前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇通信技术发展趋势范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
现如今人们生活水平以及生活质量不断提升,对各方面的需求都更加严格化,高铁作为我国重要的交通运输工具,极大地满足了人们的物质追求。随着国内高铁应用得越加广泛,通信技术作为高铁的重要组成部分,也在不断与时俱进,适应着高铁的快速发展。本文重点介绍了我国高铁通信技术的发展现状以及发展趋势。
【关键词】
高铁;通信技术;发展现状;趋势
1引言
高铁因其具有高速性而被广大出行乘客所欢迎,然而速度快是需要多个强大的技术系统作为支撑的。高铁通信技术就是其中一个有力支撑点。高铁通信技术的建立不但是为了满足顾客的移动通信需求,还为高铁在行车过程中提供安全可靠数据信息分析,减小出行风险。可以说,高铁的通信技术是整个高铁的灵魂所在,决定着高铁前进的方向,同时还为旅客的车程提供便利,因此,高铁成为越来越多人们选择的出行工具,很大一部分原因是由于其通信技术的优越性。
2高铁通信技术的发展现状
高铁的最大特点就是其速度快,明显缩短了出行时间,方便了人们的工作生活。然而因其自身高速性的特点,也就必然对通信技术的要求越来越高。高铁通信技术GSM在基础上加以创新,通过无线通信方式完成数据间的传输以及实现移动话音。随着科学技术的不断发展,人们对未知领域的探索力愈发强烈,人们出行的地方也遍布世界的各个角落,这其中有不少特殊地形。鉴于我国国土的特殊情形,高铁在运行过程中会经过很多山区、山洞,这些地方的通信信号很弱,对高铁通信技术的发展要求因此就越来越高。我国高铁通信技术的发展是基于铁路通信技术发展起来的,运用到了许多通信技术,这其中就包括光纤通信技术,光纤通信技术虽然只发展了短短20年,但是以其传导速度快的特点,被成功运用到了高铁通信技术中,很大程度上满足了当展的需求,对于提升高铁通信能力、完善通信系统起着重要作用。除了光纤通信技术,高铁通信技术还包括主干通信网技术、数字程控交换技术、监控系统技术、收费系统技术等多个组成部分,共同维持着通信系统的正常运行。但是数据化的今天,高铁运行中除了解决现有的通信问题外,还面临着各种各样的难题,这都需要继续完善高铁通信技术,提高高铁带给人的满意度。
3高铁通信技术的发展趋势
现如今,传统的2G通信网络时代已经转变为4G通信时代,并且近日新闻报道随着华为公司新产品手机的推出,5G时代即将到临。在如此快速发展的时代下,我国高铁通信技术也在不断加快创新步伐,致力于在实现高铁不断刷新速度记录的同时提高对通信技术的应用能力。但是由于高铁运行的独特性,任何一项通信技术的应用都必须是建立在高铁安全工作的前提基础上,因此并不是所有公共高科技通信技术都可以直接应用到高铁中,必须结合高铁运行实际情况,对相应技术做出科学合理的改善,并在做好充分的实验后才可以投入到高铁通信技术中。在2009年我国成功将3G技术运用到高铁建设中,相比以往的2G技术,有了更稳定的通信质量以及服务保障,但是也面临着频谱资源以及频率干扰等一系列问题,有待解决。目前,我国正在逐渐将3G通信技术转向LTE技术,后者技术成熟后再向4G通信技术演进,可以肯定地说,高铁通信技术具有很大的发展空间,今后的技术将会越来越成熟,越来越协调,将会把高铁的高速性与通信技术的全面性进行有机整合,来实现高铁通信的飞跃发展。
4高铁通信技术存在的常见问题
(1)多普勒效应。高铁通信相比其他普通列车由于其技术要求高,所以更容易遇到一些问题,例如多普勒效应,多普勒效应发生在高速移动的环境中,而对低速度移动的环境影响极小,甚至可以忽略。如果对多普勒效应处理不当,将会间接影响无线列调以及频率容差,对高铁通信运行系统产生不良影响。
