前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇人工智能教育应用案例范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:信管专业 人工智能 案例教学法
1.引言
信息管理与信息系统专业是管理科学与工程学科的一个重要组成部分,是由信息技术、管理科学和系统科学交叉形成的前沿学科,它运用管理学、运筹学、系统科学和经济学的知识和方法,通过以计算机为基础的信息系统实现各种管理活动和信息处理业务。该专业培养的人才在信息化建设中主要承担信息系统运行管理和伴随企业成长而不断更新信息系统的使命,人才的就业岗位归属于各种组织(企业)的信息中心或管理行政部门。在信息系统中,人工智能知识和技术的应用随处可见:专家系统、智能监控、智能信息检索、组合优化、分布式计算、智能管理和智能决策等。
人工智能课程是一门研究运用计算机模拟并延伸人脑功能,综合逻辑学和认知科学的综合性学科,其研究领域广泛,如自然语言理解、模式识别、机器学习、数据挖掘、智能检索、机器人技术、人工神经网络等都走在了信息技术的前沿,有许多研究成果不仅在工业、商业和军事上使用,而且不同程度地进入了人们的生活、学习和工作中,并对人类的发展产生了重要影响。在信息管理专业中教授人工智能课程的过程,与计算机专业的研究型教学不同,根据课程专业特色更应强调人工智能方法在实际信息管理系统中的应用。由于课程内容涉及大量抽象知识和复杂算法,信管专业学生往往在听课过程中不能及时消化,甚至认为难以理解而影响学习积极性,本文将在经济管理类课程中使用的案例教学法引入到人工智能课程教学中。
2.人工智能课程中的案例教学方法应用
案例教学是20世纪初由哈佛大学创造的围绕一定培训的目的把实际中真实的情景加以典型化处理,形成供学生思考分析和决断的教学形式,通过独立研究和相互讨论的方式,提高学生的分析问题和解决问题能力的一种方法。案例教学方法具有明确的目的性、较强的综合性、突出实践性、学生主体性、过程动态性、结果多元化等特点。在人工智能课程中,结合案例教学方法,对学生学习理解抽象知识有很大作用。
2.1“智能”概念中的案例选择
兴趣是最好的老师,在学生刚刚进入新课程学习时,能否有效激发其学习兴趣,将直接关系到整个课程的教学过程顺利与否,学生是否发挥学习主动性和对课程知识的掌握程度的高低。因此,在第一章中引出“人工智能”的基本概念时,我选择每位同学在儿时的玩具――魔方,将魔方恢复过程转化为在人工智能搜索原理平台上的启发式搜索模型,令学生从儿时简单地无序转动魔方的玩法中,体会到魔方模型在搜索运算过程中应该考虑到的问题:衍生出来的节点应尽可能少,又要保持魔方各面在旋转中颜色属性的相应变换。同时辅以视频和实物的演示,使学生对人工智能课程有了初步认识,并对问题建模和搜索策略产生浓厚的兴趣。
2.2“知识表示”中案例选择
知识表示是人工智能研究内容的基础部分,涉及状态空间表示法、问题规约法、谓词逻辑法、产生式法、语义网络法和框架表示法,为了充分发挥学生的联想能力,案例选择语义网络法的图形表示案例。语义网络是一种采用网络形式表示人类知识的方法。在语义网络知识表示中,结点一般划分为实例结点和类结点两种类型。结点之间带有标识的有向弧表示结点之间的语义联系,是语义网络组织知识的关键。在“连接词在语义网络的表示方法”内容中,选择带有蕴含关系的命题:“如果车库起火,那么用CO2或沙来灭火。”的案例,首先构造简单的语义网络,抽取出蕴含连接词前件“车库起火”和结论“用CO2或沙来灭火”两个命题。再抽取出前件命题事件结点“起火”和地点“车库”;结论命题事件结点“灭火”和事件工具属性“CO2”和“沙”,且两工具间是“或”的关系。学生可以在课堂上及时地应用刚学到的知识表示出此语义网络,我在此基础上扩展,对具体事件进行联想,可以得到失火事件的实例联系后的复杂语义网络。再辅以其他负责命题的语义网络表示练习题,让学生体会理解并及时掌握语义网络知识表示法。
2.3“专家系统”中案例选择
专家系统是一类包含知识和推理的智能计算机程序,是可以根据人们在专业领域内的知识、经验和技术求解问题并做出决策的计算机软件系统。专家系统已广泛应用于医疗诊断、地质勘探、石油化工、军事、文化教育等各方面。在讲授此部分内容时,选择“营养配餐系统”给学生演示,同时辅以讲解,邀请学生参与系统操作,让他们为自己量身设计一套科学营养的菜单,在完成任务的过程中,掌握专家系统的基本结构与工作原理;了解专家系统正向、反向推理和不精确推理的基本原理;了解专家系统解释机制的基本概念。在案例教学后,利用Visual Prolog工具,完成简单的专家系统的设计。
3.结语
本文介绍了在信息管理专业中人工智能课程的教学内容,运用案例教学方法对课程中抽象内容讲解并激发学生学习兴趣,在案例教学过程中注意和学生的互动,将他们带入到学习环境中,诱发他们的发散联想思维,同时又参与到案例的应用中。实践证明,将案例式的教学方法引入到非计算机专业的人工智能课程中,能取得良好的教学效果。
参考文献
一、网站的构建
1.网站框架设计
我国高中阶段人工智能教育还处于起步阶段,据调查,全国已开设人工智能课程的中学不超过十所。事实上,对于人工智能这一前沿学科,大部分信息技术教师还缺乏足够的了解,因此对于该课程的开设也一直处于观望状态。考虑到人工智能教育的实际情况以及网站的主要对象,我们以高中信息技术选修课教材《人工智能初步》为基础,按教学内容设置和划分栏目,同时又围绕“学人工智能、教人工智能、用人工智能、机器人专题”四大专题进行内容重组。当然,网站的基本架构并非一成不变,它需要在实际应用中进行检验与修正,最终实现网站的完美架构。依据上述思路建构的网站基本框架如图1所示。
2.网站的栏目设计
新闻栏目以图文的形式人工智能发展的最新情况,这是激发并维持广大师生关注人工智能的基础,也是师生获取最新信息的窗口。子栏目“中国动态”“欧美动态”等分别介绍了各地区最新的人工智能信息,尤其是机器人产品的新闻。子栏目“会议论坛”,“比赛通知”为师生、参与比赛提供服务。
论文栏目是作为资源型网站的基础。子栏目“教学研究”主要面向从事人工智能教育的研究者和教师,探讨教学方法、分析教学案例、推荐教材和参考书,为更好的开展人工智能教学提供理论依据。子栏目“学习乐园”主要面向学生,展示活动实录、阐述学习感受,聆听专家意见,为更好的学习人工智能提供事实参考,教师也通过“学习乐园”来了解学生的所思所感所想。子栏目“赛事规则”介绍了各个地区和各级机器人比赛的一些规则,有利于师生更好的进行人工智能的教与学。
资源、视频、图库、酷站:这四个栏目是资源型网站的核心。尤其是资源模块中的子栏目“电子书刊”“教学课件”“人工智能软件”分别以不同的文件格式向师生提供教与学的资源,使其能快速准确地获取符合需求的资源,免去了在因特网上盲目搜索出现大量冗余信息的麻烦。网站整合了文本、视频、图片等多媒体信息,以丰富多彩的形式呈现资源,增强了网站的吸引力和信息的可阅读性。
爱问栏目是作为学习型网站的基础,也是本网站的一大特色。“爱问”是采用了模仿“百度知道系统”的程序设计,更注重知识的答疑解惑。我们将此栏目划分为“学人工智能”“教人工智能”“用人工智能”“机器人问题”四个子栏目,师生可根据各自的需要进行提问、回答问题、搜索问题等操作。同时,设立了积分制,激发师生提问和回答问题的热情。
用户中心栏目是学习型网站的核心。作为一个专题网站,必然要十分强调学习的功能。子栏目“网络书签”的功能可以使学习者记录自己所浏览过的或所感兴趣的网页,便于在下次登陆后继续学习。在子栏目“信息”功能中,学习者可以新闻、论文、资源、爱问等信息,待管理员审核通过后即可在网站中显示出来。另外,教师也可在教学过程中通过此模块要求学生提交作业,便于教师随时随地的批改作业。
二、网站的访问数据分析
人工智能教育专题网站从开设至今将近8个月的时间,已经有超过1万的独立访客访问了本站,我们选取了最近访问的2000位独立访客进行研究。通过对地域、被检索方式、受访页面及回头率的分析,可为网站下一步的改进与完善提供依据,为其他人工智能教育类网站的建设,在网站的用户类型,网站的内容选择与更新,网站的推介宣传等方面提供参考与借鉴。
1.地域分析
在统计到的访问该网站的地域中,国外共有12个国家访问了本网站。国内除西藏、澳门之外,其他省份、直辖市、特别行政区都有访问过本网站,这为我们今后在高中普及人工智能教育提供了有力的依据。但是,通过图2的数据我们也可看到,各个地区间的访问量差距较大,并且访问量靠前的几个省份基本上是沿海地区,而中部和西部地区的访问量比较少,所以在今后的工作中不仅要加强网站本身的建设和宣传,更要把人工智能教育的理念推广到中部和西部地区,使那里的中小学师生也接触人工智能的知识,激发他们对信息技术美好前景的向往。
2.被检索方式分析
搜索引擎是网络上最常用的获取资源的方式。掌握用户使用搜索引擎的情况,有助于了解网站的被检索方式。统计搜索关键字的次数,有助于了解网站被检索访问的原因。在专题网站建设完成后,向“百度”、“Google”等大型搜索引擎系统提交收录网页申请是极其必要的,它有利于提高网站的知名度和访问量。而在网站中增加“人工智能”,“prolog 源程序”等文字内容,将会有利于用户在盲目搜索时能访问到该专题网站。
3.受访页面分析
受访页面是指用户访问该专题网站时所停留的页面。通过对受访页面的统计,使我们能够掌握用户相对较为关注网站的哪些内容。表1数据中“学人工智能”占23.82%,“资源下载”占了16.32%,表明用户对人工智能的知识还不是很了解,对人工智能的认识还停留在“学”的层面,远未达到“教”的程度。人工智能教育类网站在建设中,如果能提供大量的人工智能的基础知识以及丰富的可下载资源,将会显著提高网站的受欢迎度以及用户的认可度。
4.回头率分析
在网站访问统计中,通常将距离上次访问超过12小时的再次访问记录为一次回头。通过对回头率的统计(表略)看出该专题网站的粘性不是很高,尤其是3次回访以上的用户还不多。通过对部分用户访谈后了解到,网站的更新速度慢,资源较少,内容偏难是其不愿进行多次回访的主要原因。所以,人工智能教育类网站在维护期间要注意内容的时效性、丰富性、通俗性才能保证网站访问的可持续性。
三、网站建设的若干思考
目前国内外有关人工智能的专题网站不多,针对人工智能教育的网站更少。在可供借鉴的成熟案例较少、研究又处于刚起步阶段的情况下,有必要对我们的工作进行反思总结。通过上述访问数据的分析,以及在人工智能教育专题网站建设的准备阶段,实施阶段及运行阶段的实践,我们认为在建设人工智能教育类网站时应当注意以下几个问题。
1. 充分关注用户信息
访问量是综合类或门户类网站的生命线,应当尽可能地拓宽访问者的类型与层次。但人工智能作为一门新兴学科,其专题网站的学科性特点甚至比普通的专题学习网站还要突出,因此单从访问量上来说,它是无法和门户类网站相比的。所以在建设的初期首先就要考虑的网站的对象问题,也就是要关注哪类人访问了网站。只有准确的掌握了用户的信息才能更好提供用户需要的资源。
在这里,人工智能教育专题网站是通过以下三种手段来获取用户信息的。
第一,用户必须注册才能访问网站,注册的内容包括年龄、身份、学历,电子邮件等内容。
第二,在网站中设立“网站调查”栏目,可以对“你是如何知道本站的”,“你觉得本站建设的如何”等内容教学在线调查。
第三,通过“中国站长站”等专业的数据收集程序来获取用户基本信息,可收集到用户地域、受访问页面、用户回头率等信息。只有掌握了准确的用户信息,才能更好的为用户提供服务。
2.与用户携手共建网上资源
人工智能的子学科门类众多,仅高中教材《人工智能初步》中就有知识及其表达、推理与专家系统、人工智能语言与问题求解等多个主题。而且我国的人工智能研究相对薄弱,很多资料都是外文的。任何一个人要很熟练的掌握人工智能的各个内容是很困难也是不现实的。我们通过一年多的实践也体会到,仅仅依靠课题组成员很难保证网站资源库内容的全面性和针对性。所以在网站最新一次改版中,我们增加了用户的信息功能,使得用户自己可以新闻、添加文章,上传资源,只要经过管理员审核即可在网站中显示。
另外,在人工智能教学过程中,我们也充分利用学生的优势,要求学生以作业的形式提交文本和视频资源,并将作业的数量和质量作为考察学生学习效果的一个指标。这些举措保证了网站内容更新的时效性和内容的针对性。用户所的就是用户所关注的,用户所关注的就是网站所要收集的。
3.通过多种形式充分发挥网站作用
目前,全国高中开设了“人工智能初步”选修课的学校极少,教师手头上可供选择的教材也只有5套。从专题网站上统计的数据来看,虽然网站目前的用户主要是教师,但“学人工智能”页面访问量却远多于“教人工智能”。从这些情况看,单靠几个人工智能教育类的专题网站无法从根本上解决高中人工智能教育现阶段所面临的窘境。所以,在条件允许的情况下,可以通过研修班、会议论坛等形式组织教师进行面对面的交流。
例如,我们就在2007年5月25日至27日在浙江师范大学举办了全国首届“高中人工智能课程研修班”,来自全国十个省市的70余位信息技术教师及教研员参加了研修班的学习。在研修活动中,教师不仅学习了人工智能的知识,也对人工智能教育的现状及发展过程中遇到的问题做了充分了探讨和交流。本次研修活动结束后,人工智能教育专题网站则成了学员们交换信息、交流体会、共享资源的有效平台。
四、结束语
总之,借助专题网站的平台作用开展各种活动,不仅弥补了人工智能教育网站缺乏面对面交流和互动的缺点,也为把网站资源建设的更具针对性提供了有效帮助。
参考文献:
[1]张剑平. 关于人工智能教育的思考[J] .电化教育研究.2003,(1).
[2]曹瑞敏. “中国海”学生专题学习网站应用[J] .中国电化教育.2005,(5).
>> 智能游戏开发与设计课程教学方法探索 数字媒体技术专业游戏设计与开发方向本科课程设置的探讨 游戏设计与开发课程教学方法探析 游戏开发应用中的“人工智能”课程教学方法探讨 基于多元智能理论的网络教育游戏设计与开发 面向游戏开发方向的“计算机图形学”课程建设探讨 计算机审计课程开发与建设探讨 智能信息处理课程群辅助教学网站的设计与开发 益智小游戏设计与开发 游戏设计方向课程建设研究 “人工智能与游戏编程”课程设计 高职游戏开发专业课程体系建设 基于普通高校成人高等教育课程开发与课程建设的探讨 数字游戏设计专业建设方案探讨 智能科学与技术专业的算法设计与分析课程教学探讨 《Flas设计》课程建设的研究与探讨 《网络综合布线设计与施工》课程建设探讨 基于工作过程的《网页设计》课程开发与设计探讨 “智能科学与技术”本科专业软件实践类课程建设探讨 “新药设计与开发”精品课程的建设与实践 常见问题解答 当前所在位置:l.
[4] 第九届中国国际数码互动娱乐展览会[EB/OL]. [2011-06-23]. /.
[5] 彭岩,王万森. 智能科学与技术专业建设的探索与实践[J]. 计算机教育,2009(11):30-33.
[6] 王小捷. 北京邮电大学的智能科学与技术专业[J]. 中国人工智能学会通讯,2011(3):28-30.
[7] 李仪.“人工智能与游戏编程”课程设计[J]. 计算机教育,2010(10):99-101.
[8] 陈少波. 中国动漫游戏专业教育现状和发展策略[J]. 浙江学刊,2007(2):221-224.
[9] 王浩. Visual C++游戏开发经典案例详解[M]. 北京:清华大学出版社,2010:204-217.
[10] 吴清强,刘方. 计算机游戏基础教程[M]. 北京:电子工业出版社,2010:187-196.
[11]John David Funge. 人工智能在计算机游戏和动画中的应用[M]. 班晓娟,艾迪明,译. 北京:清华大学出版社,2004:107-116.
[12] 于洪. 智能科学与技术专业的算法设计与分析课程教学探讨[J]. 计算机教育,2010(10):15-18.
Study on Intelligent Game Development and Design Teaching
YU Hong, WANG Guoyin, LIU Hongtao
(Institute of Computer Science and Technology, Chongqing University of Posts & Telecommunication, Chongqing 400065, China)
州
师
范
大
学
2020
年招收攻读硕士研究生考试题
考试科目代码:
715
考试科目名称:
教育技术学专业基础
说明:考生答题时一律写在答题纸上,否则漏批责任自负。
一、简答题(80分)
1.
写出英文版教育技术的定义,并解读教育技术的研究对象和范畴。(20分)
2.
简述B/S模式及其特点。(20分)
3.
IP地址的作用是什么?IP
V4和IP
V6的IP地址有什么不同?(20分)
4.例举三种以上教育技术学中常用的研究方法,选择其中一种简述其研究的基本流程。(20分)
二、论述题(140分)
1.
什么是人工智能,重点谈一谈你对人工智能应用于教育和教学的理解。(70分)
2.
简述你所了解的学习理论,并讨论相关学习理论对教学的影响。(70分)
三、案例分析与综合应用题(80分)
1.
请结合案例分析计算机网络安全防护的问题与措施(30分)
文章编号:1004-4914(2017)05-148-02
一、引言
互联网金融经历了过去几年的高速发展后,带给了人们新的感受。随着2016年4月12日,国务院印发《互联网金融风险专项整治工作实施方案》以来,整个行业正在进行一次“价值回归”,P2P等平台类模式正在减少,靠着拼渠道、流量和高收益的红利时代已经过去,精细化、差异化、技术化的运营和创新将是互联网金融这个阶段的主题,人工智能将在互联网金融领域发挥越来越重要的作用。
一直以来,金融领域个性化的服务都是依赖于“人”的服务。但从2016年开始,机器正在尝试取代人在财富管理服务中的位置,随之而来的是智能投顾服务。举个例子,在美国,券商、资管纷纷开始设立互联网金融平台,以互联网财富管理类的服务为主,目的是捕获更多中小投资者,在现有的证券业务体系之外培育新的增长点。贝莱德收购Future Advisor、Fiidelity与Betterment展开战略合作、Vanguard推出自己的智能投顾服务、嘉维证券与宜信合作进入中国市场开展智能投顾服务。这样的例子还有很多,这背后是传统金融机构对技术所能产生的势能的认可。国内的智能投顾玩家也很多。其中,宜信和品钛这样的在新兴市场上已经相对成熟的公司已经推出了自己的智能投顾服务。此外,还有大量早期创业公司直接以此为方向,比如弥财、钱景财富、蓝海财富等。
二、人工智能在互联网金融领域的应用情况
(一)人工智能在互联网金融领域应用的必然性
2016年以来央行、其他部委以及最高法院都了关于互联网金融的指导意见,分别是《关于促进互联网金融健康发展的指导意见》、《非银行支付机构网络支付业务管理办法》以及《最高人民法院关于审理民间借贷案件适用法律若干问题的规定》。这些政策性文件的出台,预示着这个行业在政策红利和边界较为模糊的情况下实现的业务的快速发展模式已经走到了尽头。随着后期监管文件的逐步下发,门槛的设立,要求的标准化,很多后来者已经丧失了最好的入局机会,而现有的稳健平台,则迎来了最好的发展机遇。对于互联网金融企业而言,要适应政府的监管,获得客户的支持,要取得自身的发展,只能依托于人工智能。长时间以来,人工智能在互联网金融领域的应用及重要性被频繁提及。近日,《中国互联网金融发展报告(2016)》新书在京,该《报告》执行主编、中科金财董事长朱烨东表示,未来互联网金融行业发展将逐渐走向正规、规范,移动支付的不可逆转,大数据、云计算在互联网金融的核心地位进一步加强,金融科技将成为未来互联网金融发展的主要趋势。
(二)人工智能极大提高了互联网金融的效率
作为百业之母的金融行业,与整个社会存在巨大的交织网络,沉淀了大量有用或者无用数据,包括各类金融交易、客户信息、市场分析、风险控制、投资顾问等,数据级别都是海量单位。同时大量数据又是非结构化的形式存在,如客户的身份证扫描件信息,既占据宝贵的储存资源、存在重复存储浪费,又无法转成可分析数据以供分析。金融大数据的处理工作面临极大挑战。通过运用人工智能的深度学习系统,能够有足够多的数据供其进行学习,并不断完善甚至能够超过人类的知识回答能力,尤其在风险管理与交易这种对复杂数据的处理方面,人工智能的应用将大幅降低人力成本并提升金融风控及业务处理能力。
说到人工智能,不得不提的一定是AlphaGO,但是在互联网金融领域,有一个比AlphaGO更加强势的公司,这家公司的名字叫Kensho。这是以前高盛出来的分析师团队,把整个高盛的经验模拟,通过机器取代现在大量的人工,进行相应的投资、分析、决策。而且在信息,在互联网传播非常快的时候,他们去除掉了大量的噪声,回归到这个事情的本质。很快高盛发现了这家公司的发展速度和未来价值,直接把它私有化,直接变成第一大股东,因为发现这中间带来的差别是这个企业的核心竞争力。
Kensho公司的核心技术就是能在两分钟之内做出一份一份简明的概览,随后是13份基于以往类似就业报告对投资情况的预测。而你根本就不需要去检查这些数据分析,因为这些分析是基于来自十个数据库的成千上万条数据。如果没有这些人工智能,分析师们可能要花上几天的功夫收集梳理这些数据,而等他们分析完成后,市场的行情早瞬息万变。
可见,人工智能的引入对于互联网金融领域的效率提高是呈几何式的,你很难想象也不敢相信这么一个事实:未来的投资大师们可能是一堆机器。
(三)人工智能将互联网金融带入智能金融时代
互联网金融发展至今一共经历了两个阶段:第一个阶段是网络金融,把现有的金融产品搬到互联网上,互联网上面现在卖基金、卖理财、卖信托、卖保险。第二个阶段是大数据金融阶段,通过数据重新去定义相应的金融产品和相应的金融服务。第三个阶段正在萌芽,就是人工智能+互联网金融的阶段,网络上有人称之为智能金融时代。
从目前宁波当地的互联网金融企业发展来看,目前还停留在“互联网+金融”的模式:在传统金融服务上进行叠加,将互联网式思维、互联网式管理、互联网式数据融合进传统金融服务,而这正是现在大部分互联网金融服务提供商正在做的事情。“互联网+金融”的模式也正在让金融进入“普惠金融”的阶段,通过互联网金融对传统金融机构进行补充,让更多的人平等的享受到金融服务。但是,“互联网+金融”的模式下,信息安全、投资风控、资产调节等方面问题仍然存在,一定程度上说,互联网增加了信息风险,也正是如此,摸索期的互联网金融行业才会出现P2P跑路的现象,仅2015年,宁波当地的P2P公司跑路就多达9家之多。
人工智能是大趋势,从阿尔法狗的表现以及人工智能在互联网金融领域的运用来看,互联网金融在人工智能的改造下将不再局限于“互联网+金融”,而是逐渐向“互联网+金融+大数据+人工智能”转变。人工智能起到串联起互联网、金融、大数据,实现更加智能的精确计算的作用,实现大脑一般的思考,解决“互+金”模式下的诸多痛点。
从理财顾问、征信助手、智能风控系统、防范性金融系统这四个层面来看,整个互联网金融领域正在朝着越来越“技术范儿”的方向上前进,金融智能化成为大势所趋。智能金融的机器学习功能,让产品背后的逻辑系统可以快速适应场景数据,建立合适的评分规则、决策体系,真正给现在的互联网金融带来颠覆性的变化。无论是消费金融领域还是风控层面上,互联网金融在人工智能的配合下正在呈现出无与伦比的崭新打法。这也正是阿尔法狗打败李世石之后,给金融智能化带来的全新想象。
(四)人工智能将颠覆互联网金融时代的风控体系
汇总整个互联网金融本质,其实存在两个层次风险,一是道德风险,二是经营性风险。面对2016年不断有“跑路”等负面消息萦绕的互联网金融,去伪存真或成为首要任务。一些企业资金并没有进入到实体业务,而是进入庞氏骗局,而去年出台的监管意见征求稿,监管层管理方向还是较为清晰的,希望通过资金的有效监控,将企业资金与个人用户之间的资金进行分离,规避风险。然而人力毕竟有限,不可能时刻紧盯住所有互联网金融机构,这时引入人工智能监管就十分必要。
人工智能已经在无人驾驶、图像处理、语音识别方面取得了突破性的应用,那互联网金融领域呢?李开复老师曾谈及人工智能应用的三个要素:数据、处理数据的能力和商业变现的场景。人工智能解决金融界问题的过程,很好的对应了这三个要素。也许,金融领域是人工智能最合适不过的颠覆场景。
在金融业务的前端,已经有不少传统银行将人工智能用于为客户定制服务,开发理财产品的应用。例如巴克莱银行和花旗银行等。国内银行中走在科技前列的招商银行,也开始试用全新的人工智能业务模式。未来人工智能和机器学习技术在金融业前端会有更多的便捷精准服务提供给客户。
那么金融应用领域的后端呢?信息安全、投资风控、资产管理等方面的问题成了新问题,对于躲在触屏手机背后的客户,缺失了央行数据的客户,银行没有办法通过一双双眼睛去看到用户是谦谦君子还是骗子流氓。这个时候,金融后端,传统金融风控手段覆盖不到和难以触及的,那么“互联网+金融”业务就要结合更广泛的互联网数据和人工智能手段,来处理更广泛的金融客户问题。
(五)人工智能技术在金融领域应用案例
Google、IBM等国际巨头公司已经将人工智能技术渗透在各种产品的方方面面,总体上看,国内金融行业也逐步开始应用人工智能技术,随着国内双创政策的推动和对人工智能产业的投资拉动,预计广泛应用节点即将到来。
1.阿里巴巴旗下的蚂蚁金服下设一个特殊的科学家团队,专门从事机器学习与深度学习等人工智能领域的前沿研究,并在蚂蚁金服的业务场景下进行一系列的创新和应用,包括互联网小贷、保险、征信、智能投顾、客户服务等多个领域。根据蚂蚁金服公布数据,网商银行的花呗与微贷业务上,使用机器学习把虚假交易率降低了近10倍,为支付宝的证件审核系统开发的基于深度学习的OCR系统,使证件校核时间从1天缩小到1秒,同时提升了30%的通过率。以智能客服为例,2016年“双11”期间,蚂蚁金服95%的远程客户服务已经由大数据智能机器人完成,同时实现了100%的自动语音识别。当用户通过支付宝客户端进入“我的客服”后,人工智能开始发挥作用,“我的客服”会自动“猜”出用户可能会有疑问的几个点供选择,这里一部分是所有用户常见的问题,更精准的是基于用户使用的服务、时长、行为等变量抽取出的个性化疑问点;在交流中,则通过深度学习和语义分析等方式给出自动回答。问题识别模型的点击准确率在过去的时间里大幅提升,在花呗等业务上,机器人问答准确率从67%提升到超过80%。
2.2015年,交通银行推出智能网点机器人,并引发了金融银行界的广泛关注。它为实体机器人,采用语音识别和人脸识别技术,可以人机进行语音交流,还可以识别熟悉客户,在网点进行客户指引、介绍银行的各类业务等。在语言交流过程中,它能回答客户的各种问题,缓解等待办理业务的银行客户潜在情绪,分担大堂经理的工作,分流客户,节省客户办理时间。
3.百度教育信贷实现“秒批”。“人工智能对于金融也会产生变革性影响,可以真正做到让征信升级”。6月8日,在2016百度联盟峰会上,百度董事长兼首席执行官李彦宏特别提到人工智能正在重构包括金融在内的传统产业。他特别强调,“现在百度的教育贷款,基本上是以‘秒’的时间可以决定是不是给一个人贷款。”李彦宏讲到的百度教育信贷的“秒批”,其具体的操作程序非常简单,用户想要获取百度消费信贷服务,只需在百度钱包APP“教育贷款”板块上传身份证,系统就能自动比对、确认用户身份信息,并根据信用记录判定用户所需的服务类型或额度,不仅能实现远程审批,审批时间更可缩短至“秒批”级别。秒批依靠的是百度以大数据和人工智能为基础的严谨风控体系。借助“大数据+人工智能”技术,百度风控部门为有信贷需求的群体绘制用户画像,建立信用体系,加上图像识别等人工智能技术的实际应用,构成了秒批的技术基础。
4.宁波聚元集团旗下超人贷平台自2014年上线以来,发展迅速,以高效风控、低成本控制、低坏账率享誉业内,平台注册会员超过1万人,线上累计交易金额已突破2亿元,稳定健康的发展道路使得平台处于整个大市行业中领先地位,并受到CCTV2、CCTV7央视正面报道,成为浙江地区首批在央视上榜的互联网金融品牌。超人贷平台除了将资金交由第三方商业银行或有资质的资金托管机构进行托管,建立信息披露制度,充分披露融资项目、经营管理等信息外,最重要一个突出优势就是采用先进的人工智能对每一笔交易?M行实时监控,监控信息还可面向公众开放。自创立以来发展稳健,越来越受到客户青睐。