在这样的关系。如果在前面的知识没学好的基础上,开设后面的课程,将直接导致学生学不懂,严重影响其学习积极性。例如:在某些高校的培养计划中,没有开设“半导体物理”,直接开设“晶体管原理”,造成了学生在学习“晶体管原理”课程时没有“半导体物理”课程的基础,很难进入状态,学习兴趣受到严重影响[5]。具体比如在学习MOS晶体管的工作状态时,如果没有半导体物理中的能带理论,就根本没办法掌握阀值电压的概念,以及阀值电压与哪些因素有关。
3.课程内容理论性太强,严重打击学生积极性。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”这些专业基础课程本身理论性就很强,公式推导较多,并且要求学生具有较好的数学基础。而我们有些教师在授课时,过分强调公式推导以及电路各性能参数的推导,而不是侧重于对结构原理、工作机制和工作特性的掌握,使得学生(尤其是数学基础较差的学生)学习起来很吃力,学习的积极性受到极大打击[6]。
二、专业课程体系改革的主要措施
1.“4+3+2”专业课程体系。形成“4+3+2”专业课程体系模式:“4”是专业基础课“专业物理”、“半导体物理”、“固体物理”和“晶体管原理”;“3”是专业方向课“集成电路原理与设计”、“集成电路工艺”和“集成电路设计CAD”;“2”是宽口径专业课“集成电路应用”、“集成电路封装与测试”,实行主讲教师负责制。依照整体优化和循序渐进的原则,根据学习每门专业课所需掌握的基础知识,环环相扣,合理设置各专业课的开课先后顺序,形成先专业基础课,再专业方向课,然后宽口径专业课程的开设模式。
我校物理与电子科学学院本科生实行信息科学大类培养模式,也就是三个本科专业大学一年级、二年级统一开设课程,主要开设高等数学、线性代数、力学、热学、电磁学和光学等课程,重在增强学生的数学、物理等基础知识,为各专业后续专业基础课、专业方向课的学习打下很好的理论基础。从大学三年级开始,分专业开设专业课程。为了均衡电子科学与技术专业学生各学期的学习负担,大学三年级第一学期开设“理论物理导论”和“固体物理与半导体物理”两门专业基础课程。其中“固体物理与半导体物理”这门课程是将固体物理知识和半导体物理知识结合在一起,课时量为64学时,由2位教师承担教学任务,其目的是既能让学生掌握后续专业方向课学习所需要的基础知识,又不过分增加学生的负担。大学三年级第二学期开设“电子器件基础”、“集成电路原理与设计”、“集成电路设计CAD”和“微电子工艺学”等专业课程。由于“电子器件基础”是其他三门课程学习的基础,为了保证学习的延续性,拟将“电子器件基础”这门课程的开设时间定为学期的1~12周,而其他3门课程的开课时间从第6周开始,从而可以保证学生在学习专业方向课时具有高的学习效率和大的学习兴趣。另外,“集成电路原理与设计”课程设置96学时,由2位教师承担教学任务。并且,先讲授“CMOS模拟集成电路原理与设计”的内容,课时量为48学时,开设时间为6~17周;再讲授“CMOS数字集成电路原理与设计”的内容,课时量为48学时,开设时间为8~19周。大学四年级第一学期开设“集成电路应用”和“集成电路封装与测试技术”等宽口径专业课程,并设置其为选修课,这样设置的目的在于:对于有意向考研的同学,可以减少学习压力,专心考研;同时,对于要找工作的同学,可以更多了解专业方面知识,为找到好工作提供有力保障。
2.优化专业课程的教学内容。由于我校物理与电子科学学院本科生采用信息科学大类培养模式,专业课程要在大学三年级才能开始开设,时间紧凑。为实现我校集成电路设计人才培养目标,培养紧跟集成电路发展前沿、具有较强实用性和创新性的集成电路设计人才,需要对集成电路设计方向专业课程的教学内容进行优化。其学习重点应该是掌握基础的电路结构、电路工作特性和电路分析基本方法等,而不是纠结于电路各性能参数的推导。
在“固体物理与半导体物理”和“晶体管原理”等专业基础课程教学中,要尽量避免冗长的公式及烦琐的推导,侧重于对基本原理及特性的物理意义的学习,以免削弱学生的学习兴趣。MOS器件是目前集成电路设计的基础,因此,在“晶体管原理”中应当详细讲授MOS器件的结构、工作原理和特性,而双极型器件可以稍微弱化些。
对于专业方向课程,教师不但要讲授集成电路设计方面的知识,也要侧重于集成电路设计工具的使用,以及基本的集成电路版图知识、集成电路工艺流程,尤其是CMOS工艺等相关内容的教学。实验实践教学是培养学生的知识应用能力、实际动手能力、创新能力和社会适应能力的重要环节。因此,在专业方向课程中要增加实验教学的课时量。例如,在“CMOS模拟集成电路原理与设计”课程中,总课时量为48学时不变,理论课由原来的38学时减少至36学时,实验教学由原来的10学时增加至12个学时。36学时的理论课包含了单级运算放大器、差分运算放大器、无源/有源电流镜、基准电压源电路、开关电路等多种电路结构。12个学时的实验教学中2学时作为EDA工具学习,留给学生10个学时独自进行电路设计。从而保证学生更好地理解理论课所学知识,融会贯通,有效地促进教学效果,激发学生的学习兴趣。