(2)通信质量问题。由于地区与地区间地理位置不同,通信信号强弱也就不同,这很容易造成高铁通信质量问题,例如切换转换问题、话务接通信号弱及接通率低、掉线率高、网速慢等一系列通信问题。其中高速切换难题是主要问题,因为当高铁在快速经过某一个位置时需要进行信号切换,这就造成了移动网络信号薄弱,而出现频繁的通信失败。
(3)通信技术的难度性高。由于高铁速度过快,对通信技术的难度要求也越来越大,致使某些尖端高科技通信技术还不能与高铁相适应,以致不能被利用到高铁运行中,例如我国现如今已全面覆盖4G网络,而高铁还只是处于3G状态,通信速度过慢,使得人们在乘坐高铁时不能满足其相应需求,降低了对高铁的满意度。
5结语
高铁作为我国人民现代出行的重要交通工具,其快速性、安全性、舒适性是人们选择的主要原因,但是对通信技术的要求也越来越高。因此,我国在加大高铁建设投入的同时,必须要提高对通信技术的重视程度,投入新的技术理论与研究成果,来满足人们日益增长的物质精神追求,提高我国各方面现代化进程。
作者:曲沛然 单位:北京师范大学第二附属中学
参考文献
[1]孙建伟.浅谈光纤通信技术现状及发展趋势[J].信息工程,2016(15).
[论文关键词]光纤通信技术;趋势;光纤到户;全光网络
[论文摘要]由于光纤通信具有损耗低、传榆频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业內人士青睐,发展非常迅速,文章概述光纤通信技术的发展现状,并展望其发展趋势。
一、前言
1966年,美籍华人高锟(C.K.Kao)和霍克哈姆(C.A.Hockham),预见了低损耗的光纤能够用于通信,敲开了光纤通信的大门,引起了人们的重视。1970年,美国康宁公司首次研制成功损耗为20dB/km的光纤,光纤通信时代由此开始。光纤通信是以很高频率(1014Hz数量级)的光波作为载波、以光纤作为传输介质的通信。由于光纤通信具有损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。光纤通信系统的传输容量从1980年到2000年增加了近1万倍,传输速度在过去的10年中大约提高了100倍。
二、光纤通信技术的发展现状
为了适应网络发展和传输流量提高的需求,传输系统供应商都在技术开发上不懈努力。富士通公司在150km、1.3μm零色散光纤上进行了55x20Gbit/s传输的研究,实现了1.1Tbit/s的传输。NEC公司进行了132x20Gbit/s、120km传输的研究,实现了2.64Thit/s的传输。NTT公司实现了3Thit/s的传输。目前,以日本为代表的发达国家,在光纤传输方面实现了10.96Thit/s(274xGbit/s)的实验系统,对超长距离的传输已达到4000km无电中继的技术水平。在光网络方面,光网技术合作计划(ONTC)、多波长光网络(MONET)、泛欧光子传送重叠网(PHOTON)、泛欧光网络(OPEN)、光通信网管理(MOON)、光城域通信网(MTON)、波长捷变光传送和接入网(WOTAN)等一系列研究项目的相继启动、实施与完成,为下一代宽带信息网络,尤其为承载未来IP业务的下一代光通信网络奠定了良好的基础。
(一)复用技术
光传输系统中,要提高光纤带宽的利用率,必须依靠多信道系统。常用的复用方式有:时分复用(TDM)、波分复用(WDM)、频分复用(FDM)、空分复用(SDM)和码分复用(CDM)。目前的光通信领域中,WDM技术比较成熟,它能几十倍上百倍地提高传输容量。
(二)宽带放大器技术
