前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇物联网工程的关键技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
>> 物联网关键技术中的基于云计算关键技术神经智能电网控制系统应用研究 论关键技术在智能电网中的应用 自动化系统关键技术在智能变电站的应用 智慧城市建设中智能交通系统关键技术概述 物联网关键技术及其在煤矿信息管理中的应用 物联网关键技术在食品溯源中的研究与应用 物联网关键技术在通信运营中的应用 “智能微尘”成物联网应用关键技术 基于物联网\云计算关键技术的智慧城市应用体系综述 物联网中的关键技术 JAVA中的关键技术在无纸化考试系统中的应用 浅析建筑智能系统关键技术及应用 浅谈OFDM系统在移动通信应用中需解决的关键技术 论PLC关键技术在电气工程控制系统中的应用 PLC关键技术在电气工程控制系统中的应用 光纤通信在电力系统中的应用及其关键技术分析 探讨物联技术在高速公路信息管理系统中的应用 大规模电力控制系统中的基于智能变电站关键技术应用研究 浅谈智慧交通监控系统的关键技术应用及监理措施 智慧城市信息系统的关键技术 常见问题解答 当前所在位置:l.
[2] 百度文库. 智慧园区[EB/OL].[2012-10-08]. .
[3] 百度文库. 物联网[EB/OL].[2013-03-29]. .
[4] 祝敬国.博物馆数字化的概念思考[J].智能建筑与城市信息,2004(8):10-15.
[4]曾斌,田峻.智能建筑工程[M].北京:中国建材工业出版社,2002.
关键词:云桌面;创新模式;互动网络;虚拟技术
中图分类号:TP313 文献标识码:A 文章编号:2095-1302(2013)10-0073-03
0 引 言
随着4G物联网技术与云桌面网络虚拟化技术的普遍应用及发展,云桌面虚拟化计算技术已经成为各界学者研究的热点话题。高职学生可以从云中按需获得服务,而云桌面虚拟化数据中心是在云桌面虚拟化计算环境下由云桌面虚拟云基础设施和软件组成的松耦合资源共享架构。同时,利用基于高职院校学生多元化网络虚拟技术教育工作,使高职院校运用一定的思想政治观点、道德规范,对高职学生施加有目的、有计划的影响,从网络虚拟技术方面约束高职学生的思想服务意识行为,引导其树立正确的人生价值观念。
1 基于单一化传统网络虚拟技术教育的工作模式
高职学生参与网络虚拟技术课程学习对其个人发展是十分有利的。根据单一化网络虚拟技术教育课程的特殊性,各个高职院校在制定专业多媒体关键技术论坛资源交流平台课程教学计划时未能给予足够的重视,影响了学生参与网络虚拟技术学习的积极性。近年来,中央对高职院校学生网络虚拟技术理论课多媒体关键技术论坛资源交流平台课程教学提出了新的指导,要求创建先进性的学习课堂,全面提高高职学生参与网络虚拟技术学习的积极性。
1.1 单一化思想体制合理性与教学标准的瓶颈
随着各高职院校培养各类单一化专业人才的宗旨,制定了许多专业理论知识的教育指标体系,以满足高职学生个人专业水平的提高。在教育体制方面,高职院校对思想专业的重视程度不足,所执行的管理体制不够完善。在当前,网络虚拟技术政治教育主要面对的是专业生与非专业生两大主体,两类高职学生在日常学习效率方面处于落后状态,与教育部规定的课程标准相差较大。从成绩考核来看,专业生网络虚拟技术课程学习质量高于非专业生,但其自身学习也存在着种种问题,例如,网络虚拟技术政治意识薄弱,理论实践缺乏等;而非专业生更是对网络虚拟技术政治教育失去兴趣,没有意识到课程的潜在价值。
1.2 单一化思想传授方法的局限性
教学教育方法是决定多媒体关键技术论坛资源交流平台课程教学成效的关键技术因素,教师选择的方法直接影响了最终的教学质量。高职院校多元化网络虚拟技术教育集中于旧式教学方案,教师依旧是课堂中的主导者,消耗大量课堂时间去灌输网络虚拟技术知识给学生。教学方法应用不当,阻碍了师生互动的积极性,也限制教育科技的创新改革及全面推广应用实践。
2 云桌面网络虚拟化技术互动网络创新模式的决策研究
云桌面虚拟化技术是推动高等职业技术教育发展的重要关键技术因素,高等职业教育积极引入高科技教学模式,而4G物联网应用技术是教育科技改革的重点与热点课题,将其应用于网络虚拟技术政治教育有助于教学质量水平的提升,使高职学生掌握更多的网络虚拟技术学科知识。同时,利用基于4G物联网云桌面网络虚拟化技术下的创新教育模式,注重云桌面虚拟云基础设施的配置;云桌面互动网络虚拟教学是现代教育理论研究的新热点课题。
2.1 云桌面虚拟云基础设施