三、结论
集成电路产业是我国国民经济发展与社会信息化的重要基础,而集成电路设计人才是集成电路产业发展的关键。本文根据调研结果,分析目前集成电路设计本科专业课程体系存在的主要问题,结合我校实际情况,对我校电子科学与技术专业集成电路设计方向的专业课程体系进行改革,提出“4+3+2”专业课程体系,并对专业课程讲授内容进行优化。从而满足我校集成电路设计专业创新型人才培养模式的要求,为培养实用创新型集成电路设计人才提供有力保障。
参考文献:
[1]段智勇,弓巧侠,罗荣辉,等.集成电路设计人才培养课程体系改革[J].电气电子教学学报,2010,(5).
[2]方卓红,曲英杰.关于集成电路设计与集成系统本科专业课程体系的研究[J].科技信息,2007,(27).
[3]谢海情,唐立军,文勇军.集成电路设计专业创新型人才培养模式探索[J].电力教育,2013,(28).
[4]刘胜辉,崔林海,黄海.集成电路设计与集成系统专业课程体系研究与实践[J].教育与教学研究,2008,(22).
文章编号:1671-489X(2014)18-0094-03
集成电路测试是集成电路产业不可或缺的一个重要环节,其贯穿了集成电路设计、生产与应用的整个过程。集成电路测试技术的发展相对滞后于其他环节,这在一定程度上制约了集成电路产业的发展。集成电路测试产业不但对测试设备依赖严重,对测试技术人员的理论基础和实践能力也有着较高要求。为应对上述挑战,加强电子类学生的就业竞争力,就要求学生在掌握集成电路工艺、设计基础知识的同时,还需具备集成电路测试与可测性设计的相关知识[1-2]。
目前,国内本科阶段开设集成电路测试与可测性设计课程的高校较少,学过的学生也多数反映比较抽象,不知如何学以致用。究其原因,主要是教学环节存在诸多问题[3]。为了提高该课程教学质量,本文对该课程教学内容、方法进行了初步的探索研究,以期激发学生的学习主动性,加深对该课程的理解和掌握。
1 理论教学结合实际应用
在理论教学中结合实际应用,有助于学生明确学习目的,提升学习兴趣。因此,讲授测试重要性时可以结合生活中的应用实例来展开。如目前汽车中的ABS电路如果不通过测试,将会造成人员和汽车的损伤;远程导弹中的制导电路不通过测试,将无法精确命中目标;制造业中的数控机床控制电路,交通信号灯的转向时间显示电路,家电产品中的MP3、MP4解码电路等,均需进行测试等。通过这些介绍,可以使学生了解测试的重要性,从而能更加主动地去掌握所学知识。
2 合理安排教学内容
针对集成电路测试与可测性设计的重要性,电子类专业在本科生三年级时开设集成电路测试与可测性设计课程。该课程的教材采用以中文教材《VLSI测试方法学和可测性设计》(雷绍允著)为主、以英文原版教材《数字系统测试与可测性设计》(Miron Abramovici著)为辅的形式,结合国外高校的授课内容和可测性设计在工业界的应用,对课程内容进行设计。课程定为48学时,课程内容大致分为集成电路测试、可测性设计和上机实验三个部分。
集成电路测试 这部分内容安排20个学时,主要讲解集成电路的常用测试设备、测试方法、集成电路的失效种类、常用的故障模型以及故障检测的方法。组合逻辑电路测试着重讲解测试图形生成方法,主流EDA软件核心算法,包括布尔差分法、D算法、PODEM以及FAN算法等。时序电路测试讲解时序电路的测试模型和方法,介绍时序电路的初始化、功能测试以及测试向量推导方法。
集成电路可测性设计 这部分内容安排16个学时,主要讲解集成电路专用可测性设计方法如电路分块、插入测试点、伪穷举、伪随机等一些较为成熟的可测性设计方法。同时讲解工业界较为流行的可测性设计结构。
上机实验 这部分内容安排12学时。目前主流测试与可测性设计EDA软件Synopsys属于商业软件,收费较高,难以在高校普及使用。为此,本课程选取开源软件ATALANTA和FSIM并基于ISCAS85标准电路,进行故障测试图形生成实验。此外,通过在实验手册中编排基于Quartus软件的电路可测性结构设计等内容,将实验和理论讲解有机结合。
3 培养学生举一反三的能力
创设问题情境,启发学生自主利用已学知识,积极思考、探索。如在讲授组合逻辑故障测试向量生成时,以较为简单的组合逻辑为例,对图1提出以下问题[4]。
1)为了能够反映在电路内部节点所存在的故障,必须对故障节点设置正常逻辑值的非量,这个步骤称为故障激活。对应于图1,如何激活故障G s-a-1?