掺饵光纤放大器(EDFA)是WDM技术实用化的关键,它具有对偏振不敏感、无串扰、噪声接近量子噪声极限等优点。但是普通的EDFA放大带宽较窄,约有35nm(1530~1565nm),这就限制了能容纳的波长信道数。进一步提高传输容量、增大光放大器带宽的方法有:(1)掺饵氟化物光纤放大器(EDFFA),它可实现75nm的放大带宽;(2)碲化物光纤放大器,它可实现76nm的放大带宽;(3)控制掺饵光纤放大器与普通的EDFA组合起来,可放大带宽约80nm;(4)拉曼光纤放大器(RFA),它可在任何波长处提供增益,将拉曼放大器与EDFA结合起来,可放大带宽大于100nm。
(三)色散补偿技术
对高速信道来说,在1550nm波段约18ps(mmokm)的色散将导致脉冲展宽而引起误码,限制高速信号长距离传输。对采用常规光纤的10Gbit/s系统来说,色散限制仅仅为50km。因此,长距离传输中必须采用色散补偿技术。
(四)孤子WDM传输技术
超大容量传输系统中,色散是限制传输距离和容量的一个主要因素。在高速光纤通信系统中,使用孤子传输技术的好处是可以利用光纤本身的非线性来平衡光纤的色散,因而可以显著增加无中继传输距离。孤子还有抗干扰能力强、能抑制极化模色散等优点。色散管理和孤子技术的结合,凸出了以往孤子只在长距离传输上具有的优势,继而向高速、宽带、长距离方向发展。
(五)光纤接入技术
随着通信业务量的增加,业务种类更加丰富。人们不仅需要语音业务,而且高速数据、高保真音乐、互动视频等多媒体业务也已得到用户青睐。这些业务不仅要有宽带的主干传输网络,用户接人部分更是关键。传统的接入方式已经满足不了需求,只有带宽能力强的光纤接人才能将瓶颈打开,核心网和城域网的容量潜力才能真正发挥出来。光纤接入中极有优势的PON技术早就出现了,它可与多种技术相结合,例如ATM、SDH、以太网等,分别产生APON、GPON和EPON。由于ATM技术受到IP技术的挑战等问题,APON发展基本上停滞不前,甚至走下坡路。但有报道指出由于ATM交换在美国广泛应用,APON将用于实现FITH方案。GPON对电路交换性的业务支持最有优势,又可充分利用现有的SDH,但是技术比较复杂,成本偏高。EPON继承了以太网的优势,成本相对较低,但对TDM类业务的支持难度相对较大。所谓EPON就是把全部数据装在以太网帧内传送的网络技术。现今95%的局域网都使用以太网,所以选择以太网技术应用于对IP数据最佳的接入网是很合乎逻辑的,并且原有的以太网只限于局域网,而且MAC技术是点对点的连接,在和光传输技术相结合后的EPON不再只限于局域网,还可扩展到城域网,甚至广域网,EPON众多的MAC技术是点对多点的连接。另外光纤到户也采用EPON技术。
三、光纤通信技术的发展趋势
对光纤通信而言,超高速度、超大容量、超长距离一直都是人们追求的目标,光纤到户和全光网络也是人们追求的梦想。
(一)光纤到户
现在移动通信发展速度惊人,因其带宽有限,终端体积不可能太大,显示屏幕受限等因素,人们依然追求陸能相对占优的固定终端,希望实现光纤到户。光纤到户的魅力在于它有极大的带宽,它是解决从互联网主干网到用户桌面的“最后一公里”瓶颈现象的最佳方案。随着技术的更新换代,光纤到户的成本大大降低,不久可降到与DSL和HFC网相当,这使FITH的实用化成为可能。据报道,1997年日本NTT公司就开始发展FTTH,2000年后由于成本降低而使用户数量大增。美国在2002年前后的12个月中,FTTH的安装数量增加了200%以上。在我国,光纤到户也是势在必行,光纤到户的实验网已在武汉、成都等市开展,预计2012年前后,我国从沿海到内地将兴起光纤到户建设。可以说光纤到户是光纤通信的一个亮点,伴随着相应技术的成熟与实用化,成本降低到能承受的水平时,FTTH的大趋势是不可阻挡的。
(二)全光网络
