首页 > 文章中心 > 仿真电路设计总结

仿真电路设计总结

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇仿真电路设计总结范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

仿真电路设计总结

仿真电路设计总结范文第1篇

1.电子技术课程设计的重点与要求

本课程的重点是电路设计,内容侧重综合应用所学知识,设计制作较为复杂的功能电路或小型电子系统。一般给出实验任务和设计要求,通过电路方案设计、电路设计、电路安装调试和指标测试、撰写实验报告等过程,培养学生综合运用所学知识解决实际问题的能力,提高电路设计水平和实验技能。在实践中着重培养学生系统设计的综合分析问题和解决问题的能力,培养学生创新实践的能力。电子技术课程设计一般要求学生根据题目要求,通过查阅资料、调查研究等,独立完成方案设计、元器件选择、电路设计、仿真分析、电路的安装调试及指标测试,并独立写出严谨的、文理通顺的实验报告。

具体地说,学生通过课程设计教学实践,应达到以下基本要求:建立电子系统的概念,综合运用电子技术课程中所学习到的理论知识完成一个电子系统的设计;掌握电子系统设计的基本方法,了解电子系统设计中的关键技术;进一步熟悉常用电子器件的类型和特性,掌握合理选用器件的原则;掌握查阅有关资料和使用器件手册的基本方法;掌握用电子设计自动化软件设计与仿真电路系统的基本方法;进一步熟悉电子仪器的正确使用方法;学会撰写课程设计总结报告;培养严肃认真的工作作风和严谨的科学态度。

2.电子技术课程设计的教学过程

电子技术课程设计是在教师指导下,学生独立完成课题,达到对学生理论与实践相结合的综合性训练,要求本课程设计涵盖模拟电路知识和数字电路知识,因此课程设计的选题要求包含数字电子技术和模拟电子技术。教学环节可以分为以下四个部分。

2.1课堂讲授。

课程设计开始前,需要确定指导老师。由指导老师通过两学时的教学,明确课程设计的要求,主要内容包括课程介绍、教学安排、成绩评定方法等。在课堂教学环节中,指导老师介绍课题的基本情况与要求,要求学生从多个课题中选择一个。

2.2设计与调试环节。

2.2.1前期准备、方案及电路设计

前期准备包括选择题目、查找资料、确定方案、电路设计、电路仿真等。在确定方案时要求学生认真阅读教材,根据技术指标,进行方案分析、论证和计算,独立完成设计。设计工作内容如下:题目分析、系统结构设计、具体电路设计。学生根据所选课题的任务、要求和条件进行总体方案的设计,通过论证与选择,确定总体方案。此后是对方案中单元电路进行选择和设计计算,称为预设计阶段,包括元器件的选用和电路参数的计算。最后画出总体电路图(原理图和布线图),此阶段约占课程设计总学时的30%。

2.2.2在实验室进行电路安装、调试,指标测试等。

在安装与调试这个阶段,要求学生运用所学的知识进行安装和调试,达到任务书的各项技术指标。预设计经指导教师审查通过后,学生即可购买所需元器件等材料,并在实验箱上或试验板上组装电路。运用测试仪表调试电路、排除电路故障、调整元器件、修改电路(并制作相应电路板),使之达到设计指标要求。此阶段往往是课程设计的重点与难点,所需时间约占总学时的50%。

2.3撰写总结报告,总结交流与讨论。

撰写课程设计的总结报告是对学生写科学论文和科研总结报告能力的训练。学生写报告,不仅要对设计、组装、调试的内容进行全面总结,而且要把实践内容上升到理论高度。总结报告应包括以下方面:系统任务与分析、方案选择与可行性论证、单元电路的设计、参数计算及元器件选择、元件清单和参考资料目录。除此之外,还应对以下几部分进行说明:设计进程记录,设计方案说明、比较,实际电路图,功能与指标测试结果,存在的问题及改进意见,等等。总结报告具体内容如下:课题名称、内容摘要、设计内容及要求、比较和选择设计的系统方案、画出系统框图、单元电路设计、参数计算和器件选择。画出完整的电路图,并说明电路的工作原理。组装调试的内容,包括使用的主要仪器和仪表;调试电路的方法和技巧;测试的数据和波形并与计算结果比较分析;调试中出现的故障、原因及排除方法。总结设计电路的特点和方案的优缺点,指出课题的核心及实用价值,列出系统需要的元器件清单,列出参考文献,收获、体会,并对本次设计提出建议。

2.4成绩评定。

课程的实践性不仅体现实际操作能力,而且体现独立完成设计和分析的能力。因此,课程设计的考核分为以下部分:设计方案的正确性与合理性。设计成品:观察实验现象,是否达到技术要求。(安装工艺水平、调试中分析解决问题的能力)实验报告:实验报告应具有设计题目、技术指标、实现方案、测试数据、出现的问题与解决方法、收获体会等。课程设计答辩:考查学生实际掌握的能力和表达能力,设计过程中的学习态度、工作作风和科学精神及创新精神,等等。