云桌面虚拟云基础设施是4G物联网云桌面网络虚拟化技术运行关键技术因素,主要由主机、CPU、地址总接线等组成。基于课程教育云桌面网络虚拟技术改进的发展趋势,高职院校需增加云桌面虚拟云基础设施的资金投入,定期购买一批高性能的云桌面虚拟云基础设施设备,为云桌面网络虚拟化技术教学模式提供相配套的云桌面虚拟云基础设施资源系统。高职院校开始建立4G物联网教学中心或互动网络教学模式下4G物联网多媒体关键技术教学室,这些都能在云桌面虚拟云基础设施上满足云桌面网络虚拟化技术云桌面互动网络虚拟教学的需求。
2.2 软件功能服务设施应用平台
云桌面虚拟化应用平台软件设计是系统内部的程序及文档以及安装于4G物联网中的应用智能软件。配备相关的云桌面虚拟云基础设施系统之后,同时利用高职院校设计课程教育的软件系统,为教师和学生提供虚拟化操控平台。高职院校4G物联网云桌面虚拟化平台是时代教育发展的需要,为专业多媒体关键技术论坛资源交流平台课程教学提供优越的云桌面网络虚拟化技术操控平台,促进多元化的改善网络虚拟技术教育质量。
2.3 云桌面虚拟化应用能力平台服务
高职学生网络虚拟技术教育应用能力运行视角下基于基础物理资源进行了更高层次的抽象,它提供云桌面虚拟学生应用程序的运行管理平台,同时基于应用能力运行层以平台软件为中心提供了高职学生中的各科教学教育与部署、运行相关的资源交流平台。
3 基于云桌面网络虚拟化技术视角的创新决策
云桌面网络虚拟视角下基于多媒体技术中的4G物联网云桌面网络虚拟化技术应用的典型模式,基于云桌面网络虚拟化技术互动网络创新模式视角下网络虚拟技术政治教育的创新改革,应充分利用好云桌面网络虚拟视角下多媒体技术的功能优势,为师生创造互动网络教学模式平台。
3.1 基于云桌面网络虚拟视角的创新教学模式
基于单一化传统网络虚拟技术多媒体关键技术论坛资源交流平台课程教学方法的滞后性,教师应充分利用云桌面虚拟化多媒体关键技术平台开展云桌面互动网络虚拟教学,同时利用互动网络教学模式下4G物联网云桌面网络虚拟视角下多媒体技术辅助教学,综合处理云计算控制符号、云桌面虚拟化语言、云桌面虚拟化文字、云端声音、云端图形与图像、影像等多种媒体信息技术。教师可以将多媒体等综合因素与网络虚拟技术课堂教学相互融合,再通过云桌面网络虚拟屏幕或投影机投影显示出来,为学生提供虚拟云交流学习资源管理平台。
3.2 基于互动网络教学模式的4G物联网创新系统设施
基于未来网络虚拟技术教学采用新型云桌面多媒体管理系统,推动了互动网络教学模式下云桌面网络虚拟远程教学模式的优先使用,教师和学生借助4G物联网便可展开网络虚拟技术多媒体关键技术论坛资源交流平台课程教学方面的探究活动。利用4G物联网云桌面网络虚拟化技术的虚拟化特点,设计远程教育系统服务于网络虚拟技术教学,方便了师生在云桌面网络虚拟化技术学习平台上的交流互动。高职院校可以创建免管理多媒体教室控制系统,这是一套云开放型、云智能型、云科学型多媒体教室建设方案。
3.3 网络虚拟创新互动模式研究
3.3.1 互动网络教学模式下教学互动创新
互动网络教学模式下的4G物联网多媒体关键技术教学是指在教学过程中,根据高职院校网络虚拟技术政治多媒体关键技术论坛资源交流平台课程教学目标和教学对象的特点,通过教学设计方案的优化改进,合理选择和运用现代教学媒体,为师生创造了有利的云桌面互动网络虚拟教学平台。同时,基于云桌面网络虚拟化技术互动网络创新模式下的网络虚拟技术教学,并与传统教学手段有机组合,共同参与教学全过程,形成合理的教学过程结构,达到最优化的教学效果,适应云桌面网络虚拟化技术传播的特点和新时期公众的心理状态,使高职学生由传统的被动接受“灌输”教育变为主动参与思想交流。
3.3.2 云桌面虚拟化实时交流
基于云桌面网络虚拟化技术多元化网络虚拟技术教育者来说,在线交流可以实时地了解当前学生的思想动态,在线交流最好的方式就是设置多媒体关键技术论坛资源交流平台。多媒体关键技术论坛资源交流平台的匿名性,使得高职学生可以在多媒体关键技术论坛资源交流平台上畅所欲言,表达自己的真实想法。在多媒体关键技术论坛资源交流平台上可以设置专题和讨论区,由多元化网络虚拟技术教育工作者确定话题,引导讨论,同时对于一些出现的负面言论要及时关注,及时消除并作出正面解说,并且要设专职教师、学生骨干进行重点资源管理。
4 结 语
高等职业技术教育视角下单一化传统网络虚拟技术政治教育模式制约了高职院校多媒体关键技术论坛资源交流平台课程教学水平的提高,降低了学生参与网络虚拟技术课程学习的积极性。利用4G物联网云桌面网络虚拟化技术是信息科技应用的表现形式,将其用于高职院校多元化网络虚拟技术教育创新改革,不仅是高职院校多元化网络虚拟技术教育工作在云桌面网络虚拟化技术互动网络创新模式下对高职学生进行广泛有效的云桌面网络虚拟化技术多元化网络虚拟技术教育,也是拓展网络虚拟技术工作空间、全面推进以云桌面虚拟化德育为核心的素质教育。
参 考 文 献
[1] 郑小发.软件工程技术[M].北京:中国传媒大学出版社,2011.