传统的光网络实现了节点间的全光化,但在网络结点处仍用电器件,限制了目前通信网干线总容量的提高,因此真正的全光网络成为非常重要的课题。全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。全光网络具有良好的透明性、开放性、兼容性、可靠性、可扩展性,并能提供巨大的带宽、超大容量、极高的处理速度、较低的误码率,网络结构简单,组网非常灵活,可以随时增加新节点而不必安装信号的交换和处理设备。当然全光网络的发展并不可能独立于众多通信技术,它必须要与因特网、ATM网、移动通信网等相融合。目前全光网络的发展仍处于初期阶段,但已显示出良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。
1 云通信(Cloud Communication)的概念
云通信(即Cloud Communication):是云计算与统一通信的融合,是ICT产业在未来五年中可预见的一个发展新方向,CC将主导下一代ICT的发展,CC由三部分组成:前面是端、后面是云、中间是网络。CC三个组成部分紧密相连,每一个部分既可以独立发展,又可以带动其他两个方面成为一枝独秀。具体来说:“端”是CC的最前方,它既需要“云”在内容上为其提供服务,也需要“网络”的传输支持;“网络”在“端”和“云”之间起桥梁作用,没有完善的网络,“端”与“云”之间无法实现对接;“云”在CC中起基础性作用,没有“云”,“端”就成了无源之水,“网络”也毫无用武之地。因此,CC是端、网络、云三位一体的新型产业模式,同时CC已经不是简单的通讯,而是一个服务体系。(CC概念由该文提出,有别于云计算之类的技术概念。)
2 CC产业结构分析
2.1 端
这里指云终端(Cloud Terminal),可以分为两类,一类是胖云终端,以移动终端为主,就是以JAVA浏览器等为主的移动终端,目前PC上处理的业务用移动终端也可以完成,如PC、智能手机、ebook、嵌入式芯片等;另外一类是瘦云终端,它本身没有太多的计算能力,主要就是显示和控制的功能,如智能电表、交通卡等。
(1)胖终端(Fat terminal)主要有移动互联网设备(MID)、智能手机、电子书、ipad等多种形式,其中ipad被认为是未来胖终端的终极产品。这里重点可以按照有没有“电话”功能分成MID和smartphone。MID将成为人们访问互联网的重要方式,智能手机(smartphone)则成为通信的主流。但是这两者的融合也是显然的,因为语音服务的增长已经达到了极限。
①MID:即Mobile Internet Device,移动互联网设备,它是在2008年IDF大会上英特尔推出的一种新概念迷你笔记本电脑。在英特尔的定义中,这是一种体积小于笔记电脑,但大于手机的移动互联网装置。MID与UMPC类似,同样为便于携带的移动PC产品。通过MID,用户可进入互联网,随时享受娱乐、进行信息查询、邮件收发等操作。
②智能手机(Smartphone):是指“像个人电脑一样,具有独立的操作系统,可以由用户自行安装软件、游戏等第三方服务商提供的程序,通过此类程序来不断对手机的功能进行扩充,并可以通过移动通讯网络来实现无线网络接入的这样一类手机的总称”。
(2)瘦云终端(Thin terminal)本身没有太多的计算能力,主要功能就是显示和控制,常见的瘦终端有智能卡、智能电表、无线化的信息家电。
①智能卡(Smart Card):最早是在法国问世的,70年代中期,法国Roland Moreno公司采取在一张信用卡大小的塑料卡片上安装嵌入式存储器芯片的方法,率先开发成功IC存储卡,经过20多年的发展,真正意义上的智能卡,即在塑料卡上安装嵌入式微型控制器芯片的IC卡,已由摩托罗拉和BuII HN公司共同于1997年研制成功。在中国IC卡还未真正应用于电子商务活动,但前景和优势却十分明显。
②智能电表:由用户交费对智能IC卡充值并输入电表中,电表才能供电,表中电量用完后自动拉闸断电,从而有效地解决上门抄表和收电费难的问题。同时,用户的购电信息实行微机管理,方便进行查询、统计、收费及打印票据等。