3.电子技术课程设计的步骤

在“电子技术基础”理论课程教学中,通常只介绍单元电路的设计。然而,一个实用的电子电路通常是由若干个单元电路组成的。通常将规模较小、功能单一的电子电路称为单元电路。因此,一个电子系统的设计不仅包括单元电路的设计,还包括总体电路的系统设计(总体电路由哪些单元电路构成,以及单元电路之间如何连接,等等)。随着微电子技术的发展,各种通用和专用的模拟和数字集成电路大量涌现,电子系统的设计除了单元电路的设计外,还包括集成电路的合理选用。电子电路的系统设计越来越重要,不过从教学训练角度出发,课程设计仍应保留一定的单元电路内容。电子系统分为模拟型、数字型及两者兼而有之的混合型三种。虽然模拟电路和数字电路设计的方法有所不同(尤其单元电路的设计),但总体电路的设计步骤是基本相同的。电子电路的一般设计方法与步骤包括:总体方案的设计与方案论证、单元电路的设计、单元电路间的连接方法、绘制总体电路草图、关键电路试验、EDA仿真、绘制正式的总体电路图等。

仿真电路设计总结范文第2篇

模拟电路课程支撑的能力包括:阅读电子元器件技术文件和电原理图的能力、单元电路设计能力、电路综合设计能力、计算机辅助设计能力、编写设计文件的能力。依据能力目标的不同,可以划分不同的任务类型,并据此确定任务目标,设计任务结构。

关键词:模拟电路电路设计教学模式

以大规模集成工艺为依托的各种数字电路问世以来,由于其相对模拟电路的高可靠性和灵活性,逐渐取代了各种传统的模拟电路的应用领域。但是现实的物理世界毕竟是模拟的,因此,任何数字化系统都包含有模拟电路部分,模拟电路并没有因数字电路的兴起而被完全取代。模拟电路课程仍然是电子工程、电气工程、自动控制、通信等涉电类专业的核心课程之一。

模拟电路课程的重要性还在于无论从工程技术还是专业能力结构而言,模拟电子技术都处于较为底层的位置,通过该课程的学习获取的知识、经验、工程技术方法是顺利学习上述专业几乎所有其它专业课程的基础。

模拟电路是教学难度相对较大的课程。其学习的困难性在于,学生是第一次接触以半导体器件为核心的有源电路;模拟电路“数字化”、结构化程度低,表现出的物理现象和涉及的数学工具又较为复杂;模拟电路的工程技术方法很难实现程序化,常常需要依赖经验知识解决问题。

电路设计是电子技术人员的工作邻域和具有典型性的工作过程,模拟电路设计过程相当完整地体现了模拟电路技术应用能力的内容和要求。构建基于模拟电路设计的学习任务,依据设计工作过程组织教学活动,能够较好地实现培养模拟电子技术应用能力的教学目标。

1、工作过程、能力与任务类型

一个较完整的电子系统电路设计的工作过程,包括:技术指标分析,方案设计,单元电路设计与参数调整,电路综合联调与性能测试。通过对模拟电路设计工作内容和过程的分析,完成电路原理设计过程必须具备的、应由模拟电路课程支撑的能力包括:阅读电子元器件技术文件和电原理图的能力、单元电路设计能力、电路综合设计能力、计算机辅助设计能力、编写设计文件的能力。因此模拟电路课程的学习任务有4种类型:识读电原理图和技术资料、单元电路设计与电路综合、计算机仿真测试、编制设计文件。

单元电路设计与电路综合是基本任务,它引领其它类型任务和整个项目的实施完成。

不同类型的任务可以根据设计任务的需要和本身的复杂程度,作为单独的任务存在,与相关的设计任务共同组成学习项目,也可以作为完成设计的准备知识存在于设计任务之中。例如,反馈放大器设计可以作为一个学习项目,由识读反馈放大电路原理图、反馈放大电路性能分析、反馈放大电路设计3个关联的任务组成。

识读电原理图和阅读元器件技术文件是基本能力。电路设计,特别是在原理设计和电路结构设计时,极少原理性的创新,绝大多数是对已有电路的适用性改进和重新组合,这种改进和组合需要阅读已有的设计资料,借鉴他人的技术经验和成果;为提高电路性能,降低成本,提高工作效率,往往需要在电路中采用新出现的电子元器件,例如集成电路芯片,需要阅读生产方提供的产品规格书及典型应用电路。识读电原理图和技术文件对于形成和提高电路设计能力具有基础性的意义。

目前,电子电路计算机辅助设计(EDA)包括电子工程设计的全过程,例如系统结构模拟、电路特性分析、在系统可编程器件开发、绘制电路图和制作PCB。在电子工程设计中有着不可替代的重要作用,是电子工程技术人员必须具备的专业技术能力之一。在模拟电路课程的学习任务中,主要是指应用计算机完成电路图绘制、电路性能和参数的仿真测试与分析、编制设计文件等工作。