2)为了能够将故障效应G传播到输出I,则沿着故障传播路径的所有门必须被选通,也就是敏化传播路径上的门。对应图1,如何传播故障G s-a-1?
3)根据激活和敏化故障的要求,如何设置对应的原始输入端的信号值?
通过提问思考和共同探讨,问题得以解决,学生印象深刻,对后续理解各种测试向量生成算法奠定基础。
4 实例讲解
集成电路测试与可测性设计是一门理论化较强的课程,学生在学习过程中可能会产生“学以何用”的疑问。为消除这些疑问,加强学生学习兴趣,明确学习目的,需要授课教师在课程讲解过程中穿插一些测试实例。为此,本课程以科研项目中所涉及的部分测试实例为样本,结合学生的掌握和接受能力加以简化,作为课堂讲解实例。
下面以某个整机系统中所涉及的一款数字编码器为例,进行功能和引脚规模的简化,最终形成图2所示的简化编码器原理图。针对该原理图和具体工作原理,讲解该编码器的基本测试方法和过程。
图2所示编码器有四个地址输入引脚(A0~A3),一个电源引脚VDD(5 V),一个时钟输入引脚CLK,一个输出引脚DOUT和一个接地引脚GND。在地址端(A0~A3)输入一组编码,经过编码器编码,在DOUT端串行输出。编码的规律如图3所示,编码输出顺序(先左后右):A0编码A1编码A2编码A3编码同步位。
该测试实例主要围绕功能测试来进行具体讲解。功能测试通过真值表(测试图形)来验证编码器功能是否正确。编码器输入引脚可接三种状态:高电平(1)、低电平(0)和悬空(f)。本实例只列举三组真值表来对该编码器进行测试,即输入引脚分别为1010、0101、ffff。真值表中的每一行代表一个时钟周期(T)。H(高电平)和L(低电平)代表编码器正确编码时DOUT引脚的输出电平。针对1010的输入,参照图3编码规律和表1编码顺序,DOUT输出按A0 A1 A2 A3(1010)顺序实现编码,具体真值表如图4所示。
图4中Repeat n(n为自然数)代表重复验证该行n个时钟。该测试图形通过测试系统的开发环境编译器编译成测试机控制码,发送给测试系统控制器。测试系统发出被测电路所需的各种输入信号并捕获被测电路的输出引脚DOUT信号。当实际测试采样DOUT引脚所得信号与测试图形中的期望输出完全相符时,表示被测电路功能正确,测试通过。反之,则提示有错,编码器功能失效。同样,当输入分别为0101和ffff时,测试图形如图5、图6所示。
实际数字集成电路测试的过程远比上述过程复杂,本例中所讲解的功能测试是一种不完全测试,测试的故障覆盖率和测试效果有待商榷。然而,无论多复杂的功能测试,其主要测试原理基本类似。通过这样的测试实例讲解,能够让学生了解测试图形的功能,熟悉数字电路测试的大体过程和基本原理,加深对理论知识的理解。
5 重视与相关学科的交叉衔接
作为电子类的专业课,本课程横跨计算机软件技术、电路设计技术、数学、物理等多个领域。有鉴于此,在教学中应尽可能地体现集成电路测试与可测性设计与其他课程的关系,在教学中为后续课程打下基础。
关键词:IP技术 模拟集成电路 流程
中图分类号:TP3 文献标识码:A 文章编号:1674-098X(2013)03(b)-00-02
1 模拟集成电路设计的意义
当前以信息技术为代表的高新技术突飞猛进。以信息产业发展水平为主要特征的综合国力竞争日趋激烈,集成电路(IC,Integrated circuit)作为当今信息时代的核心技术产品,其在国民经济建设、国防建设以及人类日常生活的重要性已经不言
而喻。
集成电路技术的发展经历了若干发展阶段。20世纪50年代末发展起来的属小规模集成电路(SSI),集成度仅100个元件;60年展的是中规模集成电路(MSI),集成度为1000个元件;70年代又发展了大规模集成电路,集成度大于1000个元件;70年代末进一步发展了超大规模集成电路(LSI),集成度在105个元件;80年代更进一步发展了特大规模集成电路,集成度比VLSI又提高了一个数量级,达到106个元件以上。这些飞跃主要集中在数字领域。