2.2 网络
指用通信线路和通信设备将分布在不同地点的多台自治计算机互相连接起来,按照共同的网络协议,共享硬件、软件和数据资源的系统。网络包括有线网络和无线网络。
(1)有线网络:传输介质采用有线介质连接的网络称为有线网络,常用的有线传输介质有双绞线、同轴电缆和光导纤维。
(2)无线网络:就是利用无线电波作为信息传输的媒介构成的无线局域网(WLAN),与有线网络的用途十分类似,最大的不同在于传输媒介的不同,利用无线电技术取代网线,可以和有线网络互为备份。目前主流应用的无线网络分为GPRS手机无线网络上网和无线局域网两种方式, GPRS手机上网方式是目前真正意义上的一种无线网络,它是一种借助移动电话网络接入Internet的无线上网方式。
①4G网络:第四代移动通信网络,4G集3G与WLAN于一体,并能够快速传输数据、高质量、音频、视频和图像等。
②近联网(NFC)是指针对特定用户传播特定信息,以提升信息利用率的一种互联网应用新模式。细分用户、窄众传播、提升内容的商业价值,是下一代网络传播的特征,RSS、Web2.0等新网络应用的兴起就是证明。
2.3 云
所谓“云”,其实指的是后端(服务器端),平时我们很少能够看到的那一端,正因为平时难得看到,所以有一种虚无缥缈的感觉,也许就是因为这个原因才被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。与“云”相关的概念有云计算、公共云、私有云、混合云、云存储等。
(1)云计算:概念是由Google提出的,这是一个美丽的网络应用模式。狭义云计算是指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的资源;广义云计算是指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的服务。这种服务可以是IT和软件、互联网相关的,也可以是任意其他的服务,它具有超大规模、虚拟化、可靠安全等独特功效。
(2)公共云(public cloud):对于云的提供者而言,如果自己建的云是为第三方所用,自己公司内部不使用,则称为公共云。
(3)私有云(private cloud):对于云的提供者而言,如果自己建的云只是为自己公司内部所用,不提供给第三方用,即为私有云。
(4)混合云:如果自己建的云既可以为自己公司内部使用,还可以为第三方所用,则称为混合云。
3 CC产业实证分析
上文对CC进行了理论方面的阐述与分析,本节将从产业角度对CC进行实证分析。首先通过Facebook的案例说明Facebook正在引领CC这一新兴产业,从“端”、“网络”、“云”三个方面布局其CC产业。
Facebook最初是一个社交网络服务网站,于2004年2月4日上线,很快成为了继亚马逊、谷歌之后受欢迎的互联网巨头。《商业周刊》2010年4月28日撰文称,Facebook已经跻身手机网络的行列里,并且有机会革新移动通信行业。随着Facebook规模在日益扩大,许多手机业分析师认为Facebook有可能涉足手机设备领域,生产以Facebook功能为主的手机,具备社交功能的手机毫无疑问将会使移动运营商难以应对,Facebook将会进一步整合网络及手机移动设备。2014年10月,扎克伯格访韩后暗示将与三星合推Facebook手机,业内人士认为,双方讨论了Facebook专用手机的具体式样和上市时间等。