在电路设计的实际工作过程中,编写设计文件是重要的工作内容和不可缺少的环节。没有设计文件,无法进行初步设计完成以后的后继工作。对于学习任务而言,编写设计文件,是一个总结和提高的过程,有利于培养交流沟通能力和养成严谨的工作态度。设计文件也是判断和评价项目或任务完成情况的重要依据。

2、任务目标

(1)电路识读任务,是对针对设计任务收集技术资料(主要是可供设计参考的电路)并进行分析,属于电路设计的准备工作,任务的目的是为完成设计任务建立必要的知识储备。大致分为互相关联的3个层次:1)识别元器件符号、功能和主要技术指标。依据符号识别电路中的元器件是读图的基础,作为专业入门课程,对此应该给与一定程度的注意,要能够识别和了解符号的含义、主要器件功能和技术指标。根据电路中使用的核心器件,往往可以判断电路的功能。2)区分电路单元,判断电路功能。较复杂的电路系统都由单元电路构成,功能单一的单元电路也可以进一步分解为部分电路,例如放大器可分为输入级、中间级和输出级;稳压器可分为整流和稳压部分。对部分电路功能的分析,得出对整个系统功能的判断,并作为下一步工程估算的基础。3)指出电路的结构特点,估算分析电路技术指标。分析电路形式与结构,可以得出电路大致的技术性能指标,定性判断元器件参数对电路性能的影响。例如对放大器输入级、输出级电路形式和结构的分析,可以大致得出放大器的输入、输出特性;对中间级的分析,可以大致判断放大能力;依据级间耦合方式,可以判断放大器频率响应范围;甚至电源电压也可以据以分析放大器输出信号幅值。

(2)设计任务目标包括典型单元电路设计与电子线路综合设计,在定性分析的基础上实现定量估算,自顶向下完成初步的设计。依据设计工作过程,可以分解为以下阶段目标。1)正确理解任务要求,分析各项技术指标的含义。仔细研究任务的工程背景和要求,正确分析和理解各项技术指标的含义,分析实现任务要求的技术途径,这是完成设计的前提条件。2)设计总体框图,分配技术指标。参考与任务相同或相近的电路方案,选用能够满足技术指标要求的核心器件,完成方案论证。对于同一个任务,实现的方案可以有多个,应具备将不同方案加以分析、比较的能力,从中确定一种相对较优的方案。

依据选定的方案按照功能划分成若干个互相联系的模块,将技术指标和功能分配给各个模块。3)单元电路设计。依据模块的功能和技术指标要求,参考典型电路,确定电路结构,计算元器件参数完成单元电路的初步设计。4)仿真测试。模拟电路,比如放大器、滤波器等的参数比较繁琐,需要进行多次调整才能达到技术指标要求。要能够在计算机上对单元电路仿真测试,修改电路参数,观测性能指标,直至满足技术指标要求。5)电路联调,测试技术指标。在单元电路完成逐步设计的基础上,通常依据信号流向,逐级完成级联和调试直至全部电路调试完成,系统技术指标达到设计要求。这个过程是电路综合的过程,也可以在计算机上模拟仿真实现。

(3)仿真测试调整任务的目标是在电子电路设计过程中实现较为精确的量化分析。其作用主要表现在3个方面。[3]1)验证电路方案设计的正确性。当要求的系统功能确定之后,首先采用系统仿真或结构模拟的方法验证系统方案的可行性,进而对构成系统的各单元电路结构进行模拟分析,以判断电路结构设计的正确性及性能指标的可实现性。2)电路特性的优化设计。分析恶劣温度条件下的电路特性,计算分析器件容差对电路的影响量,用于确定最佳元器件参数、电路结构以及适当的系统稳定裕度,实现电路的优化设计。3)实现电路的模拟测试。电子电路的设计过程中大量的工作是元器件参数计算、各种数据测试及特性分析。在工程估算的基础上,通过仿真测试与分析加以调整,能有效提高设计工作的效率。4)技术文件编写要求在完成电路设计的同时编写尽可能详细的符合工程标准的技术文件,包括方案设计说明、原理框图、电原理图、原理与技术说明、元器件参数计算、技术指标与特性测试数据、元器件清单等。

3、任务结构及实施

一个典型的电路设计任务由工程背景描述、任务要求、基础知识学习、设计方法与步骤、电路设计等学习单元组成。

3.1工程背景描述

工程背景描述的内容主要包括电路功能、工程应用背景、技术发展背景介绍。工程背景描述的实质是“提出问题”,工程背景描述尽可能选择具有典型性的电子工程问题为实例,解决关于学习目标的问题。

3.2 任务要求

设计任务必须具备明确的工程应用背景,必须提出具体的设计要求(技术指标)。例如交流放大器设计任务,应明确提出工作频率、信号源、输出特性、输入特性、工作稳定性等要求等技术指标。提出任务要求,应依据由浅入深循序渐进的原则,从体现基本功能的一两个技术指标开始,逐步增加技术指标数量,提高设计难度。