(1)自然界信号的处理:自然界的产生的信号,至少在宏观上是模拟量。高品质麦克风接收乐队声音时输出电压幅值从几微伏变化到几百微伏。视频照相机中的光电池的电流低达每毫秒几个电子。地震仪传感器产生的输出电压的范围从地球微小振动时的几微伏到强烈地震时的几百毫伏。由于所有这些信号都必须在数字领域进行多方面的处理,所以我们看到,每个这样的系统都要包含一个模一数转换器(AD,C)。
(2)数字通信:由于不同系统产生的二进制数据往往要传输很长的距离。一个高速的二进制数据流在通过一个很长的电缆后,信号会衰减和失真,为了改善通信质量,系统可以输入多电平信号,而不是二进制信号。现代通信系统中广泛采用多电平信号,这样,在发射器中需要数一模转换器(DAC)把组合的二进制数据转换为多电平信号,而在接收器中需要使用模一数转换器(ADC)以确定所传输的电平。
(3)磁盘驱动电子学计算机硬盘中的数据采用磁性原理以二进制形式存储。然而,当数据被磁头读取并转换为电信号时,为了进一步的处理,信号需要被放大、滤波和数字化。
(4)无线接收器:射频接收器的天线接收到的信号,其幅度只有几微伏,而中心频率达到几GHz。此外,信号伴随很大的干扰,因此接收器在放大低电平信号时必须具有极小噪声、工作在高频并能抑制大的有害分量。这些都对模拟设计有很大的挑战性。
(5)传感器:机械的、电的和光学的传感器在我们的生活中起着重要的作用。例如,视频照相机装有一个光敏二极管阵列,以将像点转换为电流;超声系统使用声音传感器产生一个与超声波形幅度成一定比例的电压。放大、滤波和A/D转换在这些应用中都是基本的功能。
(6)微处理器和存储器:大量模拟电路设计专家参与了现代的微处理器和存储器的设计。许多涉及到大规模芯片内部或不同芯片之间的数据和时钟的分布和时序的问题要求将高速信号作为模拟波形处理。而且芯片上信号间和电源间互连中的非理想性以及封装寄生参数要求对模拟电路设计有一个完整的理解。半导体存储器广泛使用的高速/读出放大器0也不可避免地要涉及到许多模拟技术。因此人们经常说高速数字电路设计实际上是模拟电路的
设计。
2 模拟集成电路设计流程概念
在集成电路工艺发展和市场需求的推动下,系统芯片SOC和IP技术越来越成为IC业界广泛关注的焦点。随着集成技术的不断发展和集成度的迅速提高,集成电路芯片的设计工作越来越复杂,因而急需在设计方法和设计工具这两方面有一个大的变革,这就是人们经常谈论的设计革命。各种计算机辅助工具及设计方法学的诞生正是为了适应这样的要求。
一方面,面市时间的压力和新的工艺技术的发展允许更高的集成度,使得设计向更高的抽象层次发展,只有这样才能解决设计复杂度越来越高的问题。数字集成电路的发展证明了这一点:它很快的从基于单元的设计发展到基于模块、IP和IP复用的
设计。
另一方面,工艺尺寸的缩短使得设计向相反的方向发展:由于物理效应对电路的影响越来越大,这就要求在设计中考虑更低层次的细节问题。器件数目的增多、信号完整性、电子迁移和功耗分析等问题的出现使得设计日益复杂。
3 模拟集成电路设计流程
3.1 模拟集成电路设计系统环境
集成电路的设计由于必须通过计算机辅助完成整个过程,所以对软件和硬件配置都有较高的要求。
(1)模拟集成电路设计EDA工具种类及其举例
设计资料库―Cadence Design Framework11
电路编辑软件―Text editor/Schematic editor
电路模拟软件―Spectre,HSPICE,Nanosim
版图编辑软件―Cadence virtuoso,Laker
物理验证软件―Diva,Dracula,Calibre,Hercules
(2)系统环境