从Facebook的发展趋势可以看出,Facebook已经不是单纯意义上的社交网站(SNS),其业务正集中于社交通讯,并不断向其他方面拓展。Facebook有可能生产具备社交功能的Facebook手机即前文提到的“胖云终端”,终端越胖就需要越来越多的应用软件。2007年5月24日,Facebook推出Facebook开放平台,把自己的API(应用编程接口)向公司外的第三方软件开发者开放,允许第三方开发者将开发的产品在Facebook平台上推广,根据Facebook官方统计资料,短短三年内,目前Facebook平台已经累积超过五十五万个活跃的应用程序 (Application)。Facebook平台下的有很多优秀的Apps实用工具,大量的第三方工具极大扩展了Facebook的功能和应用,这就是云服务中的SaaS和PaaS;Facebook智能手机毫无疑问将会使移动运营商难以应对,无线通讯网络流量将会从声音以及文字短信转变为大量原始数据的传输,可以预计Facebook将会进一步整合网络及手机移动设备。
由此可见,Facebook的业务拓展方向与CC产业的三方面是一致的,未来的Facebook手机即CC中的端、Facebook手机的永远在线体验需要更加完善的网络(即CC的中间层)支持、借助于云计算服务的Facebook后台即为CC中的云,毫无疑问,Facebook正在引领一种新型产业模式――CC产业。
伴随社会的全面发展,信息化时代的全面到来,蜂窝移动通信技术应运而生,在人类改造自然的实践活动中发挥重要的作用,总结了沟通受到始建于空间双重制约的时代,大大提升沟通的效率,进而促进了现代化建设进程步伐的加快。本文以蜂窝移动通信技术为研究视角,针对移动蜂窝通信技术的演进历程进行了阐述,通同时对其未来的发展趋势进行了展望,通过文章的研究能够促进相关部门对于蜂窝移动通信技术重视程度的加深,为相关工作者认知和了解蜂窝移动通信技术未来的发展方向提供参考和借鉴。
【关键词】
蜂窝移动通信技术;发展历程;发展趋势
前言:
蜂窝移动通信技术是科学技术日新月异发展的产物,对于社会的发展贡献了卓著的力量,面对高新技术的进一步发展,网络时代的全面到来,快节奏的发展现况,促进蜂窝通信技术的进一步发展,满足社会生产和人们生活的需求已经成为世界范围内广泛关注的话题。而在我国蜂窝移动通信技术的发展实践中,必须实现自主创新发展,实现通信技术与国际接轨。因此,笔者针对“蜂窝移动通信技术演进历程回顾及未来发展趋势”一题的研究具有现实意义。
一、蜂窝移动通信技术概述
蜂窝移动通信技术是在移动通信技术的基础上产生发展的一种对人类文明发展带来巨大作用的现代化技术。蜂窝移动通信技术产生与发展并不是空穴来风,一蹴而就,经历了岁月悠悠,凝结了人类无数的智慧与汗水。谈及蜂窝移动通信技术的起源,应该追溯到19世纪中叶,19世纪六十年代麦克斯韦在理论角度证明了电磁波的存在,经过十年的发展赫兹通过实验法证明了电磁波的存在,奠定了蜂窝移动通信技术的基础。经过半个世纪的发展,20世纪中期,历经战争的洗礼,移动蜂窝通信技术日渐成熟[1]。移动蜂窝通信技术,在英文中的解释为CellularMobileCommunication,其是指以蜂窝无线网络作为基础,讲无线通信技术作为信息传输的媒介,实现不同的用户能够在移动的过程中进行有效沟通与联络的技术体系。现阶段,其主要表现为快捷、便利、移动等特征。蜂窝移动通信技术的出现使得人与人之间的沟通更加顺畅,大大提升了沟通的效率,方便了人们的生活,对于经济全球化的发展产生积极推动作用[2]。
二、蜂窝移动通信技术的在中国的发展
纵观我国蜂窝移动通信技术的发展历程,经历了以下三个主要发展历程:第一,在第一代蜂窝移动通信技术的发展中,也就是1G时代,最为突出的而贡献就是讲移动通信的理念及基础技术进行引进,使得频率技术水平得到了提升,保证了设备的容量,在这一时期的技术发展中语音通话是关键所在,也是唯一的移动通信业务形式。第二,在第一代蜂窝移动通信技术的基础上,紧随时展的步伐,2G时代向我们走来,在原有语音技术的基础上增加了一定的数字业务,数字业务的起步,开启了我过蜂窝移动通信技术的赞新阶段,在通信技术的发展历史上写下了浓墨重彩的一笔。第三,经历2G时代之后,在无数专家学者的努力之下,3G技术开始走进人们的视野,在原有技术上增加了多项功能,在业务范围和传输能力上实现了大踏步的发展。如今,我过正沐浴着移动通信技术的阳光,实现新3G技术和4该技术的普及,相信在勤劳智慧的浇灌下,蜂窝移动通信技术在中华大地上定将走向发展、走向繁荣。