3.3基础知识学习

基础知识学习包括任务分析、相关理论知识学习、参考方案与参考电路分析及相应的基础练习等。基础知识的学习包括理论知识、技术知识、经验知识和经验技能的学习。理论知识是重要的,因为它是能力的组成部分,同时对于学生的发展能力起到更为持续和关键的作用。在工程实践中学习和使用的理论知识才能被真正掌握并形成能力,因此应该以实现电路设计任务为依据,确定理论知识的学习内容和学习深度,力求将理论与实践、数学方法与物理概念更紧密地结合起来。

提供设计参考的电路必须是工程电路,但学习是一个循序渐进的过程,基础知识的学习会使用原理电路为学习对象,原理电路不能仅有电路结构和元器件标号,也要标注元器件主要参数,使学生在定性分析阶段就能对电路参数有直观的影像,逐步建立数量观念,这对于初次接触模拟电路的学生是十分重要的。

3.4设计方法与步骤

不同功能和结构的电路,具体的设计内容、方法与步骤各不相同。甚至同样功能的电路,技术要求不同,设计时考虑的重点、设计依据、电路结构等均有区别,但工程估算是贯穿整个设计过程始终的基本方法。

以反馈放大器为例,设计步骤如下:

选择反馈组态,选择反馈深度,选择反馈级数,确定放大级数,确定输入级、中间级、输出级的电路结构,计算电路参数,仿真测试和参数调整。容易理解,上述步骤都必定建立在必要的工程估算的基础之上。

3.5 电路设计

这是学生在相对独立的情况下,完成电路设计的过程。尽量采用与前面4个学习单元及撰写设计文件交叉进行的方式实施。

不同类型的学习任务,其结构不尽相同。但区别主要是在(4)、(5)两部分。

不同类型的学习任务以“定性分析、工程估算与仿真测试调整相结合”的方法实现。

4、结语

电路设计在知识的运用上不同于单纯的电路分析与计算,依据模拟电路原理设计过程构建学习任务,组织和实施教学过程,不仅能够有效控制理论知识学习深度,促使学生较为自主地获取经验知识,并在获取知识的同时实现知识转换为技术应用能力,更有利于实现培养学生模拟电路技术应用能力的教学目标。

参考文献

[1] Sergio Franco.基于运算放大器和模拟集成电路的电路设计[M].西安交通大学出版社,2009.

[2] 谢自美 等.电子线路综合设计[M].华中科技大学出版社,2006.

[3] 赵世强 等. 电子电路EDA技术[M].西安电子科技大学出版社,2000.

[4] M.Herpy.模拟集成电路[M].高等教育出版社,1984.

仿真电路设计总结范文第3篇

【关键词】红外报警;实验教学;Protues

1.引言

随着人们自身安全意识的提高,越来越多的需要报警与监控系统来保障居住以及公共场所的安全。红外线是不可见光,具有很强的保密性和隐蔽性。因此,红外报警电路以其简单高效安全的特点,广泛应用于各类安防系统中。而报警电路是模拟电子技术课程的必修课,培养电子专业学生利用模拟电路知识进行实际应用设计的能力,是电子电工实验教学的主要目的。

结合红外报警装置需求量大的实际情况,设计简易的红外报警电路进行电子实验教学,有利于提高学生的学习实践能力,将所学的知识运用到实际当中。考虑到成本以及教学学时的限制,先基于Protues进行电路仿真测试,再采用常用实验电子器件搭建硬件平台,不仅使学生学习了软件仿真方法,而且提高了硬件设计的能力。

实验教学的目的主要是学习掌握红外收发对管的工作特性,学习由运放构造电压比较器的方法,了解稳压管的工作原理及特性,掌握蜂鸣器的使用方法。

2.红外报警电路设计

2.1 系统整体结构设计

如图1所示,红外报警电路主要包括两个模块,光检测电路模块和警铃驱动电路模块。光检测电路用于检测区域内是否有障碍物,警铃驱动电路主要是根据检测的结果判断是否进行报警。

2.2 光检测电路设计

光检测模块主要由红外收发对管、分压电阻、集成运放、以及稳压电路构成,具体电路如图2所示。

当没有障碍物进入监视区时,即红外对管D1、D2间无障碍物时,D2可以接收到D1发出的红外光,D2反相导通,RD2很小,相应U1i+很小,运放U1满足U1i+>U1i-,U1o=-12V。稳压管D3正向导通,U2i+约为-0.7V。

当障碍物进入监视区时,红外线被遮挡,D2无法接收到D1发出的红外光,D2反相截止,U1i+增大至约为4V,此时运放U1满足U1i+

光检测电路主要实现将D1、D2间是否出现障碍物的情况反映到电压U2i+上,方便警铃驱动电路工作。

2.3 警铃驱动电路设计

警铃驱动电路主要包括电阻、运放、三极管以及蜂鸣器等构成,具体电路如图3所示。

当没有障碍物进入监视区时,即稳压管D3正向导通,U2i+约为-0.7V时,U2i+经电压跟随器到三极管Q1的基极,三极管发射结反相偏置,Q1工作在截止区,蜂鸣器不工作。

当障碍物进入监视区时,即稳压管D3反相导通,U2i+约为+4.4V时,经过运放U2构成的电压跟随器,将电压全部引到三极管Q1的基极,使Q1工作在饱和状态,驱动蜂鸣器工作发声。U2构成的电跟随器具有阻抗匹配和隔离作用。

警铃驱动电路的作用主要是将U2i+的电压变化反映到蜂鸣器的工作状态,从而实现报警的功能。

3.红外报警电路器件选取及原理

3.1 红外收发对管

红外发光管:发出波长约为940mm的红外光,正向电压下工作,正向特性与普通二极管相同。

红外接收管:主要用于接收红外发光管产生的红外线光波。通常采用黑色树脂封装。管体顶端有一个小斜切平面,带有这个斜切平面的一侧引脚为负极。接收管应反相连接在电路中,它在接受和不接受红外线时电阻会发生明显的变化。

3.2 运算放大器

LM741是一种应用非常广泛的通用运算放大器,红外报警电路设计中主要利用集成运放的非线性特性。集成运放工作在非线性区时,输出电压不再随输入电压线性增长,而是达到饱和。LM741引脚图如图4所示。

红外报警电路设计时利用运放的非线性特性,构造了电压比较器和电压跟随器,分别如图5和图6所示。

有障碍物进入监视区时,U1i+>U1i-,则U1o输出正饱和电压;无障碍物进入监视区时,U1i+

电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低。在电路中利用LM741运放构成的电压跟随器起隔离的作用,电路将输出电压全部引入到集成运放的反相输入端,使比例系数等于1,且集成运放的净输入电压和净输入电流均为0,U2o=U2i+。

3.3 稳压二极管

稳压管是利用反向击穿区的稳压特性进行工作的,因此稳压管在电路中要反向连接。稳压管的反向击穿电压称为稳定电压,不同类型稳压管的稳定电压也不一样。红外报警电路中使用4.7V的稳压管。由稳压管构成的稳压电路如图7所示。

稳压管稳压性能的好坏,可以用它的动态电阻r来表示:

显然,对于同样的电流变化量ΔI,稳压管两端的电压变化量ΔU越小,动态电阻越小,稳压管性能就越好。稳压管的动态电阻是随工作电流变化的,工作电流越大,动态电阻越小。因此,为使稳压效果好,工作电流要选得合适。电路中使用的是IN4732A稳压管:最大功耗为1W,稳定电压为4.7V,可以算出最大电流为:

3.4 蜂鸣器及其驱动电路

电路设计中使用的是有源蜂鸣器,接通一个大约5V的直流电源就可以工作。三极管起开关作用,基极高电平使三极管饱和导通,使蜂鸣器发声;而基极低电平则使三极管截止,蜂鸣器停止发声。实验使用的是9013三极管,9013是一种NPN型硅小功率的三极管它是非常常见的晶体三极管,蜂鸣器驱动电路图如图8所示。

4.仿真结果及硬件平台

通过电路设计以及器件的选型,利用Pro-tues虚拟仿真软件进行电路仿真,得到结果与分析一致,具体仿真电路图如图9所示。

为便于学生独立设计电路,采用基于面包板的硬件平台搭建,方便实验教学。硬件图如图10所示。

5.总结

红外报警电路简单安全,方便学生自己进行设计与仿真,提高了实验教学的效率。将模拟电路知识与实际应用相结合,很好的激发了学生的学习兴趣,有助于实验教学进程的推进。红外报警电路应用广泛,联系知识紧密,很好提高了动手能力,经过实验教学试验,得到良好的效果。

参考文献

[1]赵新华,郝阳.红外报警系统设计[J].应用科技,2013, 40(2):47-52.

[2]徐倩,谭子尤.基于单片机控制的红外线报警系统的设计[J].怀化学院学报,200827(8):60-62.

[3]高秀娥.电工电子实验教学新思路[J].实验科学与技术,2004(1):87-88.

[4]叶继英.Protues在模电实验教学中的应用[J].科技资讯,2008(14):140-141.

作者简介:

徐璐(1990—),女,硕士研究生,主要研究方向:电子技术与变频调速。

仿真电路设计总结范文第4篇

本文对目前在电子电气通信专业的课程高频电子线路实验提出了改进思路,针对目前在实验中采用软件仿真代替搭建实验电路的流行做法,提出了商榷。本文建议在低年级短学期阶段让学生接触电路板制作、高频防电磁干扰设计准则,通过制作通用高频电路板并调试高频电路,接触高频电路设计,激发学生今后学习电路的兴趣,培养电路调试能力,缩短未来高频电路实验需要的时间,在高频实验中将软件仿真和电路搭建调试结合,用软件仿真验证理论知识,用搭建电路实现功能。

关键词

电子线路;实验;仿真;电路搭建

1前言

高频电子线路课程,又称通信电子线路,是高校电子、电气、通信专业的必修课程,由于该课程工程实践性较强,通常必须配有相应的实验课程。通过调查目前国内高校针对该课程相应的实验课程设计,我们发现目前该课程理论阶段一般设置课时为36-64学时,而相应的实验通常有10-24课时。高频电路类似于乐高积木,即其每个部分基本功能实现都具有固定的经典电路,整体电路设计需要根据电路参数计算,在每个功能部分从几个经典电路中选择合适的一个即可,这样多个基本功能电路采用乐高积木般组合搭建而成最终电路,这点与低频电路不同,低频电路很多时候需要自己设计,而高频主要还是“搭积木”。这样看似乎该课程实验很简单,其实不然,在很多侧重理工的大学(通常这类大学对该课程要求更高、赋予更多课时),该课程和对应的实验课均被称为“杀手课程”,很多学生提起来都头疼。高频电路实验主要是对教授的经典电路进行验证,因此设计部分不是难点,实验的难点在于如何成功调试电路。在实际实验中常常会出现设计验证成功,但电路不成功的情况,比如高频振荡电路无论如何都无法起振、功率放大电路输出信号严重失真等现象,这源于高频电路中电磁干扰很严重,为消除电磁干扰对走线的粗细、走线的拐角、电源线的布设位置、接地处理、哪里需要添加去耦合电容、去耦合电容的容值选取多大等等均需要经验,因此有种说法:“能设计开发模拟高频电路的工程师如同老中医,越老越珍贵。”而这些知识理论上很容易,远比高频电路设计计算容易理解,但实际应用时颇有“大音希声,大象无形”的感慨———飘渺难以把握的感觉,调试相同的2个PCB版,一个很容易就调通了,另一个无论如何效果不好。

2当前实验课程设计现状及问题

正是为了避免高频电路设计容易、调试难的这个特点,当前很多学校在高频电路实验中普遍采用两种方式:(1)软件仿真,目前常用的实验仿真软件有Candence中的pSpice,NI公司的multisim,其中multisim在目前高校应用是最广泛的;(2)使用现成的调试好的实验板/箱,同学只需要改变电路中某个器件的参数,然后通过使用滤波器测试输出变化即可。在我们调研中发现以上两种方式目前前者约占60%出头,并且近几年来有越来越受欢迎的趋势,后者约占40%。无论采用以上哪种方式进行实验,均避开了电路调试这个环节,的确电路调试时间远大于设计所花费时间,并且可能最终电路还调试不好,而以上两种方式只有做实验快慢的问题,绝不会出现实验做不出的问题,老师减少了工作强度,学生能完成实验,大家皆大欢喜。我校高频电子线路实验以上两种方式都采用,我们对以上两种实验方式的反思来自于本校近几年毕业生的反馈,很多在学校动手能力较强、成绩比较好的学生反映,在实际工作中进行电路设计和调试,设计还比较简单,如何选择器件参数也会计算,但当PCB板做好需要调试时若电路出现问题,根本就不知所措,没有任何头绪,不知道从哪里开始排查,单位里老工程师问是否大学里做过实验?答曰做过,软件仿真直接在实验板上测试的。他们反馈希望在大学学习阶段尽早接触实际电路设计调试。我们认为仿真软件代替实验,固然可以使得实验变得简单,学生能够用鼠标键盘改变电路中某个元件的参数,轻而易举地测得某个位置参数变化对输出的影响,对所学理论有直观感性的认识,但亲手搭建实验电路也是必不可少的。因此目前对高频电路的设计实验,还是应该以软件仿真、实验板测试和实际电路设计调试相结合,不可简单用一个代替另一个。但做高频实际电路,需要的时间很长,不可控因素较多,而大学高频电路实验课程一般有10-24学时,有的学校甚至少至只有6学时,在如此少的时间内面对复杂电磁干扰下的电路,能调试成功电路的难度还是相当大,如果学生经过很长时间不能完成电路,他们就会感到沮丧,彻底丧失了学习的兴趣。

3实验改革思路

为了保证实验能达到验证电路设计理论、调试电路的目的,同时在此前提下将任务简单化,笔者提出了高频电路系列实验的改革方案,即“从娃娃抓起”,将该实验分两个分阶段完成,从大学一年级就逐步开始实施。改革的基本思路是将该实验进行分解,其中某些分解的部分与其他课程实验、实习、短学期相结合,并将这些结合后的实验结果用于后续的高频电路实验中,相当于拉长了该课程的实际实验学时,具体思路为将整个高频电路实验分为两个阶段:第一阶段为第二学期的短学期电子线路实习阶段,在此阶段完成部分高频电路实验内容;第二阶段为第六学期的高频电路实验阶段,在此阶段完成高频电路具体功能实现的调试和学习。

3.1第一阶段改革方案

首先由高频电路实验教师设计一个通用的高频电路实验版,在这个实验版上可以完成目前高频电路实验课程需要的所有实验。这步由高频电子线路实验课老师和理论课教师合作商讨完成,无需学生参与。教师将该通用板的原理图和PCB图交给负责一年级暑假电子线路实习的老师,通常电子、通信、电气专业在一年级暑假会有电子线路短学期实习,这时候学生们实际上还没有接触电路设计的任何理论知识,以往短学期实习是让他们学习使用制电路图软件,并最终做出实际电路,而电路多来自于在这之后的二年级低频电子线路课程,改革后将短学期实习内容略做修改:学习使用制版图的软件,学习高频防电磁干扰的基本设计理念,根据老师给出的原理图画出PCB图。由于此时的学生既没有电路基本知识也无调试电路板的经验,仅有在步骤(2)中学习到的一些理论,在此情况下他们画出的PCB图必然和能实际应用的PCB图有很大差异,因此需要短学期指导教师的纠错:在同学上交自己的PCB图后,短学期指导老师将高频电路实验老师设计的PCB图发给每个同学,同学自己比较两个PCB设计的差异,对照在步骤(2)中高频设计基本理念,分析自己的设计与老师给出的设计中有哪些不同?这些差异中哪些是无关紧要的?哪些部分是违背了高频设计基本理念的?写出总结报告,并根据参考图修改自己的通用电路板的PCB图,在此过程中有任何疑问可以与短学期指导老师和高频电子线路实验老师商榷,最终完成制版。电路焊接练习:当通用PCB版制成后,由高频电路实验老师给出高频电路中的几个常用电路(每个电路是PCB的一部分),由学生自行选择哪个电路(或者说PCB板哪个部分)进行焊接练习。考虑到此时的同学们没有电路分析知识,这里我们推荐选择高频振荡电路或者高频小信号放大电路,因为这两个电路调试相对简单,每个同学任选一个作为焊接电路,将分体元件焊接在PCB板上,分体元件由短学期指导老师统一采购分发给同学们。此过程没有改变电路实习短学期的教学目的———训练学生焊接电路,电路所使用的器件、各个器件参数均由高频电路实验老师指定,学生仅在此过程中练习焊接技术。短学期实习阶段的电路调试,此电路调试不同于高频电路实验课的调试,在此阶段同学们主要检查电路是否虚焊,有无短路等问题(这些问题必须在短学期解决),学会使用各种测量仪器,具体电路效果的调试需要应用电路理论知识解决问题,此阶段同学们还不具备条件,如果前面的调试都顺利完成,则老师可以指导学生完成进一步的简单效果测试。电路调试过程中,不仅负责电路实习的老师在场,高频电子线路实验老师也要在场,帮助带领同学们解决遇到的问题。由于短学期实习时间较长,并且时间集中,相比于高年级的实验课时时间上充裕了很多,通过电路调试中解决问题的过程,同学们学会了示波器等测试仪器的使用方法,由于电路原理对于一年级的同学还是没有概念的,因此每一步骤的调试都要在老师指导下进行,比如测量输入信号后测试三极管输出,三极管的输出放大信号应该是输入信号的多少倍,老师必须告诉同学倍数的范围在多少以内是合理的,诸如此类。对应高频电磁干扰的问题,老师不能直接告诉学生如何处理,而要求学生自己通过上网查资料的方式找答案,这部分知识对理论要求不高,所以学生即使没有学过电路知识也可以理解,再经过一段学生自己找资料解决问题的阶段后,高频电路实验老师帮助学生一起解决电磁干扰的问题。通过一年级的短学期经历,激发同学们对电路设计的兴趣,而兴趣往往是最好的老师,引导他们在二年级时学习低频电路有好奇心,学习的主观能动性更强,学习效果更好。低频电路是高频电路的基础课程,只有低频电路学好了,高频电路才有可能学好,所以适当调整一年级短学期实习内容,可以为后续课程打下良好的基础。另外,通过短学期的学习,学生有充裕的时间调试电路板,学习高频防止电磁干扰的方法等,这样可以提高在高频电路实验中的效率,减少调试电路所花费的时间。

3.2第二阶段改革方案

我们建议在高频电路实验中将软件仿真与硬件电路调试结合,进行实验设计,比如在经典高频功率放大器电路实验中,先用软件仿真电路,通过更改负载值、基极电压,调整分压值,更改输入电源电压等,在软件中观察输出电压、电流的变化,并画出对应曲线,将该曲线与理论曲线相比较,验证理论,正如前面所述,这样实验花费时间较少,难度低,学生都能做出来,不会有挫败感进而丧失学习的兴趣。然后固定各部分参数值,让学生使用他们自己一年级短学期制作的分离元件搭建高频功率放大电路,进行功能调试,即用焊接好的电路板达到设计功能要求,由于已经在一年级处理过电磁干扰的问题了,此时工作量大为减少,他们面对新的高频电路无法工作时,惶恐感没那么强烈,多少还是有些经验的,加上实验老师的辅导协同帮助,绝大部分同学有能力在规定时间内解决问题。然后我们采用反向设计法进行实验:在现成的实验箱中任选一功能模块,这些模块都是二层电路板设计,对这个功能首先学生进行电路设计,为加快时间只需完成原理图设计即可,然后学生被要求画出试验箱中该模块的电路,比较自己设计的电路与实际电路之间的异同,分析为什么会出现这些差异?这些差异哪些是允许的、无关紧要的,哪些是由于设计不当引发而必须改正的,写出分析报告。通过反向设计,同学们能体会到理论和实践的差异,在今后的工作中不可掉以轻心,多思考,积累经验。

4总结

我们三年前进行高频电子线路课程改革,在改革的第一年在一年级同学短学期期间也要求二年级同学一道参与制作PCB板、焊接元器件,到了三年级下学期这些同学学习高频电路时,他们已经迫不及待要验证自己以往的劳动成果了,调试电路时主动性大大增强,几乎没有人像以往那样什么问题都等老师来解决,很多同学自发组成讨论组,自己上网查资料,基本能做到独立调试好电路,相比用软件仿真和用实验板,教师在该课程实验阶段的工作量会有些增加,同学们在规定学时内完成实验电路调试也是可行的,教师和学生的压力均在可承受范围内,但实际能力得到了更多的锻炼。

作者:侯俊 陈文 单位:上海理工大学光电信息与计算机工程学院 上海应用技术学院

参考文献

[1]杨雪.大学生实践能力培养模式研究[J].科教文汇,2015(12):48-49.

[2]陈耿彪,黄浩铭.基于载体、技术与分组三维交互的本科实验教学[J].教学研究,2014(6):101-103.

[3]刘颖,王向军,单潮龙,刘德红.虚拟和实际相结合的电路实验考核方法探索[J].实验室研究与探索,2013(11):290-292.

[4]张建红,贺林.电路实验考核创新研究与实践[J].创新体系建设,2013(10):244.

仿真电路设计总结范文第5篇

摘要:Multisim 是一款稳定性强,操作简单的电子设计软件。本文利用该软件,与若干门电路,来设计一个检测交通灯是否正常工作的简易检测电路。通过实验仿真,说明利用Multisim 软件可以设计出这种检测电路。

关键词 :门电路Multisim 交通灯检测

1 Multisim 软件简介

Multisim 作为一款专门的软件,主要用于电子线路的仿真与设计,为Windows 下运行的个人桌面电子设计工具,Multisim 是一个完整的集成化设计环境。Multisim 计算机仿真与虚拟仪器技术可以很好地解决计算机因配置低端而不能解决实际工作这一现实问题。用户可以将理论知识用计算机进行仿真,同时可以用虚拟仪器技术创造出真正的仪表。

2 交通灯检测电路设计

2.1 逻辑转换器

Multisim 对EWB 的元器件库进行了扩充,主要包括基本元件、半导体器件、运算放大器、DAC、ADC 及其他各种部件,并且通过元件编辑器,用户可以自行创建、修改所需的元件模型,通过网站或其商进一步获得元件模型的扩充,以及更新服务等。本文利用逻辑转换器进行逻辑分析,最终将分析好的真值表转换成逻辑表达式。利用逻辑转换器,可以大幅度地减少设计人员的工作量,并且可以任意调整逻辑值,如图1。

打开逻辑转换器之后,激活A、B、C 三个按钮,点击之后,逻辑转换器自动把二进制的0-7 显示出来,按照交通灯检测电路的设计思想,将输出部分调整到合适的逻辑,如图2 所示。

设计好真值表之后,点击右侧菜单里面的第三个选项,逻辑转换器会根据设计好的真值表自动填充逻辑表达式,如图3 所示。

同样的,也可以选择右侧的第四个选项,这个选项是根据真值表自动生成化简后的逻辑表达式,也可以设计出交通灯检测电路。本文采用自动生成最简化的逻辑表达式的办法。

2.2 电路设计与仿真

Multisim 的分析手段比较完备,除了EWB 提供的直流工作点分析、交流分析等分析外,Multisim 新增了直流扫描分析、批处理分析等,使得一般电子电路的分析设计要求,在一定程度上都能够得到满足。Multisim 的仿真能力同样非常强大,对于Multisim 来说,一方面可以对电路、数字电路的仿真进行模拟,另一方面可以对数模混合仿真进行模拟,尤其是可以模拟射频(RF)电路。如果仿真失败,在这种情况下,会显示相应的出错信息,同时提示出错的原因,并且可以随时储存、打印仿真结果。

本文除了使用门电路外,采用三个单刀双掷开关,用来表示交通灯的红、黄、绿三种颜色是否正常工作,本文设定逻辑“0”为三种颜色正常工作,逻辑“1”为三种颜色异常工作;显示部分使用一枚发出蓝光的灯泡,当交通灯的三种颜色出现异常工作时,灯泡发光;反之,如果灯泡不亮,表示正常工作;使用+12V 的供电电源用来驱动输入端。

所设计电路图如图4。

3 总结

通过对Multisim 软件若干门电路进行仿真实验,该电路能顺利地实现交通灯的检测功能,在日常工作中可以利用该电路实现十字路口位置功能较复杂的交通灯检测。

参考文献:

[1]孟凤果.电子测量技术(第2 版)[M].机械工业出版社,2012.1.

[2]阎石.数字电子技术基础(第5 版)[M].高等教育出版社,2006.5.