[2] WU L D. The application of multimedia technology in cloud desktop virtual perspective effect of [J]. Laboratory Science in the teaching of the Internet of things, 2007.
[3] 崔素英. 多元化虚拟网技术在S1240交换机中的实现[J]. 电信工程技术与标准化, 2006(5): 59-62.
关键词: 物联网 关键技术 专业建设
一、物联网产业发展现状及应用领域
物联网被称为继计算机、互联网之后信息产业的第三次浪潮,物联网具有应用需求广泛和产业发展迅速等趋势,它具有庞大的产业集群效应。据权威机构预测,物联网在公共安全、环保、智能交通、智能电力、智能家居、智能医疗等诸多领域的市场规模均超过百亿甚至千亿,到2020年,物物互联业务将非常普遍,它与现有的人人互联业务之比将达到30∶1,物联网产业被称为下一个万亿级规模的产业[1]。
社会各行各业都涉及物联网技术的应用,国家“十二五”规划中明确的重点物联网应用领域:智慧城市、智能农业、智能家居、智能工业、智能交通、智能电网、智能医疗、商业与服务、公共安全与公益事业等。以上每一个智能应用领域,都会涉及传感、RFID、电子、通信、自动化控制及GPS或GPRS,这些技术整合将最终构成基本的智能传输及分析系统,多个单个智能系统的整合将构成智能物联网[2]。
二、物联网的人才需求及岗位分析
人才服务于产业,也制约着产业发展。物联网涉及众多行业应用领域,在未来几年,物联网产业发展的主要动力是行业应用。据国家相关部门统计预测,未来几年,在智能交通、智能物流(现代物流与智能仓储)、智能电网、智能医疗、智能工业、智能家居等方面的物联网应用型人才需求都将达到百万以上;在智能农业方面,甚至有近1000万的人才需求。物联网应用技术人才需求巨大,高等职业教育需加大人才培养力度以满足行业产业人才需求[3]。
高职物联网应用技术专业培养具有物联网工程布线、系统联调、传感器安装与调试、自动识别产品安装与调试和软件产品安装能力;能进行物联网工程项目的运行维护、管理监控、优化及故障排除;能进行物联网产品生产、物联网工程施工、物联网设备或产品维护维修、物联网项目辅助研发等一线工作的发展型、复合型、创新型技术技能人才。可从事物联网企业物联网产品的生产、物联网工程施工、物联网设备或产品维护维修、物联网项目辅助研发,以及计算机硬件、网络产品的销售和技术服务、中小企业网络管理等工作。
三、联网专业的技术体系
物联网应用技术专业具有覆盖面广、知识体系大等特点,它涉及信息技术众多前沿领域,如自动化控制、移动互联开发、网络通信、应用电子、多媒体等技术领域。物联网技术架构可以分成三层,即感知层、网络层、应用层。
1.感知层
主要功能是识别物体、采集信息,通过短距离通信网络进行数据传输,关键技术包括:传感器技术、二维码技术、RFID技术、GPS技术等。
2.网络层
主要负责把采集和感知到的信息无障碍、高可靠性、高安全性地进行传送。基础通信,数据传输,关键技术包括:无线通信、有线通信等。
3.应用层
主要负责通过公共中间件、信息开放平台、云计算平台和服务支撑平台等物联网应用技术,实现跨行业、跨应用、跨系统之间的信息协同、共享和互通,从而支持物联网技术在工业、农业、环保、医疗等行业领域的应用[4]。关键技术包括:数据融合、云计算等。
四、课程体系建设
1.人才培养模式
物联网应用技术专业人才培养应符合应用性、先进性、实践性原则,紧密与区域内相关企业的合作,建立针对职业岗位群的人才培养模式。以能力本位构建三重能力的课程体系,针对岗位需求设置岗位课程,基于工作过程整合课程内容,针对高职课程的特点,积极探索教学改革,采用“项目引导、任务驱动”的教学模式,实施理实一体的项目导向式教学改革,提高人才培养的针对性和适应性。在具体课程实施过程中,推行项目化教学改革,建设课程项目库,项目选取采用虚实结合,注重项目载体的选择;项目采用工作流程进行任务分解,每个项目变的是教学内容,不变的是工作流程;学生以小组为单位进行项目及任务实施。教学过程体现学生中心地位,教师采用引导、辅助、鼓励与点评等方式进行教学。学生以竞赛、评优、考核等方式进行项目团队学习,可以培养学生的自信心和学习兴趣,提高学生团队协作、自我学习等能力。
2.课程开发
物联网是门交叉学科,涉及电子技术、通信技术、传感技术、网络技术、嵌入式技术等,知识系统非常庞大,在进行课程设置时需要综合考虑相关交叉学科的特点,应尽可能多地覆盖本专业的知识体系,根据工作过程和知识结构,形成“两个平台”(公共基础课程、专业基础课程)、“三个方向”(物联网应用集成、物联网应用开发、物联网应用维护)的课程体系。
3.实训室建设
物联网产业发展人才需求不仅在技术上,更多的是在应用领域。通过实践教学可以培养学生的应用能力和创新思维等。因此,在物联网应用技术专业建设时,完善实验、实训室建设尤为重要。在实验、实训室建设过程中,首先,突出虚拟仿真性,即在实验、实训过程中全方位模拟日后的工作流程、工作环境和职业岗位,提高学生的操作技能和职业能力[5];其次,关注功能模块的实际完整性,即针对具体应用配置齐全相关设备;最后,兼顾前瞻性和扩展性,即支持实训项目的拓展。
4.教学资源库建设
教学资源库建设是一种高技术、高投入的建设,资源库建设应立足专业特色,重视资源共享,强调技术应用,为培养合格人才提供坚实保障。所以研究适应职业教育发展,适合职业院校专业特色,且有利于职业院校之间资源共享的标准化、科学化、开放化的职业教学资源库建设。通过此平台,教师、学生可以根据自己的个性需求,通过Web方式浏览、查询、下载、使用和上传资源,并自主组织学习效果的测试与评价,实现师师、师生和生生之间的交流互动。
五、师资队伍建设
高职物联网应用技术专业起步晚、基础薄,专业建设宜坚持“校企合作、课程先行、科研引领、成果孵化”的基本原则。其中,师资队伍建设是关键,需要学校、教师、企业三方共同投入,将校企“师资互嵌”落到实处,不能简单地搞“企业工程师请进来,学校教师派出去”的模式,要从制度、科研应用、教育教学多方同步推进,最后才能实现学较、教师、学生、企业多方共赢[6]。
总之,高职院校开设物联网应用技术专业,是机遇也是挑战。学校将根据区域特色,紧密结合省和扬州市“十二五”发展规划实施要求,整合学校及行业内的优势资源,全力推行物联网应用技术专业建设。只要不断更新观念,进行课程体系和教学模式改革与创新,加强教师队伍建设,提高专业办学水平,就一定能培养出更多高端技能型物联网应用技术专门人才,为促进物联网产业的快速发展作出贡献。
参考文献:
[1]张琴.焦万亿超级产业的未来[EB/OL].,2012-12-06.
[3]刘青.基于岗位的物联网应用技术专业人才培养与专业建设研究.菏泽学院学报,2013,10.
[4]赵雨境.以“三线并重”为核心的物联网应用技术专业课程体系研究.学园|ACADEMY.2013(1).
关键词:物联网;云计算;内河航道;智能航道
中图分类号:TP39 文献标识码:A 文章编号:2095-1302(2013)04-0076-03
0 引 言
21世纪人类社会正步入信息时代。世界正处在一场新的技术革命之中,这场技术革命的中心就是物联网。物联网概念的本质就是将人类的经济生活与社会生活、生产活动与个人活动都放在一个智慧的物联网环境中运行。物联网为人们提供了感知中国与世界的能力,也为技术创新与产业发展提供了前所未有的机遇。
2011年1月21日国务院正式颁发《关于加快长江等内河水运发展的意见》,要求利用10年左右时间,建成畅通、高效、平安、绿色的现代化内河水运体系。为落实交通运输部“关于贯彻《国务院关于加快长江等内河水运发展的意见》的实施意见”,长江航道局2012年工作会议提出,加快数字航道和智能航道建设,到2015年基本建成长江干线数字航道,初步建成长江干线智能航道。随着长江“数字航道”建设的启动,长江航道信息化建设经历了一个快速的发展历程,在电子航道图建设、航道测量、信息基础设施建设等方面取得了一系列的成绩,已经初步具备由数字化向智能化转变的条件。要实现航道数字化向智能化的转变,就需要一系列诸如物联网、自动控制、人工智能等核心技术研究做支撑,其中物联网方面的部分关键技术尤为重要。
1 物联网的概念
物联网的概念产生于20世纪90年代,其英文名为Internet of Things(IOT),被视为互联网的应用扩展。应用创新是物联网发展的核心,以用户体验为核心的创新是物联网发展的灵魂。2005年,在突尼斯举行的信息社会世界峰会上,国际电信联盟了《ITU互联网报告2005:物联网》,正式提出了“物联网”的概念。
物联网概念的兴起,很大程度上得益于ITU的年度互联网报告,但截至目前确切的说还没有形成一个公认准确的定义。根据目前对物联网技术特点的认知水平,在比较各种物联网定义的基础上,比较普遍的一种定义是:物联网是在互联网、移动通信网等通信网络的基础上,针对不同应用领域的需求,利用具有感知、通信与计算能力的智能物体自动获取物理世界的各种信息,将所有能够独立寻址的物理对象互联起来,实现全面感知、可靠传输、智能分析处理,构建人与物、物与物互联的智能信息服务系统[1]。
2 物联网关键技术
物联网的多样化、规模化与行业化的特点,决定了物联网涉及的技术种类非常多,本文需要从物联网应用系统设计、组建、运行、应用与管理的角度,将多种技术归纳为几项共性的关键技术。
2.1 智能感知技术
智能感知首先是RFID无线射频识别技术。RFID无线射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预,可工作于各种恶劣环境。RFID技术可识别高速运动物体并可同时识别多个电子标签,操作快捷方便。其关键技术主要包括产业化和应用两个方面。其中,RFID产业化关键技术主要包括标签芯片设计与制造、天线设计与制造、RFID标签封装技术与装备、RFID标签集成、读写器设计等;RFID应用关键技术主要包括RFID应用体系架构、RFID系统集成与数据管理、RFID公共服务体系、RFID检测技术与规范等。
其次是传感器与无线传感器网络技术。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。传感器技术的发展主要表现在智能传感器与无线传感器两个方向。智能传感器的关键技术主要表现在传感器的系统结构设计方面。结构设计上除了需要具备自学习、自诊断与自补偿能力、复合感知的能力,还要具有灵活的通信能力。无线传感器网络作为当今信息领域新的研究热点,有很多的关键技术有待发现和探索。从目前国内外研究现状来看,主要集中在以下几个方面:介质访问控制协议、网络拓扑控制与路由协议、节点定位、时钟同步、数据管理与数据融合、嵌入式操作系统和网络安全等。
2.2 嵌入式技术
嵌入式系统是一种专用的计算机技术,常作为装置或设备的一部分。通常,嵌入式系统是一个控制程序存储在ROM中的嵌入式处理器控制板。事实上,所有带有数字接口的设备,如手表、微波炉、录像机、汽车等,都使用嵌入式系统,有些嵌入式系统还包含操作系统,但大多数嵌入式系统都是由单个程序实现整个控制逻辑。嵌入式技术的关键研究点主要有专用芯片设计制造、嵌入式硬件结构设计与实现、嵌入式操作系统研究、嵌入式应用软件编程技术、微机电(MEMS)技术与应用等。RFID读写器、无线传感器网络节点就是目前比较流行的微小型嵌入式智能设备。随着信息技术的快速发展,嵌入式的尖端科技比如可穿戴计算机、智能机器人等应用将会为人类社会带来更大的便利。
2.3 移动通信技术
移动通信是指通信的双方至少有一方是在移动中进行的通信,包括固定点与移动点、移动点与移动点之间的通信。例如,人们平时常见的一个用户在行进着的火车、汽车上用手机与一个固定电话或另一个手机通信,或者是两个移动的手机之间的通信都属于移动通信。移动通信系统的关键技术主要包括以下方面:宽带数字通信基础理论研究、宽带调制和多址技术、频谱利用率提升技术、无线资源管理、无线电技术、网络安全和QoS、基于Mesh自组织网络的接入网络架构体系、基于智能重叠网的核心网体系、移动通信网络协议、射频电路和电磁兼容等。4G通信技术是继3G之后的又一次无线通信技术演进,我国的自主知识产权的移动通信标准TD-LTE正式成为4G的两大国际标准之一,标志着我国首次在移动通信标准上实现从“追赶”到“引领”的重大跨越。移动通信的另一发展方向就是机器到机器(M2M)的终端通信,M2M的潜在市场不仅限于通信业,由于M2M是无线通信和信息技术的整合,它可用于双向通信,如远距离收集信息、设置参数和发送指令,因此M2M技术可以有不同的应用方案,如安全监测、自动售货机、货物跟踪等。在M2M中,GSM/GPRS/UMTS是主要的远距离连接技术,其近距离连接技术主要有802.11b/g、BlueTooth、Zigbee、RFID和UWB。此外,还有一些其他技术,如XML和Corba,以及基于GPS、无线终端和网络的位置服务技术。
2.4 海量数据处理与融合技术[2]
面对物联网数据海量、多态、动态与关联的特征,物联网数据处理需要重点解决以下几个关键技术,分别是数据格式与标准化、信息融合技术、中间件与应用软件编程技术、海量数据存储与搜索技术、数据挖掘与知识发现算法。物联网的海量数据除了来自传感器节点、RFID节点以及其他各种智能终端设备全天候产生的数据外,各种物理对象在参与物联网事务处理的过程中也会产生大量数据,在进行海量数据存储时需要数据库、数据仓库、网络存储、数据中心和云存储技术的支撑。数据融合中心对来自多个传感器的信息进行融合,也可以将来自多个传感器的信息和人机界面的观测事实进行信息融合(通常是决策级融合)。提取征兆信息,在推理机作用下,将征兆与知识库中的知识匹配,做出故障诊断决策,提供给用户。在基于信息融合的故障诊断系统中可以加入自学习模块,故障决策经自学习模块反馈给知识库,并对相应的置信度因子进行修改,更新知识库。
同时,自学习模块能根据知识库中的知识和用户对系统提问的动态应答进行推理,以获得新知识。总结新经验,不断扩充知识库,实现专家系统的自学习功能。
2.5位置服务技术
位置服务(Location Based Services,LBS)又称定位服务,是由移动通信网络和卫星定位系统结合在一起提供的一种增值业务,通过一组定位技术获得移动终端的位置信息(如经纬度坐标数据),提供给移动用户本人或他人以及通信系统,实现各种与位置相关的业务。位置服务实质上是一种概念较为宽泛的与空间位置有关的新型服务业务。位置服务关键技术主要涉及位置信息的获取方法,GPS、GIS和网络地图应用技术,以及位置服务的方法。位置信息获取目前比较主流的方法有移动移动通信定位、基于无线局域网定位、基于RFID的定位、无线传感器网络定位等。
2.6 信息安全技术
物联网信息安全技术研究目的是保证物联网环境中数据传输、存储、处理与访问的安全性。主要关键技术有以下方面:物联网安全体系结构研究、网络安全防护技术、密码学及在物联网中的应用、网络安全协议等。
物联网安全体系结构的研究主要包括网络安全威胁分析、网络安全模型与确定网络安全体系,以及对网络安全评价标准和方法的研究;网络安全防护技术的研究主要包括防火墙技术、入侵检测与防护技术、安全审计技术、网络攻击取证技术、防病毒技术以及业务持续性规划技术;密码应用技术的研究包括对称密码体制与公钥密码体制的密码体系,以及在此基础上研究消息认证与数字签名技术、信息隐藏技术、公钥基础设施PKI技术、隐私保护技术等;物联网的网络安全协议研究主要包括网络层的IP安全协议、传输层的安全套接层协议(SSL)、应用层的安全电子交易协议(SET),以及它们在物联网环境中应用的技术。
3 物联网关键技术在内河航道的应用探讨
首先,应用RFID技术可以进行通航船舶流量的统计[3]。内河航道尤其是长江中下游,船舶运量非常繁忙,如何有效地分析统计某时段通过的船舶数量、船型、吨位和实际载货量,成为一个重要课题。运用智能感知技术,在通航船舶上安装RFID电子标签,在航道上安装读卡器,RFID电子标签内记载船舶的基本信息数据,以此建立一个基于RFID射频技术的船舶状态信息采集平台,就可以很好地解决船舶流量统计问题。若将其与电子航道图系统集成,应用效果会更好。
其次,应用ZigBee无线传感器网络技术可以开展航道数据的采集,构建“感知航道”[3]。 利用航道沿线的固定监控点作为基干,建立一个有线光纤基干网络,供视频数据传输。以基干网络的各监控点为中心,在每个监控点的航道沿岸周边,建立起由ZigBee技术构成的近地、自组织、低功耗的无线自组织网络(即无线传感网)。将各种传感设备(水位、值守传感器等)通过无线传感网络以无线方式进行连接,实现航段的无线覆盖和传感器热插拔。无线传感数据通过无线传感网络由最近的监控点传入有线基干光纤网络汇聚至设在指挥中心的传感前端服务器。这样,通过感知数据的自动采集和传输,就可以在航段构建一个航道感知网络,实现自动航道感知。
第三,应用位置服务技术可以实现航道维护船舶的动态监控。将GIS地图显示技术和GPS定位技术结合,利用位置服务技术对船舶当前所在的位置数据进行采集,通过GPRS/CDMA无线通信技术采集的数据发送到航道管理中心服务器,管理中心的航道船舶监控系统实时调用位置数据对航道船舶进行远程监控,在地图上实时了解辖区维护船舶的工作动态,可以达到很好的监管效果。
另外,应用云计算技术可以实现航道数据的分析和处理。随着物联网广泛应用于航道方方面面,各种传感器、船舶终端之间不可避免会产生大量动态数据。位于终端的数据处理单元配置相对较低,处理大量数据必然会力不从心,可能会达不到要求的时效性。通过应用云计算技术,让云端处理数据并将结果回传或直接传至航道数据中心,就可以快速准确地解决航道终端数据分析和处理的问题。
4 结 语
物联网的发展具有深厚的信息技术及相关专业的技术基础,有着强烈的社会需求,是社会信息化的深化和发展,是我国两化融合的切入点。随着物联网技术在内河航道应用的逐步深入,必将为推动数字航道向智能航道的转变提供强大的技术支撑,必将加快实现我国智能水运交通事业的发展进程,必将为内河流域百姓的生产生活带来更大的便利。
参 考 文 献
[1] 吴功宜,吴英.物联网工程导论[M].北京:机械工业出版社,2012.
[2] 刘仰华.物联网数据处理技术[J].信息与电脑,2012(7):93-94.
[3] 王迅,丰玮,胡铮.物联网在航道管理中的应用[J].中国水运,2011(12):28-29.
从总体来看,国际物联网技术发展大致呈现以下特点:
技术路线两大方向
各国在物联网技术发展路线的选择上侧重不同,主要集中在两大方向。
一是以追求技术的突破为目标,主要以欧洲为代表。2008年,欧盟推出《2020 年的物联网:未来路线图》(《Internet of Things in 2020:ROAD MAP FOR THE FUTURE》),全面阐明了欧洲未来技术发展以及需要突破的阶段目标:2010年前,主要降低传感器的成本和能耗;2010~2015年,重点形成局部应用的传感器网络,实现闭环的典型整合应用;2015~2020年,实现对所有对象和标签的编码,形成统一连接的物联网;2020年之后,主要是使任何对象实现智能化,全面挖掘物联网潜能,形成链接人、物与服务的统一的泛在网络。
2009年6月,欧盟了《欧盟物联网行动计划》(《Internet of Things―An Action Plan for Europe》),以确保欧洲在构建物联网的过程中起主导作用,该行动计划在世界范围内首次系统地提出了物联网发展的管理设想。2009年9月,欧盟了《物联网战略研究路线图》(《Internet of Things Strategic Research Road Map》),明确了物联网愿景和通用定义的细化,重点对未来物联网识别技术、架构技术、通信技术、网络技术、软件和算法、数据和信号处理技术、发现和搜索引擎技术、电力和能源存储技术等十二项关键技术,进行了全面分析。
二是以追求技术成果加快应用为主攻方向,主要以美国为代表。2008年7月,美国国家情报局(NIC)发表了《2025 年对美国利益潜在影响的6种关键技术》(《Six Technologies with Potential Impacts on US Interests out to 2025》)报告,强调物联网技术的应用将会改变美国的国家竞争力,并详细描述了物联网关键的应用阶段:2007~2009年,在美国大型零售连锁店采用RFID标签的托盘和包装管理;2010年,在美国大型零售连锁店开始全面部署RFID,同时在医疗保健机构、大型组织和政府机构采用RFID标签管理个人档案;2011~2013年,实现用户通过手机扫描器阅读RFID标签;2014~2016年,车辆逐步具备远程诊断系统;2017年,开始普及无所不在的定位技术,初期实现手机定位技术;2018~2019年,在日常用品上安装无线接收器,推广无所不在的定位技术;2020年,重新分配频谱资源;2021~2025年,美国物联网发展进入创新、增长、机遇和变革阶段,用户和供应商通过日常物件的互联实现协同。
作为技术应用的主体,美国企业加快了物联网技术的应用。如美国高通公司制定了物联网产品发展路线图,其中高端产品(包括TMS4 MSM8960 和 MDM9x15 芯片组)主要面向高端M2M应用,如汽车信息娱乐和数字标牌。
关键技术体系基本形成
随着各国对物联网技术投入的增长,以及技术应用的不断深入,物联网技术领域中不少关键技术相继取得突破,加快形成了该领域的技术体系。
当前,物联网体系主要分为四个层面:感知层(用于采集信息,即传感器),传输层(用于传输信息,即传输网络),处理层(用于支持信息传输和处理,即信息处理过程中的相关技术,主要负责提供各种类型的平台来串联各种传输网络和应用服务),以及应用层(用于信息处理,即软件平台)(见下图)。
物联网体系架构图
其中,感知层的关键技术是芯片、模块、终端技术,重点是提供更敏感、更全面的感知能力,解决低功耗、小型化和低成本问题;传输层的关键技术是适应各种现场环境,构建稳定、无缝的数据传输网络,重点是解决位置服务(QoS);处理层的关键技术是实现异质网络的融合,重点解决支撑平台与应用服务平台。根据调研分析,物联网涉及领域非常广泛,关键的技术领域包括物联网架构技术、硬件和器件技术、标识技术、通信技术、网络技术、信息处理技术、安全技术、能量存储技术等领域,130多项关键技术点。
MEMS技术举足轻重
由于微机电系统(MEMS)的传感器具有微型化、低功耗等特点,把信息的获取、处理和执行进行集成,已成为物联网感知层智能化终端的主要技术。同时,物联网的飞速发展对MEMS技术提出了高可靠性和稳定性等要求,推动着MEMS技术的发展。
一是融合发展,即MEMS制造工艺与集成电路CMOS生产工艺融合进一步加强。将传感器与CMOS信号处理电路融合在技术上有许多优势,尤其是有利于通过CMOS技术实现MEMS的批量化生产。
同时,通过单芯片化或者芯片接合,可以大幅减少寄生容量,提升两者电路的连接性能,并有利于减小组件封装面积等。值得关注的是,在CMOS上形成MEMS的方法已被美国德州仪器用于投影仪(DLP)数字微镜元件(DMD)的生产;在MEMS周围形成CMOS电路的单芯片化方法已被美国亚德诺半导体公司(Analog Devices)用在加速度传感器等产品上。
二是制造标准化,即MEMS设计制造的标准化不断加速。目前,MEMS技术设计规则正由定制转向标准化。而随着标准化的进程,MEMS构造将作为 IP(Intellectual Property)内核,在设计时能够被重复利用,从而降低MEMS的设计难度和成本,大大提高设计效率,据预测设计标准化后单个产品的开发周期将会缩短至 1~3 年。随着设计标准化的推进,代工模式有逐步取代基于IDM 的自主生产模式的趋势,目前从事代工的台积电、联电等领先企业均开发出了MEMS制程技术。
M2M等取得重要进展
M2M:技术标准化加速推进。各大标准化组织均从不同角度开展了M2M相关标准制定工作。欧洲电信标准化协会(ETSI)以典型物联网业务为例,例如从智能医疗、电子商务、自动化城市、智能抄表和智能电网的相关研究入手,完成对物联网业务需求的分析、支持物联网业务的概要层体系结构设计以及相关数据模型、接口和过程的定义;第三代合作伙伴计划(3GPP/3GPP2)以移动通信技术为工作核心,重点研究3G、LTE/CDMA网络针对物联网业务提供而需要实施的网络优化相关技术,研究涉及业务需求、核心网和无线网优化、安全等领域;中国通信标准化协会(CCSA)早在 2009 年就完成了M2M的业务研究报告,与M2M相关的其他研究工作也已经展开。
无线传感网技术:研发成果丰富。节点芯片上有德州仪器(TI)、爱特梅尔(Atmel)等知名芯片企业开发处理器芯片、Chipcon等提供无线传感网芯片等;在软件上,许多著名公司为节点的组网开发了软件协议,美国加州伯克利大学研发的节点专用操作系统TinyOS,为无线传感网的组建和其他方面的测试研究提供了基础。
同时,该领域有关标准已经。电气和电子工程师协会(IEEE)了 802.15.4标准,是面向低成本、低功耗、低速率传输网络应用开发的专用无线通信协议,它详细定义了PHY和MAC层通信接口,从趋势上看,很可能成为未来无线传感网领域的PHY/MAC标准;ZigBee技术联盟制定、颁布了实现传感器节点组网的ZigBee协议规范。
无线射频识别技术(RFID):企业研发的热点领域。美国德州仪器、英特尔等企业均投入巨资进行RFID领域芯片开发,讯宝(Symbol)等研发出同时可以阅读条形码和RFID的扫描器,IBM、微软和惠普等也在积极开发相应的软件及系统来支持RFID的应用;欧洲飞利浦、意法半导体(ST)在积极开发廉价RFID芯片,Checkpoint在开发支持多系统的RFID识别系统,诺基亚在开发并推广其能够基于RFID的移动电话购物系统,SAP则在积极开发支持RFID的企业应用管理软件。
成果应用不断加快
随着物联网技术的加快突破,其成果应用和产业化的进程也不断加快。
MEMS:产业化正处于快速起步阶段。据统计,2011年MEMS产业规模增长率为16%,达到100亿美元。当前,MEMS的自身产业规模仍较小,但对国民经济的诸多行业起到了巨大的带动作用。据预测,2016年MEMS产业将带动1000亿美元的系统应用,而到2020年,还将翻一番,达到2000亿美元。
目前,苹果、谷歌、脸谱等已经开始组建自己的MEMS团队。目前,汽车电子和消费电子将成为未来两大支柱应用领域。据市场分析公司Semico Research 研究显示,未来5年,汽车电子和智能手机将是MEMS应用两大主要市场,它们对总体规模的贡献率将在60%以上。其中,2011年,智能手机中的MEMS产品销售额占20%;2011~2015年,年均复合增长率将达38%。智能手机将在2014年取代汽车,成为MEMS的最大应用市场。
M2M:应用市场增长迅速。M2M是现阶段物联网应用最普遍的形式之一。目前,M2M应用市场增长迅速,IDATE指出,2008年全球M2M通信市场规模为111.7 欧元,2013年将增长到295亿欧元,年复合增长率为24.7%。当前,M2M技术在欧洲、美国、韩国、日本等国家实现了安全监测、公共交通系统、车队管理、工业自动化、城市信息化等领域的应用。
广阔的市场前景使得包括英国电信(BT)和沃达丰(Vodafone)、德国T-Mobile、日本NTT-DoCoMo和韩国SK等电信运营商着力推动M2M发展,也极大促进了应用技术研发。目前研发热点主要集中在定位/跟踪/导航、移动支付、安全/监控、健康医疗、远程抄表等领域。
RFID:产业化领域将不断扩展。目前,RFID技术应用主要集中在零售业、运输系统(电子票证)、畜禽动物朔源领域。据预测,电子护照、食品农副产品溯源、集装箱联运、服装零售、医疗保健、罪犯及假释犯人管理、传感网等将成为潜力最大、竞争最激烈的RFID技术应用领域。