三、蜂窝移动通信技术未来的发展趋势
20世纪八十年代末开始引入移动通信技术,经过30年的发展历程,现在或已经成为全球最大的蜂窝移动技术应用国家,截止到2015年10月,我国蜂窝移动通信终端用户已经突破了7亿,未来蜂窝移动通信技术的发展趋势在发展速度上会更加迅猛;随着时代的进步以及科学技术的发展,人们对于移动通信技术以及互联网的需求正在急剧上升。用户对获取的信息,移动网络快捷化的发展需求越来越重视。因此,移动与互联网的结合已经成为历史发展的必然趋势[3]。
四、结语
蜂窝移动通信技术的产生及发展是科学技术发展的产物,在市场经济背景下对于满足生产、生活需要发挥不可替代的作用,是推动人类文明进步的关键因素。因此,在我国未来针对移动通信技术的发展实践中必须对以往发展过程中存在的不足进行正确的认知,并且对未来的发展趋势进行有效的预测,促进我国蜂窝移动通信技术的进一步创新发展。希望通过文章的阐述,能够使得相关部门与工作者对于移动通信技术的发展历程及未来的发展趋势有所认知和掌握。
作者:张小军 单位:山西晋通邮电实业有限公司
参考文献
[1]陈尾英.探究蜂窝移动通信技术演进历程及未来发展[J].信息通信,2014,02(03):238.
关键词:光纤 通信 信息 技术
中图分类号:TP 文献标识码:A 文章编号:1007-0745(2013)05-0055-01
随着信息科学技术的飞速发展,光纤通信技术越来越受到人们的重视。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。
一、光纤通信技术的特点
1.大容量、高速度。光纤通信的第一特点就是容量大,光纤比铜线或电缆有大得多的传输带宽,虽然现在的单波长光纤通信系统由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势,但是经过一系列的技术处理,单波长光纤通信系统的传输容量也在大幅增加,目前,光纤的传输速率一般在2.5Gbps到10Gbps,还有很大的扩展空间。
2.损耗低。和以往的任何传输方式相比,光纤传输的损耗都是最低的,目前,商品石英光纤损耗可低于0~20dB/km,随着科技的进步,将来采用非石英系统极低损耗光纤,那么,它的损耗可能更低,这就意味着通过光纤通信系统可以跨越更大的无中继距离,这无疑就减少了中继站数目,成本也就可以大幅降下来。
3.保密性好。电波传输时容易出现电磁波的泄漏,保密性差,而光波在光纤中传输,光信号被完善地限制在光波导结构中,泄漏的射线则被环绕光纤的不透明包皮所吸收,不会出现泄漏,因而光纤通信不会造成串音,也不会被窃听,保密性非常好。
4.抗电磁干扰能力强。光纤材料由石英制成的,不仅绝缘性好,抗腐蚀,更重要的是抗电磁干扰能力强,它既不受雷电、电离层和太阳黑子的变化和活动的干扰,也不受人为释放的电磁干扰,可以与高压输电线平行架设或与电力导体复合构成复合光缆。
二、光纤通信技术的应用
1.光纤通信技术的分类。①光纤传感技术。因为光纤传感器具有耐腐蚀、宽频带、防爆性、体积小、耗电少的优点,所以其可分为功能型传感器和非功能型传感器;②波分复用技术。根据每一信道光波的频率不同,利用单模光纤低损耗区带来的巨大宽带资源,可以将光纤的低损耗窗口划分成为若干个信道,采用分波器来实现不同光波的耦合与分离;③光纤接入技术。光纤接入技术的应用十分广泛,已经应用到千家万户。光纤接入技术不仅仅可以解决窄带的业务,也可以解决多媒体图像等业务。