工作站环境;Unix-Based作业系统;由于EDA软件的运行和数据的保存需要稳定的计算机环境,所以集成电路的设计通常采用Unix-Based的作业系统,如图1所示的工作站系统。现在的集成电路设计都是团队协作完成的,甚至工程师们在不同的地点进行远程协作设计。EDA软件、工作站系统的资源合理配置和数据库的有效管理将是集成电路设计得以完成的重要保障。
3.2 模拟集成电路设计流程概述
根据处理信号类型的不同,集成电路一般可以分为数字电路、模拟电路和数模混合集成电路,它们的设计方法和设计流程是不同的,在这部分和以后的章节中我们将着重讲述模拟集成电路的设计方法和流程。模拟集成电路设计是一种创造性的过程,它通过电路来实现设计目标,与电路分析刚好相反。电路的分析是一个由电路作为起点去发现其特性的过程。电路的综合或者设计则是从一套期望的性能参数开始去寻找一个令人满意的电路,对于一个设计问题,解决方案可能不是唯一的,这样就给予了设计者去创造的机会。
模拟集成电路设计包括若干个阶段,设计模拟集成电路一般的过程。
(l)系统规格定义;(2)电路设计;(3)电路模拟;(4)版图实现;(5)物理验证;(6)参数提取后仿真;(7)可靠性分析;(8)芯片制造;(9)测试。
除了制造阶段外,设计师应对其余各阶段负责。设计流程从一个设计构思开始,明确设计要求和进行综合设计。为了确认设计的正确性,设计师要应用模拟方法评估电路的性能。
这时可能要根据模拟结果对电路作进一步改进,反复进行综合和模拟。一旦电路性能的模拟结果能满足设计要求就进行另一个主要设计工作―电路的几何描述(版图设计)。版图完成并经过物理验证后需要将布局、布线形成的寄生效应考虑进去再次进行计算机模拟。如果模拟结果也满足设计要求就可以进行制造了。
3.3 模拟集成电路设计流程分述
(1)系统规格定义
这个阶段系统工程师把整个系统和其子系统看成是一个个只有输入输出关系的/黑盒子,不仅要对其中每一个进行功能定义,而且还要提出时序、功耗、面积、信噪比等性能参数的范围要求。
(2)电路设计
根据设计要求,首先要选择合适的工艺制程;然后合理的构架系统,例如并行的还是串行的,差分的还是单端的;依照架构来决定元件的组合,例如,电流镜类型还是补偿类型;根据交、直流参数决定晶体管工作偏置点和晶体管大小;依环境估计负载形态和负载值。由于模拟集成电路的复杂性和变化的多样性,目前还没有EDA厂商能够提供完全解决模拟集成电路设计自动化的工具,此环节基本上通过手工计算来完成的。
(3)电路模拟
设计工程师必须确认设计是正确的,为此要基于晶体管模型,借助EDA工具进行电路性能的评估,分析。在这个阶段要依据电路仿真结果来修改晶体管参数;依制程参数的变异来确定电路工作的区间和限制;验证环境因素的变化对电路性能的影响;最后还要通过仿真结果指导下一步的版图实现,例如,版图对称性要求,电源线的宽度。
(4)版图实现
电路的设计及模拟决定电路的组成及相关参数,但并不能直接送往晶圆代工厂进行制作。设计工程师需提供集成电路的物理几何描述称为版图。这个环节就是要把设计的电路转换为图形描述格式。模拟集成电路通常是以全定制方法进行手工的版图设计。在设计过程中需要考虑设计规则、匹配性、噪声、串扰、寄生效应、防门锁等对电路性能和可制造性的影响。虽然现在出现了许多高级的全定制辅助设计方法,仍然无法保证手工设计对版图布局和各种效应的考虑全面性。
(5)物理验证
版图的设计是否满足晶圆代工厂的制造可靠性需求?从电路转换到版图是否引入了新的错误?物理验证阶段将通过设计规则检查(DRC,Design Rule Cheek)和版图网表与电路原理图的比对(VLS,Layout Versus schematic)解决上述的两类验证问题。几何规则检查用于保证版图在工艺上的可实现性。它以给定的设计规则为标准,对最小线宽、最小图形间距、孔尺寸、栅和源漏区的最小交叠面积等工艺限制进行检查。版图网表与电路原理图的比对用来保证版图的设计与其电路设计的匹配。VLS工具从版图中提取包含电气连接属性和尺寸大小的电路网表,然后与原理图得到的网表进行比较,检查两者是否一致。
参考文献
关键词:555集成电路;典型振荡电路;分析;改进
1.555集成电路的特点
555集成电路的一个显著特点就是能够将模拟功能和逻辑功能有效地结合在一起,从而形成一个集成化的电路。555集成电路是数字电路与模拟电路的有机结合,具有延缓时间、发出脉冲信号等功能。555电路具有线路简洁明了、功能完善、灵活性强、使用方便等多项优点,因此,555集成电路常被用于典型的多谐振荡电路中,以代替传统的连接式控制组件构成脉冲振荡电路。
除此之外,555集成电路还具有工作效率高、稳定性强、精度高等优点。由于555集成电路采用的电压范围为2~28伏,因此能够与其他数字电路进行有效的连接。555集成电路还有一定的输出功率,能够用于对微电机、指示灯、扬声器等多种电路的调节。
2.555集成电路的类型与选择
555集成电路主要有两种类型,分别是双核型、互补金属氧化物半导体型。其中,双核型电路的性能更强,因此使用频率较高。
555集成电路构成的基本电路通常有单稳态触发电路、双稳态触发电路、无稳态工作电路。无稳态电路的输出状态是在高低之间持续转换的,从而形成了一个矩形的脉冲图像。因此,从本质上来看,这是一种脉冲振荡器,因为它能输出矩形脉冲。从电路原理上来看,这个脉冲可以看作正弦波和一系列频率相同但幅度不相同的正弦波叠加而成的,它是不需要外部的脉冲来引发振荡而自动启动的,因此,它又称为自激振荡器。
3.用于实现理想方波振荡的改进电路
笔者在研究555集成电路构成的典型脉冲振荡电路时发现,当电路形成特定的方波时,对电路的其他要素要求较高,要想实现理想方波是有的难度的。可通过对电路的简单改进,使得电路的方波变得更加理想。
(1)间接反馈型无稳态电路。根据555集成电路的特点可以得出,其开放开关的电压与输出端的电压具有相同的大小和功能,因此,当内部的放电开关断开时,电路处于开路的状态,电路中产生一个高电平。当输出端的电压等于零,内部开关闭合时,接地端接地,电路中产生低电平。从上述原理中可以看出,用放电端的电压代替输出端的电压是完全可行的。但存在的一个问题是,电路中的能源可能会出现不足,这时就需要在电路中增加一个充点电阻,使原先的电路成为拥有两个反馈电阻的电路。通过上述改进,负载电流和充电电路就能完全独立,也就是说,电路的充放电电路不会再受到负载电流的影响。
此外,从电路性能的角度来看,双极性的555集成电路放电管比一般的电路要大,采用改进后的电路能够有效地提高电容的充放电性能,电路的运行也会更加稳定安全。因此,间接反馈式电路用于改进典型的555集成振荡电路是切实可行的。
(2)压控振荡器的构成。构成压控振荡器也是555集成电路的一种常见优化方法。压控振荡器的构成是通过在电路中接入电位器来改变电路中的振荡频率。当电位器的中心电压改变时,电容器的充电时间会发生较大改变,通常变化幅度在20倍左右,而电容器的放电时间变化幅度却很小,几乎可以说是没有变化。将两者的变化绘制成图像,可以看到两个时间点之间有一个交点,这一交点就是D50%。
为了进一步提高电路振荡频率的稳定性,可以使用晶体材料。此外,可变电容的使用也可以对电路的振荡频率进行精确的调整。用晶体对振荡频率进行控制,振荡频率就与晶体的频率一致,也就是谐波的频率。通过这一优化处理,电路的振荡频率稳定性得到了极大提高,实验的数据表明,振荡频率的稳定性大致可以提高30~40个百分比。
4.结语
555集成电路构成的典型振荡电路在通过完善和优化后,其性能得到了进一步的提高。随着集成电路技术的进一步发展以及相关制造工艺的完善,由555集成电路构成的典型振荡电路必将会得到更加广泛的应用,其功能也将得到进一步的完善。
参考文献:
为满足集成电路方面教学和科研的需要,同济大学电子科学与技术系以985三期实验室建设、教育部修购计划两项经费所购置的设备为主体,充分整合利用本系目前已有的设备,完成了一个覆盖完整的集成电路设计平台的构建。依托同济大学第8期实验教改项目的支持,电子科学与技术系在平台的应用方面进行了有益的探索:针对本科生实验教学完成了集成电路设计系列实验课程开设;在集成电路相关科研项目中进行了实际应用,为科研工作提供了良好的支撑。
【关键词】
集成电路;设计平台;实验教学;科研
进入21世纪之后,集成电路在我国相关产业及教育领域的重要性日益凸显。2000年6月,国务院了纲领性文件《鼓励软件产业和集成电路产业发展的若干政策》(国发2000〔18号〕)[1],明确了集成电路作为国家战略性新兴产业的地位。在其后的国家中长期科技发展规划等文件中,均将集成电路列为重要的发展方向,自此我国集成电路产业进入了蓬勃发展的时期。产业的快速发展必然需要科技和教育的配合。基于此原因,国务院科教领导小组批准实施国家科技重大专项—集成电路与软件重大专项,其后教育部、科技部决定在国内有相对优势的高等院校建立国家集成电路人才培养基地,分别于2003年、2004年及2009年分3批批准和支持20所高校进行人才培养基地的建设工作。笔者所在的同济大学为第2批建设的6所高校之一。
同济大学电子科学与技术系成立于2002年,历史较短,在集成电路方面的基础较为薄弱。但自成立之初便将集成电路设计列为最重要的教学与科研方向之一,参考国际知名高校以及国内兄弟院校的先进经验[2-4],在课程设置等人才培养环节进行了积极的探索[5]。但是,集成电路设计强调工程设计实践,如果缺乏相应的设计平台,仅以理论知识为主,会导致培养出的学生与产业需求契合度不高。这也是诸多高校在集成电路设计的实验设置及实践环节进行教学改革和积极探索的原因[6-7]。我系也意识到亟须加强实践环节的相关建设。基于以上原因,我们充分利用985三期实验室建设、教育部修购计划两项经费的支持,在集成电路设计平台的构建方面进行了积极的尝试。
1建设方案与建设过程
1.1平台建设的基础依托985二期实验室建设、教育部修购计划两项经费为我系的教学改革提供了非常有力的支持,根据各个学科方向的统筹规划,分配约150万元用于集成电路及与系统设计相关的设备购置。购置的设备见表1、表2。除以上两部分设备之外,本系已经部分购置了与集成电路设计相关的设备,如Dell服务器、SUN工作站、各类测试与信号发生设备等。因此,我系已经初步具备了建设一个覆盖半导体器件制备与分析、集成电路设计与测试、系统级设计验证完整流程的专业实验与设计平台的基础条件。
1.2总体构想与平台规划基于上述基础硬件设备,我系在有限的场地资源中安排了专门的场地作为半导体器件与集成电路设计专业实验室,以支持集成电路设计平台的建设。将拟建设的半导体与集成电路设计专业实验室划分为4个功能区:服务器与中央控制区、集成电路设计区、集成电路分析与测试区、系统级设计与验证区。总体的规划如图1所示,功能与设备支撑概述如下。(1)服务器与中央控制区。主要空间用于放置3个机柜、承载两个机架式服务器(HP、Dell)、存储阵列(SAS15000RPM接口、初始配置7.2TB)、一个卧式服务器(超微)以及UPS电源、万兆交换机等供电和网络配件。需注意该部分噪声较大,故应与实验室其他功能区隔离。提供VPN、远程配置以及各类必要的服务,配置完整的EDA工具系统,覆盖集成电路设计全流程。(2)集成电路设计区。20个左右的工位,主要为HP工作站。具备两类工作方式:作为终端登录服务器系统使用;在服务器系统不能提供支持时独立使用。除工作站之外,配备2~3个文件柜、工具柜。(3)集成电路分析与测试区。主要功能为集成电路(晶圆、裸片、封装后芯片)的分析、测试。分析与测试系统以两套手动探针测试台(包括基座、卡盘、ADV显微镜)、超长焦金相显微镜(超长工作距离,2000倍放大)、4套微米级精确位移系统(包括探针、针臂、针座、线缆与接口)为主,并配备2台台式计算机以及信号发生器、稳压电源、逻辑分析仪1台、示波器1台,用作信号发生与记录、信号与图像采集功能。配备两个实验工具柜。(4)系统级设计与验证区。6个工位,配备2~3台计算机。考虑到面积有限,而该区功能较多,以多功能复用的方式设置工位的功能。该区的功能包括:①板级电路设计与测试。主要支撑设备为必要的计算机系统(软、硬件)。多台逻辑分析仪、示波器、信号发生器、万用表、稳压电源、必要的电子元器件及焊接设备等。②基于FPGA的系统设计。主要支撑设备为计算机系统(软、硬件)、4套Virtex-5FPGA系统。③嵌入式系统设计。主要支撑设备为计算机系统、3套VeriSOC-ARM9开发平台、多套PSoC开发套件、多套ARM开发套件、微控制器开发套件等。④集成电路系统级验证。与板级电路与测试共用各类设备。
1.3软硬件系统与设计流程构建基于新购买的存储阵列(NetApp)、服务器(DL380G7)、交换机(CISCO),并整合本系统原有的两台服务器(一台Dell机架式、一台超微立式),构成一个EDA开发服务系统。系统构建方面,我们进行了基于传统的EDA开发环境架构,以及基于虚拟化系统进行构建的两种尝试。存储结构上基于存储阵列,提供足够安全的冗余备份与保护。系统具备负载均衡功能。最终构建的系统可直接支持同一实验室内20台以上HP工作站的同时接入,并提供远程登录支持;以及通过同济大学校园网,提供外网的VPN接入支持。在硬件系统的基础上,我们安装配置了完善的EDA工具链,以提供覆盖全流程的集成电路设计支持。
2教学与科研应用
前述所构建的集成电路设计平台仅是基础的软硬件系统,如果要在实际的教学和科研工作中进行使用,尚需进行相关的课程大纲规划、实验方案设计以及实际的芯片设计检验。通过同济大学第8期实验教学改革项目的支持,我们在这些方面开展了一定的工作,主要包括以下两个方面。
2.1教学应用完成了实验方案内容建设,构建形成了一套覆盖集成电路设计全流程的实验方案,并兼顾半导体器件、集成电路测试;设计的系列实验应用于新开设的“集成电路设计实验”课程中,以丰富和扩展该门课程的实验内容,提高学生的学习积极性。该课程每周4学时,已经完成2013、2014两个学年的实验教学工作。具体的实验内容包括反相器实验(电路原理图输入、电路仿真、版图设计、版图设计规则检查及一致性检查、后仿真)、一位全加器系列试验、基本模拟电路单元设计实验、综合定制设计实验、硬件描述语言设计与验证实验(选做)、自动综合与布局布线设计实验(选做)。构建的软硬件平台,除用于集成电路设计实验课之外,亦用于电子系“半导体器件物理”“半导体工艺原理”等多门课程的实验环节,以及本科生毕业设计中。与现有的本科生各类创新活动相结合,为该类活动的人员选拔与培养、培训起到了一定的辅助作用。
2.2科研应用集成电路设计平台除用于相关的实验教学任务之外,亦可为相关的科研工作提供良好的支撑。在该平台所定义的开发环境及设计流程上,我们完成了两款65纳米工艺超大规模集成电路芯片的设计工作,其中一款已经返回,并进行了较为完整的测试,功能及性能均符合预期,芯片如图2、图3所示。这些设计很好地确证了该平台的完整性和可靠性。
【参考文献】
[1]国务院.国务院关于印发鼓励软件产业和集成电路产业发展若干政策的通知[EB/OL].2006-6.
[2]叶红.美国高校电子工程类专业本科培养方案浅析[J].高等理科教育,2007(6):64-67.
[3]于歆杰,王树民,陆文娟.麻省理工学院教育教学考察报告(二)—培养方案与课程设置篇[J].电气电子教学学报.2004(5):1-5.
[4]Bulletinforundergraduateeducation[EB/OL].
[5]罗胜钦,王遵彤,万国春,等.电子科学与技术专业培养方案初探[J].电气电子教学学报.2009(31):89-91.
[6]张立军,羊箭锋,孙燃.CMOS集成电路设计教学及实验改革[J].电气电子教学学报.2012,34(1):105-107.