首页 > 文章中心 > 高速铁路技术论文

高速铁路技术论文

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇高速铁路技术论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

高速铁路技术论文

高速铁路技术论文范文第1篇

关键词:混行运输;通过能力;元胞自动机

1 高速铁路运输组织模式概况及论文主要内容

我国高速铁路朝着规模庞大、规划科学、高效安全的方向建设发展,逐步实现以“四纵四横”为基本框架向“五纵五横十联”发展的目标。但是在全国高速铁路网形成的初期,铁路依然面临着运能与运量之间的突出矛盾,跨线列车混跑的现象依然不可避免,随之就产生了新的运输组织模式:高速列车与中速列车共线混行的运输组织模式。

这种运输组织模式的直观表现是:高速铁路的本线列车运行速度一般为300-350km/h,而同时在高速铁路上跨线开行的中速列车只能达到200-250km/h的运行速度。这种运输模式不仅为旅客提供多样化的客运服务,满足不同出行需求的旅客选择适合的客运产品[1],而且在我国已有的车辆技术和线路状况能够实现这种运输模式的情况下,能够实现客流运输的直达性,减少旅客换乘的问题,合理利用高速列车在开行量不大时的线路。

这种混合开行模式虽然能够高效利用高铁线路,但也会降低高铁线路的设计通过能力。基于此,为了合理、高效的实现不同时速的列车共线混行,就要深入研究混行运输对高速铁路通过能力的影响程度,提出混行列车数的比例,为编制合理的列车开行方案提供理论依据。

2 影响高速铁路通过能力的因素和计算方法

在通常情况下,线路设备状态和高速列车的组织开行方式是影响高速铁路通过能力的两个主要因素。其中,影响前者的主要因素有线路对否平顺、停站次数多少、牵引机车功率大小和闭塞方式等,而影响后者的主要因素是混行列车比例、开行列车间的相对速度差、列车间必须保持的运行安全距离和列车运行图铺画方式等。

高速铁路要实现混行,就会出现非平行运行图的现象。考虑到上述多方面的影响因素,按照普通铁路线路通过能力的计算方法,采取扣除系数法是比较合理有效的一种计算方法。此时高速铁路扣除系数法就指当需要运行一列普通列车时,原有的高速列车通过对数必须进行相应的扣除来保证普通列车的运行安全。

很显然,当高速铁路运行普通列车时,两者之间的速度差必然会导致原有的高速铁路运行对数的扣除,同时还受到列车间不同的停站方式和停站时间的影响,导致原有的平行运行图也就相应的变为非平行运行图,扣除系数也会随之变化。

“高中混行”模式下,通过能力计算公式为[2]:N高中=N高+N中=(N全-N中?着中)+ N中,其中N高中为“高中混行”模式下,高速铁路的通过能力,对或列;?着中为中速列车的平均扣除系数。

3 移动闭塞条件下的元胞自动机模型

文章为了减少对原有高速铁路运行对数的过大扣除,以及普速列车对高速铁路线路的影响,将只考虑200-250km/h的中速列车对停站较少的高速列车的影响。同时不考虑不同线路区间内的施工天窗和线路具体特性的影响,以及列车在经过车站和道岔时的速度与区间运行速度一致。

在学习理解NaSch模型的基础上建立移动闭塞条件下列车追踪运行的元胞自动机模型。将所要研究的高速铁路区间划分为间隔距离形同的L个节点,模拟列车区间占有和空闲的两种状态,即在某一时间点,两节点间的线路被高速列车或者中速列车所占有,或出现闲置状态。同时为了简化列车运行速度计算,就将其进行取整运算。特别的,因为混行运输模式并不是一种运行组织常态,因此模拟的时间区段也将是费连续型的,且在这段时间内列车速度是随时变化发展的。

高速铁路技术论文范文第2篇

1. 引言

近年来,伴随着国家综合国力的全面提升,我国高速铁路建设取得历史性跨越,进入全面建设时期。无砟轨道作为一种稳定性高、轨道刚度均匀、具有较强的结构耐久性、容易维护、可降低桥梁二期恒载、减少隧道净空开挖、综合效益高的轨道结构形式,因此,对无砟轨道施工技术进行研究是很有必要的。

2. 无砟轨道施工技术难点

与普通铁路有砟轨道相比,高速铁路无砟轨道系统的施工工艺更为复杂,技术含量更高,其难点主要体现在以下五个方面:

(1)轨道基础地基沉降变形规律难以控制。无砟轨道整体形态是通过扣件系统进行维持,因此,必须采取技术经济合理的处理措施保证轨道地基的稳定性。

(2)精密测量技术。传统的测量技术已经无法满足高速铁路无砟轨道系统的施工建设需求,需要采用高精度的现代工程测量方法来保证保证无柞轨道线路平顺性。

(3)轨道平顺度控制。高速铁路与普通有砟铁路的最显著区别是需要一次性建成可靠、稳固的轨道基础工程和高平顺性的轨道结构。轨道的高平顺性是实现列车高速运行的最基本条件。

(4)无砟道岔施工。道岔区无砟轨道施工应严格按相关规程进行,在保证无砟轨道的道岔间无缝的同时还要注意与不同区间、不同标段间无缝线路施工相互协调。

3. 无砟轨道施工关键技术

3.1 无砟轨道测量

无砟轨道施工阶段测量主要包括三个内容:线下施工测量、无砟轨道铺设测量以及竣工测量。线下施工阶段测量主要工作是控制网的复测和控制网加密;对于无砟轨道铺设阶段测量,关键工作就是CPⅢ控制网的布设,平面测量要求满足五等导线精度,线路起闭于CPⅠ或CPⅡ控制点。导线长度不超过2km,点间距150~200m之间,距线路中线3~4m,需要再线下施工完成后无砟轨道铺设前进行施测,控制点需要用钢筋混凝土包桩,以保证其精度不受环境影响。高程测量采用起闭于二等水准点的精密水准测量施测,水准线路不超过2km。竣工阶段测量主要是维护基桩测量和轨道几何形状测量。

3.2 水硬性混凝土支承层铺设

水硬性混凝土应按设计方案配比,集中拌合,用运输车运输、倾倒。摊铺时沿测定位桩拉线,控制摊铺机走行方向;注意控制并调整摊铺机的碾压力、集料投料速度等工艺参数;同时及时拉线检查支承层的顶面高程。在支承层水硬性混凝土摊铺完毕12小时内,用锯缝机在支承层表面锯切间距5m深度l0cm的伸缩缝;同时修整支承层边缘轮廓尺寸。最后在支撑层上覆盖保湿棉垫,在保证混凝土上表面湿润,且不受阳光直射和风吹的前提下覆盖养生3天。

3.3 轨道安装定位

轨道安装定位的主要工序依次分别为首先铺设轨枕、安装工具轨然后进行轨道调整定位再进行轨道电路参数检查最后轨道精确调整和固定。施工时,一般100m为一个施工单元组织施工。

3.3.1 铺设轨枕、安装工具轨

轨枕铺设使用散枕机施工。散枕机通过挖掘机特殊改装而成,挖掘机上安装专用液压轨枕夹钳,进行轨枕的吊装、并按照正确的轨枕问距直接将轨枕摆放到位。

3.3.2 轨道调整定位

轨道调整定位施工采用专用支撑架、双向调整轴架完成,支撑架间隔2.5m设置,双向调整轴架每隔3根轨枕对称设置,双向调整轴架基座预先安装在钢轨底面。

支撑架内安装宅钢轨夹钳和竖直调整装置。首先使用水准仪测量轨道面高程,起落竖直调整装置,使轨顶标高满足设计值。允许误差为±10mm;用扳手上紧双向调整轴架的竖直螺栓。螺栓端头与垫板顶死、受力。

在每一组双向调整轴架基座间安装传力杆后,用扳手旋转传力杆,逐点调整轨道至设计中线位置.容许偏差为±5mm,并用全站仪精确测量复核。轨道调整定位合格后,在细调定位支座的预埋位置钻孔,安装定位支座。

3.3.3 轨道精确调整和固定

轨道精确调整在道床板混凝土浇筑前l.5~2小时前进行。按照细调定位支座位置划分检测断面,使用轨检小车和全站仪逐一检测每一个检测断面线路的水平、高低、轨向等几何形位和中线位置。根据轨检小车输出的检测数据确定检测断面处轨道精确调整的量值。

用扳手微动调整双向调整轴架的竖直螺栓丝杆,调整线路的几何行位,直至满足设计要求。在细调定位支座上安装螺旋调整器,旋转调整手柄,使调整刻度达到调整量值.确认轨道中线位置调整到位。将“U”形卡板插入细调定位支座内卡紧,然后将卡板与轨枕的钢筋桁架焊牢,完成轨道固定。

3.4 道床板混凝土浇筑

混凝土入模后,立即插入振动棒振捣。对轨枕底部位置混凝土要加强振捣,确保混凝土的密实性;捣固时防止振动棒触碰双向调整轴架的竖直螺栓和其它固定装置。道床板混凝土表面用平板式振动器振平并以人工抹平,确保道床板的顶面高程、平整度和排水坡度符合设训标准。同一配比每班次应制作5组试件。

道床板馄凝土浇筑2~5小时后,松开双向调整轴架的竖直螺栓和其它固定装置。混凝土灌注完成后应立即进行表面覆盖。混凝土终凝后喷洒养护剂养护14天左右,防止其表面产生裂纹。双向调整轴架的竖直螺栓取出后,遗留的螺栓孔应采用高标号的砂浆封堵。

4. 结语

我国高速铁路已进行了多年的技术准备,研究和攻克了不少重大难题,但无砟轨道施工技术对于我国铁路建设来说仍然是一个既复杂又新颖的课题,在建设中仍有许多问题值得研讨。本论文主要分析了高速铁路无砟轨道施工的技术难点和施工中的关键技术,期望能对高速铁路无砟轨道施工提供有益的参考。

参考文献

[1] 何华武. 无砟轨道技术[M]. 北京:中国铁道出版社,2005.

[2] 雷位冰. 秦沈客运专线无砟轨道铺设技术. 成都:西南交通大学工程硕士学位论文,2003.

高速铁路技术论文范文第3篇

摘要:随着经济全球化的快速发展,我国制造业的转型升级成为必然,发展现代制造服务业,是加快制造业产业升级和转型升级的重要途径。文章以公共服务平台建设为例,简要阐述了发展现代制造服务业的模式和途径,并提出了企业发展现代制造服务业的建议。

关键词 :现代制造服务业 制造业 转型升级

一、现代制造服务业的内涵及发展现状

2014年08月国务院《国务院关于加快发展生产业促进产业结构调整升级的指导意见》,进一步明确了生产业是全球产业竞争的战略制高点。现代制造服务业融合了互联网、通信、计算机等信息化手段和现代管理思想与方法,围绕制造业的各个环节所开展的各类专业的服务活动,属于生产业范畴。发展现代制造服务业,是从生产型制造向服务型制造转变的战略需求,是加快制造业产业升级和结构调整的重要途径。

当前,我国现代制造服务业仍处于刚起步和较为新兴的发展阶段,服务业总体规模仍然偏小,发展程度尚较低,服务水平不高,结构不合理,机制创新滞后,整体发展水平与发达国家相比还有较大的差距。

二、建设公共服务平台是发展现代制造服务业的重要手段

《意见》指出建立专业化、开放型的公共服务平台是当前我国发展现代制造服务业的主要任务之一。公共服务平台是根据区域经济、科技、社会发展需求,以科技资源集成开放和共建共享为目标,通过有效优化和整合各类科技资源,向社会提供开放共享的一类科技创新服务载体。公共服务平台为企业发展提供技术开发、试验、推广以及产品设计、加工、检测、中试、信息共享、技术基础设施等以及投资融资、教育培训等公共服务。以企业为主体建立的公共服务平台可显著地强化企业的服务供给、提升企业服务水平、优化企业资源、促进企业由生产型企业向服务型企业转型升级。

三、公共服务平台发展模式探讨

为了研究公共服务平台的发展模式,本文以株洲时代新材料科技股份有限公司(以下简称时代新材)建设的“高速铁路机械系统仿真技术服务平台”为案例进行分析。

1.高速铁路机械系统仿真技术服务平台介绍

时代新材主要从事高分子减振降噪产品、高分子复合改性材料和特种涂料及新型绝缘材料三大系列产品的研制开发、生产、销售和服务,是目前我国交通机械装备行业整体科技实力最强的高分子复合材料减振降噪技术专业研究、开发基地。2013年公司依托强大的高速铁路机械仿真核心技术建立了高速铁路机械系统仿真技术服务平台。平台由高性能计算平台和机械设计仿真的功能平台组成,承担各高速铁路产业相关单位新产品研发、基础性和前沿性技术研究中的机械设计计算与仿真分析任务,整合机械结构仿真分析方向的技术和人力资源,为基础性研究的产业化应用提供理论和技术基础。

2.高速铁路机械系统仿真技术服务平台服务模式

经过探索和实践,时代新材建立了“技术研发、技术推广、技术信息一体化服务”的服务模式,即在企业本身开展研发的同时,为其它企业提供技术研发、产品检测等服务,并向企业提供相关技术信息、技术培训等。通过一体化技术服务和市场化推广策略的结合,初步实现了平台的组织网络化、功能社会化、服务产业化、手段现代化的运营目标。技术服务平台由依托层、核心层以及应用层组成。

(1)服务依托层。服务依托层围绕长沙国家超算中心,由研发与技术数据库、专业技术人才库组成。研发与技术数据库是对湖南省内乃至全国近三年来高速铁路机械设计领域内新登记的科技成果、专利及论文,进行收集与进度跟踪,整理形成最新的研发技术与数据库。专业技术人才库的建设主要包括两个方面的内容,一方面是专业人才库共建工程;二是专业技术人才的培养工程。专业技术人才库共建工程是通过收集高速铁路机械仿真技术领域一批熟练掌握专业技术知识、具有精湛操作技能的专业技术人才;针对企业人才需求,及时推荐最适合企业发展的技术人才。其次是做好人才储备服务,通过与提供专业技术人才的院校和科研机构合作,建立人才对接机制,源源不断地为企业提供急需的专业技术人才。

(2)服务核心层。此层充分发挥公司的优势,构成公共服务平台的技术服务核心力量,由仿真计算平台、仿真管理平台、仿真验证平台三部分组成。

(3)服务应用层。服务平台以长沙国家超算中心、研发与技术数据库、专家人才库为依托,以时代新材料公司的仿真管理平台、仿真技术平台、仿真验证平台为核心,通过多种措施与途径向高速铁路产业领域机械仿真设计企业提供技术服务。

3.高速铁路机械系统仿真技术服务平台效益分析

公共服务平台的建设,在整合、发扬湖南省高速铁路这一优势产业,优化集群内产业结构,提升关键材料与制品研发、试验、生产及配套能力,解决行业关键技术问题,促进高速铁路行业整体技术水平提高的基础上,有效的提升了相关企业的产品开发成功率、缩短了开发周期;提升了公司的服务水平和服务能力,促进了公司由传统制造业向现代制造服务业的转变。

四、企业发展现代制造服务业的建议

时代新材公司依托核心技术、以信息化建设为纽带,整合优势资源,立足于区域产业特色,实现传统制造业向现代服务制造业的转变。

1.核心技术服务化,逐步由传统制造业向现代制造服务业转化

现代制造服务业对技术有较高的要求,只有掌握差别化的核心技术,才能提供差异化、个性化的集成服务。制造企业应依托自身的核心技术发展制造服务业,逐渐将经营重心从加工制造转向提供技术服务、流程控制、产品研发等生产。

2.加强企业信息化建设,提升企业制造服务能力

制造业正在向全面信息化迈进,研发、设计、采购、制造、服务等各个环节都与信息技术密切相关;从产品的发展特征来看,产品的知识化、智能化、系统化、信息化、服务化得到全面提升。企业发展现代制造服务业必定要加强企业信息化建设,利用信息技术改造传统产业,实现高效益、高可靠性、提高企业制造服务能力。

3.转化观念,提升现代制造服务业的战略地位

企业要进一步打破“大而全”、“小而全”的格局,分离和外包非核心业务,提升现代制造服务业的战略地位,制定服务业务发展的战略和规划,分阶段、有重点地开展服务业务,培育企业品牌竞争优势向价值链高端延伸,促进企业逐步由生产制造型向生产服务型转变。

参考文献

[1]李浩,顾新建,祁国宁,纪杨建,陈笈熙.现代制造服务业的发展模式及中国的发展策略[J].中国工程机械,2012(7)

[ 2 ] 薛金山.中国制造业转型路径与阶段性探讨[ J ] .中国机电工业,2010(10)

高速铁路技术论文范文第4篇

关键词:高铁;列车运行图;换乘;冗余时间;遗传算法

Abstract: With the continuous development of our economy, and more requirement of higher quality of travel, the quality of the railway service that the passengers expect has a great improvement, in order to ensure that passengers in high-speed rail hub transfer efficiency, based on analyzing the role of buffer time of the high-speed train timetables and comprehensively considering the cost of traveling time and delay time of the passenger, we establish relatively model which is a stochastic expected value model, the algorithm based on genetic algorithm is applied to solve the model by the soft MATLAB, and make validation on calculation example, and then make a optimization scheme of the slack time layout.

Key words: high-speed railway train; train operation diagram; transfer; redundant time; genetic algorithm

引 言

随着我国高速铁路的迅猛发展,以及人们对高速铁路运输服务的准时性有着较高的要求,高速铁路枢纽的换乘高效性和可靠性越来越受到重视。基于换乘衔接角度,本文通过分析列车运行干扰对换乘影响的作用机理,建立了考虑换乘衔接的冗余时间整体布局优化模型。该研究不但为考虑换乘衔接的冗余时间布局提供了研究方法,而且为高速铁路枢纽站运行详细的铺画提供了参考和借鉴意义。目前,国内外专家学者对冗余时间的布局优化做了一些研究,国内孟令云[1]提出列车调整双层模型,宁骥龙[2]提出偏质量最小模型,并用遗传算法进行求解,但二者均未从换乘角度出发进行考虑和研究冗余时间的作用机理。赵宇刚[3]以概率分析的方式对追踪间隔时间进行研究,未考虑换乘条件下综合冗余时间的布局。文超[4]以运行图冲突疏解的角度研究了综合冗余时间对运行图的影响,但未研究冗余时间在各站的布局。赵俊铎[5]建立了考虑换乘衔接的高速铁路运行图冗余时间布局优化模型,但并未考虑追踪列车间隔缓冲时间。刘伯宏[6]在分析各种冗余时间的基础上,以列车旅行和到发站延误时间最短为优化目标,建立运行图冗余时间布局优化模型,但该模型未考虑旅客换乘衔接的冗余时间。国外JoneR.Birge,Francois对晚点期望值进行了研究[7]。Michiel. Vromans和ROB. M. P. Goverde[8]针对晚点传播过程及相应指标和评价指标进行了深入研究。Nils. E. Olsson[9]针对冗余时间设置对运行图稳定性的影响进行了研究,但上述文献均未从晚点累加和换乘衔接的角度进行冗余时间的研究。文献[10]在单线铁路资源约束条件下,对列车运行图进行了优化,该研究采用分枝定界算法进行求解,并提出了三种缩小解空间的策略。文献[11]结合了线性规划、随机规划和鲁棒优化技术,提出了精确地启发式算法来提高列车运行图鲁棒性。文献[12]采用阻塞时间理论模型对列车运行调度实施过程进行描述,为列车运行过程中的实时调度提供了参考意见。

1 列车运行冗余时间的含义和分类

含义:在铺画列车运行图时,在列车停站作业和区间运行以及列车运行线间人为的预留的时间。

冗余时间按作业性质分为两类:

(1)缓冲时间,其设置在涉及多列或两列列车的作业中,并能够抑制列车之间的晚点传播。

(2)自身恢复时间,其包括区间运行和车站停站作业的撒点,设置在一趟列车的某个单项作业中。

2 列车运行干扰的作用

列车运行中会受到各种外界因素的干扰,其主要包括机器问题、自然条件恶劣与人为失误等各种不确定因素的扰动。列车运行干扰的产生导致了列车运行偏离原计划,即列车发生晚点,晚点传播[13],是指列车自身晚点及其引起其后列车连带晚点的现象。列车的换乘同样会受到列车运行干扰的影响。

3 冗余时间优化模型

3.1 模型分析

列车运行图编制情况:初始布点阶段、详细铺画阶段、后评价阶段,本文研究的是在已完成初始布点的列车运行图的基础上,设置各项作业的冗余时间。

结合乘客旅行时间成本和乘客总延误时间成本目标,建立考虑换乘冗余时间的随机双层期望值模型,基于全局考虑上层提出冗余时间的布局方案,并传递至下层,结合既定扰动方案,基于上层的基础下层进行以乘客总延误时间为目说脑诵型嫉髡,并将乘客总延误期望值传递给上层。上下层模型的决策是相互独立、互不干扰的。

3.2 模型假设

(1)不包含其他指标的优化,只以该模型目标函数值为优化目标。(2)冗余时间总值和乘客总延误时间权重已知。(3)不考虑车站能力约束。(4)不考虑追踪列车间隔缓冲时间。(5)不考虑因列车大范围延误而做出的运行调整。

3.3 模型建立

3.3.1 上层模型

目标函数:

其中,冗余时间布局方案下所有列车的冗余时间总值为cx,冗余时间布局方案在相应扰动方案下乘客总延误时间为qx,ω,冗余时间布局方案x的可行解集为Λ。

式(1)中:

在目标函数中ux,y表示在扰动方案ω下,通过调整列车运行图,最终产生的列车运行图较初始运行图的乘客总延误时间。y表示在给定冗余时间布局方案x和扰动方案ω下列车调整后的运行方案。通过该目标最小化,得出在干扰方案ω下运行调整优化方案。旅客因列车晚点到达产生的时间延误和旅客因未实现换乘而额外产生的等待时间延误,以及旅客因列车早点到达产生的额外早点时间构成了乘客总延误时间。

4 模型求解过程

根据本文模型的特点,我们对上层模型和下层模型分别设计了相应算法进行求解。

4.1 遗传算法,是一种基于自然选择和遗传学原理的有效搜索方法,它从一个种群开始,利用选择、交叉、变异等遗传算子对种群进行不断进化,最后得到全局最优解[14]。

4.2 下层模型的算法设计及求解。通过插入基于期望值的换乘关系保留决策过程和设置换乘冗余时间,结合基于优先级的模拟人工冲突疏解算法调整带有冲突的列车运行态势图,从而能保证了换乘关系的实现,并得到最优结果。

5 算例分析

本文为检验上述模型和算法的可行性,以某一条已建成运行的高速铁路部分区段为背景进行研究,选取全长212公里的区段,其中包含4个车站3个区间,该区段的线路拓扑结构图如图1所示,站间数字为两站距离(单位:公里)。

如图1所示,令B站为换乘车站,并以B站部分始发列车作为换乘列车与A站部分始发列车进行换乘。

在列车实际运行中,由于受到初始干扰的复杂性,其难以进行量化统计,因此,需要对统计得到的列车实际到发时刻数据进行处理。列车到发时刻反映的是列车受到的初始干扰和连带干扰的加和,研究发现列车晚点的概率分布服从负指数分布规

律[15]。

本算例的统计数据为其在前方车站通过且在后方车站停车的时间。该数据是以excel数据形式进行存储的。

本文设置高等级列车5列进行模型算例分析,及η=1,其中设置1对换乘列车。

扰动方案样本数量设置为5。由已有列车运行图历史数据统计可计算得出各区间车站概率密度的累计分布概率,并可求出每种扰动方案ω发生的概率ρω。为了更好地测试模型的优化能力,本算例不考虑列车正点的情况。对已有数据统计可得该区段已有运行图的冗余时间总值约为20min,故可设置冗余时间上限值t为20min。

本算例通过借鉴已有研究,假定冗余时间总值和乘客总延误时间的权重系数η为4,设φ为15min,ξ为30min,求解模型过程中,设每列车乘客数为1,且在每站的下车人数平均,则每站下车乘客比是0.33,且设列车1在车站B下车的一半乘客均换乘至列车2,可得换乘乘客比例0.165。

上层模型遗传算法的求解过程中相关参数设定为:POP_SIZE=50,M=20,chrom1取已有运行图的冗余时间布局方案,如表1所示。

6 结 论

(1)不同的冗余时间设置方案对于列车在运行过程中的干扰吸收也是不同的。

(2)智能算法能够高效解决冗余时间布局方案的优化问题。

(3)通过研究高速铁路换乘冗余时间的布局优化方案,可提高高铁的行车组织效率。

参考文献:

[1] 孟令云. 客运专线列车运行图动态性能及仿真研究[D]. 北京:北京交通大学(博士学位论文),2009.

[2] 宁骥龙. 城际客运专线列车运行图冗余时间布局优化研究[D]. 成都:西南交通大学(硕士学位论文),2013.

[3] 赵宇刚,毛保华,蒋玉琨. 基于列车运行时间偏离的地铁列车运行图缓冲时间研究[J]. 中国铁道科学,2011,32(1):118-121.

[4] 文超,彭其渊,陈芋宏. 高速铁路列车运行冲突机理[J]. 交通运输工程学报,2012,12(2):119-126.

[5] 赵俊铎. 考虑换乘衔接的高速铁路运行图冗余时间布局优化模型研究[D]. 北京:北京交通大学(硕士学位论文),2014.

[6] ⒉鸿,令小宁,吕振扬. 高铁列车运行图冗余时间优化布局方法研究[J]. 计算机工程与应用,2016(7):248-252.

[7] Jone R. Birge, Francois Louveaux. Introduetion to stoehastie Progranuning[M]. New York: Springer, 2008.

[8] Michiel. Vromans, Reliability of Railway Systems[D]. The Netherlands: Erasmus University Rotterdam, 2005.

[9] Nils. E. Olsson, Hans Haugland. Influencing factors on train punctuality-results form some Norwegian studies[J]. Transport policy, 2004,22(2):28-29.

[10] X. Zhou, M. zhong. Single-track train timetabling with guaranteed optimality Branch and bound algorithms with enhanced lower bounds[J]. Transportation Research Part B, 2007,41(3):320-341.

[11] M. Fischetti, D. Salvagnin, A. Zanette. Fast approaches to improve the robustness of a railway timetable[J]. Transportation Science, 2009,43(3):321-335.

[12] M. B. Khan, X. Zhou. Stochastic optimization model and solution algorithm for robust double track train timetabling problem[J]. IEEE Transactions on Intelligent Transportation System, 2010,11(1):81-89.

[13] 胡思继,孙全欣,胡锦云,等. 区段内列车晚点传播理论的研究[J]. 中国铁道科学,1994,15(2):41-54.

高速铁路技术论文范文第5篇

关键词:高铁调度指挥应急安全

中图分类号:U292文献标识码: A

一、高铁调度指挥特点

随着我国高铁的陆续开通运营,高铁速度快、密度大、要求严以及新技术、新设备的不断运用给调度指挥带来了新的严峻挑战。

1、调度设备技术先进

列车运行控制系统、TSR、GSM-R、CTC、防灾系统等新技术、新装备的大量使用,对列车调度综合素质提出了更高要求。如何认识、驾驭先进技术设备,保证列车运行安全是难点。

2、列车调度直接面对行车安全

高铁调度指挥采用调度集中系统(CTC),车站只设应急值守人员,在中心控制方式下不参与行车工作。列车调度由原来的指挥行车变成集指挥者与执行者于一身,除担当列车调度职责外,还兼有车站值班员、信号员职责,负责CTC控制区域内所有的行车设备操作、调度命令及交付、设备故障登销记、行车闭塞办理和进路排列等工作,并直接向司机等行车人员发出指令,直接面对行车安全。

3、应急处置要求高

正常情况下高铁CTC系统使调度员的劳动强度大大降低,列车按计划自动运行。但是,不良气候、设备故障、地质灾害等会对高铁正常运营产生巨大的影响。高铁严格的行车条件和旅客维权意识的迅速提高,迫切要求在非正常情况下实现调度安全万无一失和列车运输秩序快速恢复的双重目标,对调度的应急处置有了更高的要求。

二、高铁调度应急处置中存在的主要问题

通过对全路高铁CTC区段调度应急处置方面的案例分析总结,本人认为主要存在以下问题:

1、安全生产意识有待提高

部分CTC区段调度员对调度安全工作重要性认识不足,没有摆正安全与效益的关系,对安全信息缺乏必要的敏感性,主要表现在没有严格执行各项岗位作业标准,存在盲目蛮干和侥幸思想,没有意识到可能造成的后果。如X年CTC区段“5.27”事故,列车调度与助理调度安全责任意识差,简化作业程序是主要原因。

2、调度命令不规范

在高铁CTC区段,调度命令直接通过无线传送系统发给司机,缺少车站值班员卡控这一环节,对调度命令的正确性要求极为严格。但在应急处置实际工作中,由于时间紧迫、责任心不强等原因,调度命令错误、错传漏传调度命令等仍时有发生,给调度安全带来较大隐患。

3、高铁团队协同作战能力不强

遇突况,各岗位间会出现职责界定不清、信息通报传递不畅、现场处理较为忙乱等现象,调度应急处置缺乏统一的指挥、决策、协调、组织。特别是列车大面积晚点后对现场车站通报和协调组织方面有待进一步提高。

4、高铁调度员业务素质不过硬

高铁CTC系统对列车调度的综合素质有较高要求,过硬的业务素质是保证调度安全的前提。目前高铁调度大多是从既有线调度中选的,由于调度人员流动性差、培训时间短等因素,部分调度员对新技术、新设备接受能力较差,自我学习能力不强,对管辖区段线路、设备和人员情况不熟悉,在应急处置中分析处理问题方面受到一定的局限,难以准确把握设备故障后的放行列车条件,如果处理不当很可能瞬间就会发生事故。如列车调度不清楚“进路、凭证(信号)”先后顺序的重要关系,在未准备相关进路的情况下盲目用作允许列车运行行车凭证的调度命令,是造成“6.27”事故的主要原因。

5、规章制度冗余繁杂

铁总、路局以及调度所的各项规章制度和卡控措施的不断出台,且各项制度变化更新较为频繁,在遇有设备故障查找相关规定时费时费力,需要对技术资源进行有效整合并及时更新,进一步优化规章制度体系,明确各项应急处置标准,防止非正常情况下发生因错误执行相关标准而导致事故的发生。

三、强化高速铁路调度安全的对策和措施

目前,高铁人员、设备等情况总体趋于稳定,列车运行安全态势良好。但是各种影响列车运行安全的隐患仍然不断暴露,突出表现在调度员盲目乐观情绪抬头,安全意识、业务素质下滑。如何进一步加强安全管控,确保高铁的长治久安需要深入思考。

1、更新安全管理理念,推行安全文化建设

如何解决列车调度惯性违章违纪、安全意识起伏不定等问题是安全管理、控制的难点。急需在列车调度作业中推行以人为本的安全文化建设,营造浓厚的安全文化氛围。管理者要摒弃人盯人的安全管理控制模式,把精力放在规章制度、处置措施的细化完善及宏观安全形势的预判上,努力为处于操作执行层面的列车调度营造自我约束、自我控制、自我调整的安全氛围。

2、规范调度命令的工作

在高铁应急处置中,调度命令工作的质量直接关系到行车指挥的安全。调度部门要加强调度命令的管理工作,并经常检查监督,考核命令的质量,及时纠正错误与漏洞。为此要组织演练在各种模拟情况下处理问题和调度命令的技能,特别是要锻炼在各种紧急情况下判断情况、采取对策、正确调度命令的能力,达到熟练、果断、准确、迅速的程度,使调度命令的切实做到正确、完整、清晰,保证行车安全。

3、进一步强化作业的自控与互控

进一步强化调度在应急处置方面的组织协调,落实应急处置分工和专业管理责任,认真落实逐级负责制和非正常行车干部盯控制度。并通过深入全面地开展自控型班组建设,提高班组、岗位的自控能力;加强班组、岗位之间的互控,营造“个体自控、群体互控”的良好环境;强化监控手段,落实干部巡查制度,加强对重点岗位和关键环节的监控,形成自控、互控、监控三位一体的卡控机制。对关键时间、关键地点、关键作业实行重点卡控,筑起牢不可破的安全屏障,实现整个高速铁路网的安全。

4、创新安全教育培训方式,注重多样化培训

古板、命令式的课堂讲授,陈旧内容的反复灌输已不适应当前列车调度员的学习需求。突破传统的“灌输式”“填鸭式”的教育培训方式。尝试菜单式培训、互动式教学、演练式考核等多样化培训,调动列车调度员对教育培训的激情,激发学习热情,提升业务素质。

5、优化高速铁路调度指挥规章制度体系

进一步规范高速铁路规章制度的体系建设,保持规章制度的严肃性。整顿规章下发部门的权限,禁止非主管部门随意下发文电,及时清理、汇总、完善各项规章,废止过期及不适用的规章,消灭规章不统一、杂乱、相互矛盾等现象,建立一套完整规范、科学实用的规章制度。制作列车调度应急处置指导书,使列车调度在遇到突况时能有的放矢,以有力的措施、最快的速度,提高应急效率。

6、构建调度安全信息管理体系,提高安全预警能力

积极引入并构建调度安全信息管理系统。运用控制论方法和故障诊断模型来分析安全信息,提高安全预警能力,找出倾向性、关键性、前瞻性问题,及时采取控制措施。扭转安全控制事后灭火的窘态。

四、结束语

高铁应急处置能力的提高是一项长期而细致的工作,需要从基础做起,理论联系实际,长期坚持。随着国家高铁网逐步建成,需要在今后的工作中不断总结分析CTC列车调度作业中的问题,及时制定对策、采取措施,确保高铁列车运行绝对安全。

参 考 文 献