2.光纤通信技术的现实应用。我国的光纤通信产业发展十分迅速,尤其是广播电视网、电信干线传输网、电力通信网等发展极其迅速,使得对于光纤光缆的需求量急剧地增加。因为广电综合信息网规模的扩大和系统的复杂难度的提升,让我们在对于全网的管理和维护以及设备故障的判定等问题上存在着很大的难度。为了解决以上存在的问题,采用了ATM+或者是SDH+光纤组成宽带数字传输系统。对于这个传输网,我们可以采用环网传输系统,也可以采用链路系统或者是用它们组成的各种不同形式满足不同需要的符合网络。我们可以采用宽带传输系统,可以将通道设置为广播的方式,可以让人们在任何地方都可以对同样的电视节目进行下载,也可以让工作人员对下载的权限进行统一设置,更有利于管理。我们可以通过数据通道或者是电信网中的语音通道来形成上行信号,也可以通过语音接入系统来完成上行信号的传送。
三、光纤通信技术发展趋势
1.向超高速、超大容量发展。目前10Gbps系统已开始大批量装备网络,在理论上,基于时分复用的高速系统的速率还有望进一步提高,例如在实验室传输速率已能达到4OGbps,然而,采用电的时分复用来提高传输容量的作法已经接近硅和镓砷技术的极限,电的40Gbps系统在性能价格比及在实用中是否能成功也还是个未知因素,可以说采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用了不到1%,99%的资源尚待发掘。于是人们将目光转向波分复用,采用波分复用系统可以将光纤容量迅速扩大几倍乃至上百倍,可以大大降低成本,可以方便快捷的引入宽带新业务,有望实现光联网,基于此,近几年波分复用系统发展十分迅速,预计不久实用化系统的容量即可达到1Tbps的水平。
2.实现光联网的全面发展。尽管波分复用系统技术有诸多好处,但依旧是以点到点通信为基础的系统,其灵活性和可靠性还不够理想,如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。根据这一基本思路,光的分插复用器(OADM)和光的交叉连接设备(OXC)均已在实验室研制成功,并已投入商用。实现光联网的基本目的是:①实现超大容量光网络;②实现网络扩展性,允许网络的节点数和业务量的不断增长;③实现网络可重构性,达到灵活重组网络的目的;④实现网络的透明性,允许互连任何系统和不同制式的信号;⑤实现快速网络恢复,恢复时间可达100ms。光联网的全面发展将对21世纪的中国产生重要的影响。
3.新一代的光纤。近几年来随着IP业务量的爆炸式增长,传统的单模光纤已暴露出力不从心的态势,目前已出现了两种不同的新型光纤,即非零色散光纤(G.655光纤)和无水吸收峰光纤(全波光纤)。
①新一代的非零色散光纤。非零色散光纤(G.655光纤)的基本设计思想是在1550窗口工作波长区具有合理的较低色散,足以支持10Gbps的长距离传输而无需色散补偿,从而节省了色散补偿器及其附加光放大器的成本;同时,其色散值又保持非零特性,具有一起码的最小数值(如2ps/(nm.km)以上),足以压制四波混合和交叉相位调非线性影响,适宜开通具有足够多波长的DWDM系统,同时满足TDM和DWDM两种发展方向的需要。②全波光纤。与长途网相比,城域网面临更加复杂多变的业务环境,要直接支持大用户,因而需要频繁的业务量疏导和带宽管理能力,显然开发具有尽可能宽的可用波段的光纤成为关键。全波光纤就是在这种形势下诞生的,全波没有了水峰,光纤可以开放第5个低损窗口,从而使可复用的波长数大大增加,使元器件特别是无源器件的成本大幅度下降,从而降低了整个系统的成本;另外上述波长范围内,光纤的色散仅为1550nm波长区的一半,因而,容易实现高比特率长距离传输。
在新世纪的信息技术发展中,光纤通信技术将成为重要的支撑平台,光纤通信也将成为未来通信发展的主流,光纤通信有着巨大的潜力等待人们的开发。
参考文献: