前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇多媒体通信关键技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
随着视频会议、远程医疗、远程教育、电子购物、远程监控、应急通信等交互式多媒体应用的日趋普及,用户的多媒体业务需求快速增长,卫星宽带多媒体传输逐渐成为世界各国卫星通信研究的新热点。近年来,欧美一些发达国家陆续建设了多个卫星宽带多媒体系统,中国的卫星宽带多媒体传输技术虽较欧美有一定差距,但已将推进卫星宽带多媒体系统建设作为未来卫星通信的重要发展方向之一。
欧奠:先进技术带来更多服务
欧美地区发达国家早在20世纪80年代就全面开展了卫星多媒体传输技术的研究,90年代开始进入规模商用阶段。1997年,美联邦通信委员会(FCC)启动多媒体卫星通信系统牌照申请工作,各公司可以自主申请卫星多媒体专用频段,包括Ka频段、Q/V频段和Ku频段。
进入21世纪后,全球卫星宽带多媒体进入了快速发展阶段.欧美发达国家陆续建设了多个卫星宽带多媒体系统.较有代表性的有:麦考通信公司的Teledesic系统、休斯公司的太空之路(Spaceway)系统、欧洲卫星通信组织的Eutelsat系统、欧洲航空局的Artemis卫星系统、EuroSkyway卫星系统、美国Viasat公司的Ka宽带星系统等。
Teledesic系统是由微软公司和麦考通信公司筹建的一个着眼于宽带业务发展的低轨道卫星通信系统。系统原计划由840颗卫星组成,均匀分布在21个轨道平面上,实际使用后简化到288颗:Teledesic系统的每颗卫星可提供lo万个16kb/s的话音信道,整个系统峰值负荷时,可提供超出100万个同步全双TEl速率的连接。该系统同时支持视频会议、交互式多媒体通信以及双向高速数据业务。Teledesic系统以卫星为通信节点,构建星间交换网络,具备全球覆盖能力,是名副其实的“全球空间互联网”,但由于其后续投入巨大.投资回报率低,发展受到了很大的制约。
休斯公司从2000年起开始研制太空之路(spaceway)卫星宽带多媒体系统,采用分阶段部署的方案。2005年,由休斯公司和波音公司共同研制的太空之路1号(SpacewayF1)成功进入预定轨道,这是美国直播电视公司DirectTy的首颗Ka频段高清直播卫星,标志着电视直播进入高清时代。2006年,太空之路2号(Spaceway F2)发射升空,为DirectTy的八个新市场提供本地高清电视节目广播服务。太空之路1号和2号一同工作,使得DirectTV公司具备传送1500多个本地高清频道和150多个国家高清频道的能力。2007年发射的太空之路3号(spaceway-3)是第三代卫星宽带技术的代表,其星载转发器全部为Ka频段,数据传输能力可达到同期Ku频段卫星的五到八倍,支持全网格结构的多媒体IP接入。其核心技术为星上IP交换处理技术和多点波束技术、在星上即可完成对地面用户数据的接收、处理和路由等功能,实现数据的单跳传输,大大降低数据延迟,从而使卫星网格传输成为可能,点对点速率高达440Mbps。
2010年,欧洲卫星通信组织和美国卫讯公司合作开发的Eutelsat卫星是欧洲首颗全Ka频段大容量宽带多媒体通信卫星,该星采用了最先进的Ka波段点波束设计,用于向欧洲、中东及非洲部分地区提供高速宽带、视频和数据应用等服务。Eutelsat系统的地面网络由10个与互联网骨干网相接的地面站组成,地面站采用了美国卫讯公司的SurfBeam技术和设备,搭载82个Ka波段237MHz宽带转发器,即82个点波束,每个点波束数据吞吐量为457Mb,卫星频率复用率极高,可达20次,总吞吐量达到70Gb/s,是标准Ku波段通信卫星的38倍,用户终端数量可达200万。
2011年,美国卫星通信设备及宽带服务提供商Viasat的首颗宽带通信卫星Viasat 1升空,这是全球首颗总数据吞吐量超过100Gbps的全Ka波段的大型宽带多媒体卫星,其总容量超过140Gbps,超过北美地区其他所有商用卫星容量总和。作为下一代宽带通信卫星的代表,Viasat 1卫星应用Ka波段多点波束和频率复用技术,使卫星总带宽增加到最大限度。该卫星的超大容量可满足未来十年加速增长的多媒体互联网接入服务对卫星带宽的需求,并可以更快的数据传输速度和更高的数据量,使用户能以合理的价格获得更好的宽带体验。
Viasat 1卫星共有72个点波束,其中63个点波束为美国本土提供多媒体宽带互联网业务,其他9个点波束则为加拿大农村地区用户提供宽带服务。该系统由星上系统以及SurBeam2地面系统组成,地面系统包括卫星用户终端(Ka波段蝶形天线和卫星调制解调器)、网关卫星地面站及网络操作中心,提供多种形式的多媒体业务。该系统不仅满足地面用户的媒体密集型网站流量、视频通话、流媒体视频剪辑、新闻采集、动态HD视频共享等住宅型多媒体应用需求,还可以满足各种专业多媒体应用的需要,如SNG、HDTV直播等,可为飞机和火车上的乘客提供多媒体接入服务。借助该系统,用户无论在何处居住或工作,都可以获得等同DSL的多媒体通信服务。
中国:从卫星电视起步
我国卫星多媒体应用的起步,源于卫星广播电视。1985年,中央电视台通过租用国际通信卫星向全国传输模拟电视信号,正式拉开我国卫星广播电视业务的序幕。进入21世纪、我国迎来了数字卫星电视直播的快速发展阶段。2001年,中国空间技术研究院开始研制新一代大型通信卫星平台――“东方红四号”,该平台可适用于进一步研制大容量通信广播卫星和大型直播卫星。2003年,该平台的关键技术全部研制完成。2006年,采用该平台的“鑫诺二号”直播卫星发射,这是我国首颗电视直播卫星,配置22路Ku频段高功率转发器。其后陆续成功发射鑫诺三号、中星9号、中星10号、中星6A、中星2A等多颗广播和直播电视卫星。目前,我国大陆地区已实现几十套卫星高清电视节目和100多套标清数字电视节目的广播,“村村通”和“户户通”直播卫星用户超过3000万户。
与卫星广播相比,其他宽带卫星多媒体应用在我国虽得到一定的发展,但普及面不大。较有代表性的有双威通信网络有限公司经营的高速Turbo 163平台、中国通信广播卫星公司经营的“中星宽带”平台和“中星在线”系统、东方家园信息公司使用的电子商务卫星网络系统、上海建华卫星网络公司等单位经营的“宽带之星”系统、中国卫星通信公司的IPSTAR~.星宽带系统等。Turb0163系统自2001年起开始运营,定位为全国性空中宽带网络服务平台,转发卫星采用“亚太3号”同步轨道卫星。该系统采用休斯公司的DirectPG信息接入技术,为用户提供高速上网、多媒体远程教学、多媒体证券行情传输等业务。中国通信广播卫星公司研制的“中星宽带卫星多媒体”平台集成先进的视频会议系统,集音视频和数据协同操作为一体,能提供多种方式的数据共享功能,采用DVB标准进行传输。其功能包括卫星多媒体节目实时传输和投递、卫星广播/组播模式视频会议、远程教育等。中国卫通IPSTARTJ星宽带系统是基于IPSTAR卫星的低成本、高容量卫星宽带平台,该系统将卫星通信与基于IP的宽带业务结合,与地面宽带网络互为备份和补充,能同时满足千万级用户的宽带多媒体传输需求。其主要业务包括MPEG4视频流直播、双向互动视频、新闻采集和TV回程服务、视频点播、应急可视信息采集、视频监控、移动中继、链路备份等。
总体上看,我国卫星多媒体业务还是以卫星广播和直播业务为主,其他卫星多媒体应用规模相对较小,大多集中在特定行业内,并未形成大规模普及应用。
未来走向何方?
从国际卫星通信发展来看,Ka频段卫星通信已成为下一代宽带多媒体卫星通信发展的主要方向。Ka卫星通信系统将发展成远程空间宽带信息传输的主要形式,其与地面无线宽带通信、地面有线宽带通信共同构成覆盖全球的信息高速公路网。预计5年后,Ka新星数量将为现在5倍以上,单颗Ka星的容量可高达几百Gbps,Ka资源将占固定轨道卫星资源的80%以上。目前,我国卫星多媒体业务基本上还是承载在Ku频段和c频段上,由于这些频段已属于过度开发,拥挤不堪,严重制约我国卫星宽带多媒体的进一步发展。所以,全面开发Ka频段多媒体卫星系统迫在眉睫。
完整的卫星宽带多媒体系统包括空间段、地面段和用户段三部分,其中空间段由一颗或多颗专用宽带多媒体卫星转发器组成,地面段由网络管理中心以及多个卫星信关站组成.用户段由多种形态的多媒体业务终端组成。从空间段上看,我国尚缺乏自主研制的Ka频段多媒体卫星,拥有专用的宽带多媒体卫星是地面应用规模开展的前提。目前,国外运营的宽带多媒体卫星系统主要有低轨道、中高轨道和同步轨道三种类型。其中,同步轨道卫星系统具有单颗星覆盖面广,技术相对成熟、研制成本和后续运营成本低等优点,更适合我国在发展Ka宽带多媒体卫星初期采用。同时,我国应开展星上处理和交换技术的研制和应用,逐步转变卫星透明转发的角色,实现真正的“空中网络交换”。
【关键词】 4G 移动通信技术 网络结构 关键技术 发展趋势
随着我国通信业的发展,3G通信技术的发展给用户带来了前所未有的体验,也给用户带来了丰富的应用,但3G通信系统的无线传输模式的传输速率和数据格式的限制制约了无线通信技术的发展,不能满足人们对无线通信的需求,因此人们提出了4G无线通信技术。4G技术是对当前3G技术的一次全新的革新和发展,它融合了3G通信技术的诸多优点,同时提供了更为高速的信息传输速度,为用户的多媒体业务提供了工作平台,同时具有更好的安全性和保密性,因此,在通信业得到广泛的应用。
一、4G移动通信技术的定义
目前,在通信行业内对4G移动通信技术没有统一的科学定义,一般依靠功能性描述作为4G移动通信技术的界定。 4G移动通信技术首先具有在任何地点和时间以可能的方式无障碍地接入通信网络。其次,4G移动通信用户具有选择业务、应用和网络的自由。第三, 4G移动通信技术可以实现移动电子商务的综合性业务。最后,4G移动通信技术可以适应其它网络、体系和系统,开展物联网的业务。
二、4G移动通信技术的特征
目前,4G 通信会使我们可以更加自由自在的沟通信息,改变我们现在的生活方式和工作方式。4G通信将具有下面的特征。
2.1 通信速度较快
4G通信给人印象最深刻的特征应该是它具有比3G快得多的无线通信速度。3G数据传输速率可达到2Mbps,而4G数据传输速率可以达到10Mbps至20Mbps,甚至最高可以达到每秒高达100Mbps速度传输无线信息。在需要传送海量数据时,4G通信可以迅速完成,不需要用户长时间等待。
2.2 更宽的网络频谱
为了取得更快的数据传输速度,通信营运商必须在3G通信网络的基础上,进行大幅度的改进通信网络的带宽。未来的每个4G信道将占有100MHz的频谱,比3G的带宽增加20 倍。
2.3 具有灵活的通信方式及兼容性
目前,4G 通信将使我们不仅可以随时随地通信,双向下载传递资料、图画、影像,还可以像信用卡一样用于购物和提取现金。另外,4G移动通信技术的兼容性更好,不但具备全球漫游、接口开放的功能,还具有向下兼容各网络实现互联的特点。
2.4 提供各种增值服务
3G移动通信系统主要是以CDMA为核心技术,而4G移动通信系统技术则以OFDM技术为基础和核心,利用OFDM人们可以实现例如无线区域环路(WLL)、数字音讯广播(DAB)等方面的无线通信增值服务。
2.5 实现高质量的多媒体通信
4G通信能满足高速数据和高分辨率多媒体服务的需要,它包括语音、数据、影像等大量信息透过宽频的信道传送出去,是一种真正意义上的“多媒体移动通信”。3D视频技术也将会应用到4G通信上,可以在 4G手机上看立体的视频。
三、4G的网络结构
4G系统针对各种不同业务的接入系统,通过多媒体接入连接到基于IP的核心网中。基于IP技术的网络结构使用户可实现在 3G、4G、WLAN及固定网间无缝漫游。4G网络结构可分为三层:物理网络层、中间环境层、应用网络层。其中,物理网络层提供接入和路由选择功能;中间环境层的功能有网络服务质量映射、地址变换和完全性管理等;而应用网络层是直接为应用进程提供服务的。其作用是在实现多个系统应用进程相互通信的同时,完成一系列业务处理所需的服务。
四、4G移动通信关键技术
4.1 正交频分复用(OFDM)技术
OFDM 技术是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制在每个子信道上进行传输。OFDM 技术具有频谱利用率高的优点,其频谱效率比串行系统高近一倍;OFDM技术抗衰落能力强,OFDM通过多子载波传输提高了对脉冲噪声的抵抗和降低了通信信道快衰落的可能;OFDM技术适合高速数据传输,采用自适应调制机制使变化调制方式、信道和加载算法,提高信息传送的速率;OFDM 技术抗码间干扰能力强,用循环前缀的方式对抗码间的干扰。
4.2 智能天线技术(SA)
SA技术为波束间没有切换的多波束或自适应阵列天线。智能天线具有抑制信号干扰、自动跟踪及数字波束调节等功能,被认为是未来移动通信的关键技术。SA技术成形波束可在空间域内抑制交互干扰,增强特殊范围内想要的信号,既能改善信号质量又能增加传输容量。其基本原理是在无线基站端使用天线阵和相干无线收发信机来实现射频信号的收发,同时,通过基带数字信号处理器,对各天线链路上接收到的信号按一定算法进行合并,实现上行波束赋形。
4.3 软件无线电技术(SDR)
软件无线电是4G移动通信技术的微电子技术基础,以开放性的平台,方便的升级和重配置构造一个具有开放性、标准化、模块化的通用硬件平台,允许多方运营的介入。
4.4 IPv6 技术
IPv6具有巨大的网络地址的空间方便为通信网络的所有设备提供一个全球惟一的地址; IPv6 方便实现自动配置, 获得一个全球惟一的路由地址; IPv6服务质量高于传统的IPv4, 便于形成基于服务级别的系统; IPv6具有移动性, 移动通信设备应用 IPv6 技术可以实现位置变化时通信质量不变。
4.5 多输入多输出技术(MIMO)
MIMO技术是指在基站和移动终端都有多个天线。MIMO技术为系统提供空间复用增益和空间分集增益。空间复用是在接收端和发射端使用多副天线,充分利用空间传播中的多径分量,在同一频带上使用多个子信道发射信号,使容量随天线数量的增加而线性增加。空间分集有发射分集和接收分集两类。基于分集技术与信道编码技术的空时码可获得高的编码增益和分集增益,已成为该领域的研究热点。MIMO技术可提供很高的频谱利用率,且其空间分集可显著改善无线信道的性能,提高无线系统的容量及覆盖范围。
五、4G 移动通信技术的展望
据统计,全球的移动通信用户终端数量高达45亿,占地球上总人口的四分之三,移动通信技术实现了人与人的互联,未来的4G 移动通信技术将实现人与互联网移动通信与互联网的互联3G移动通信技术推动了智能手机和掌上电脑的发展,应用手机和PDA等终端设备上网已经成为用户的基本需求,而未来的4G移动通信技术将改变现状用计算机上网的习惯,基于4G网络的高速数据传输效率,未来的移动通信中可视化多媒体化将成为趋势,更丰富的4G移动通信应用将改变未来人与人、人与物、人与网络之间的联通关系,人类将真正进入无线互联时代。
六、结语
综上所述,4G移动通信技术作为不远的未来移动通信的发展趋势,必然成为影响人们生活的又一重大变革,将对社会发展产生重要影响。因此我们应当抓住机遇、迎接挑战,争取在4G移动通信领域掌握先机,专研和开发4G移动通信技术,为未来4G 移动通信的发展和推广作出应有的贡献。
参 考 文 献
信息时代科技日新月异,移动通信作为新技术之一,近年来不断深入地改变着人们的工作和生活,人们一直在追求更高性能、更快速的移动通信技术。现在4G网络已经建网上市,在市场需求和技术推进的双重驱动下,大批技术人员已经开始启动了对第五代移动通信技术(5G)的研究。由于5G技术过于新颖,目前还未对5G的概念有一个清晰的标准和统一的定义。
2第五代移动通信技术发展方向
第五代移动通信技术目前有五大应用的场景,分别是支持大规模人群、超高速数据连接、可靠的实时通信、实时的多媒体通信、高品质的最佳体验。第五代移动通信技术想要达到这五个性能目标,必须要努力做到:信息传输速率要达到10GB/s左右,信号频谱利用率要提高到以前的10倍,通信业务时延要做到小于5m/s,通信网络容量要提升到四代的1000倍左右,信号能量效率要提升到之前的10倍。达到此要求的第五代移动通信网络将不再是简单的容量增大和速率提升,而是能够提供更多的移动终端应用和良好的用户体验。
3第五代移动通信关键技术探讨
上节对5G的发展需求与方向作了总体性的概括,为了满足这些需求,现在通信领域可行的网络、物理层关键技术主要有超密集小小区网络部署和大规模天线阵列等。
3.1超密集小小区网络
在未来的5G通信中,无线通信网络正朝着网络多元化、宽带化、综合化、智能化的方向演进。随着各种智能终端的普及,数据流量将出现井喷式的增长。未来数据业务将主要分布在室内和热点地区,这使得超密集网络成为实现未来5G的1000倍流量需求的主要手段之一。超密集网络能够改善网络覆盖,大幅度提升系统容量,并且对业务进行分流,具有更灵活的网络部署和更高效的频率复用。未来,面向高频段大带宽,将采用更加密集的网络方案,部署小小区/扇区将高达100个以上。在超密集小小区网络中,下面几个应该是主要关注点:①密集小小区网络下的干扰协调。3GPPRel-12提出密集小小区部署的场景。未来的5G发展,小区将进一步分裂,甚至出现多重覆盖的场景。在这种情况下,干扰环境将更加复杂,传统的干扰协调方法及其增强,如频率、时间的复用,功率控制等,在更密集网络下的效果将比较有限。因此,密集网络下的干扰管理,尤其是同部署的干扰协调方案,将是5G网络发展需要重点考虑的方向。②密集网络下的资源管理。密集网络的部署能够带来一定程度系统性能的提高,但是在现有技术条件下,系统性能的提升并不能与部署的密集程度成正比。因此密集网络部署场景下资源的有效利用、进一步实现资源的复用应该是达到5G网络性能要求的重点发展内容。③基站间通信效率。由于基站之间的非理想反馈回路,不能实现及时的信令交互,因此很多方案无法达到预期的效果,成为制约网络性能进一步提升的关键因素。尤其是密集网络部署场景下,需要更多的交互信令、更加有效的无线环境、信道测量与估计,因此基站间通信效率也将是支持未来5G支持密集网络部署的关键技术之一。
3.2大规模MIMO
多天线技术(MIMO)作为近年来备受关注的技术之一,经历了从无源到有源,从二维到三维,从高阶MIMO到大规模阵列的发展,将有望实现将信号频谱效率提升到之前的数十倍甚至更高,是当前5G技术重要的研究方向之一。在LTE-A系统中最大支持8*8的天线阵列,但是仍有很大发展空间。MIMO技术引入有源天线阵列,可使基站侧支持的天线协作数有望达到128个。此外,原来的2D天线阵列拓展成为3D天线阵列,形成新颖的3D-MIMO技术,支持多用户波束智能赋型,减少用户间干扰,结合高频段毫米波的技术,将进一步改善无线信号覆盖性能。大规模MIMO的技术优势主要体现在以下几个方面:①大规模MIMO的空间分辨率显著增强,能深度挖掘空间维度资源,使得移动通信网络中的多个用户可以在同一时频资源上利用大规模MIMO提供的空间自由度与基站同时进行通信,从而在不需要增加带宽和基站覆盖率的情况下实现频谱效率的大幅度提高。②大规模MIMO可将波束集中在很窄的范围内,从而大幅度降低无线信道干扰。③大规模MIMO可大幅度降低天线的发射功率,从而提高移动通信系统的功率效率。④当天线数量足够多时,最简单的线性预编码和线性检测器趋于最优,并且信道噪声和干扰都可忽略不计。
4结语
【关键词】高职;移动通信技术;专业课程;教学改革
随着信息技术的飞速发展和信息产业的不断扩大,通信领域的人才缺口逐年增大。3G时代的技术革命使通信企业对高职通信专业的培养的人才提出了更高的专业要求。学生除了掌握基本通信、电子理论知识和具备基础实践动手能力的情况下,通信企业对高职移动通信专业学生的岗位适应性和扩展性,新技术、新科技认知度,综合能力素质方面均提出了更高的要求。
一、漳州城市职业学院移动通信技术专业培养目标与特点
(1)漳州城市职业学院移动通信技术专业培养目标。坚持“以就业为导向,以职业素质培养为本位”的指导思想,通过本专业的学习,使学生能够进行移动通信基站建设与维护、3G移动通信产品生产与检修、3G移动通信增值业务开发,掌握现代通信领域的基础理论和应用技术,熟悉常用移动通信系统及3G网络、智能天线等的工作原理,能胜任通信产品生产企业的电子工程师、电子技术员工作,能在通信产品销售和客服等企业担任移动通信终端的硬件维修和刷机等软件维修、通信产品销售工作,并具备一定的可持续发展和创新能力的高素质技能型专门人才。(2)漳州城市职业学院移动通信技术专业主要课程。电路基础、电子技术、高频电子技术、Protel、通信基础理论、C及C++程序设计、光纤通信技术、单片机技术、移动通信原理与系统、移动通信设备、数据通信与网络技术、移动通信终端设备维修、现代交换技术、3G网络优化、带接入技术、信息安全等。(3)漳州城市职业学院移动通信技术专业特色。立足行业优势,培育紧缺人才。2012年2月14日,总投资108亿元的漳州联想科技城项目在漳州正式签约。该项目集科技产业、数字商业、智能生活为一体,包括云计算中心、物联网中心、移动互联中心、综合购物娱乐中心、智能化住宅等项目。凸显实践教学,提高综合素质。通过各种对接岗位的“项目化”实践教学,有效拓展学生的职业素养、形成综合能力,顺利完成从学校到岗位的对接。校企深度融合,创新培养模式。与漳州漳州八达电子有限公司共建校企合作,采用产业驱动,校企融合,岗课一体“三位一体”的人才培养模式。
二、高职移动通信技术课程教学存在的主要问题
(1)传统的课程体系没有密切关注通信技术和市场的革命性改变。一般地讲,3G是指将无线通信与国际互联网等多媒体通信结合的新一代移动通信系统,未来的3G必将与社区网站进行结合,WAP与WEB的结合是一种趋势,如时下流行的微博客网站:大围脖、新浪微博等就已经将此应用加入进来。而传统的高职移动通信专业课程体系仍沿用传统的电子产品制作实践体系,基础电子、通信理论体系,与信息市场发展和通信市场技术更新没有密切关注。导致高职学生学习后没有办法对最新移动通信系统形成系统的理论认知,对通信新设备、新工艺没有较好的实践动手能力,与通信用人单位的要求有较大差距。(2)传统的课程体系中的教学模式没有根据学生的兴趣出发。“多媒体+板书”的教学模式目前在漳州城市职业学院的日常教学中已得到了较为广泛的应用,高职学生利用多媒体课件,在信号变化及流向和网络构造与运行等方面可以得到更加直观的认知,同时也有利于其加深对移动通信的理解。但移动通信课程所涵盖的内容范围很广,从网络组建到网络认识、从网络维护和管理到网络测试,其中不乏一些相对难以理解的内容,单靠多媒体课件及一些演示动画,很难使高职学生理解透彻,提高实践能力。在整个教学过程中,高职学生仅仅扮演着知识接收者的被动角色,很难融入专业知识学习过程。因此,学习专业知识积极性不高,并导致专业课堂教学效果下降。(3)传统的课程体系中的教材严重偏离教学实际内容。高职学生除了应具有一定的理论知识外, 还应具有较强的分析实际问题、解决现实问题的能力。其教学内容不仅包括需要基本的移动理论知识, 还需要有学生开展大量的实践过程。而现有的移动通信技术专业教材大致分两类: 实践性教材和理论性教材,比较少有适合当前高职教育特色的专业教材,而且通信技术教材的教学内容一般落后于现在通信技术行业应用技术。这样在高职专业学生毕业时,自身的专业技能严重滞后于行业需求,从而形成学生毕业困难。
三、漳州城市职业学院移动通信技术专业课程改革方案的实施
(1)定期组织培训加强专业师资队伍建设。随着科技更新,移动通信技术也跟着更新,那么我们教师也要跟着更新自己传授的知识。而作为应用电子技术教学中作为传授者的教师,教学水平高低不一,接受新我们要有针对性的组织教师进行学习,对于有较高水平的教师更要定期组织培训;并且在教学中多运用现代化多媒体手段进行教学,让学生对所学专业因“兴趣”而学,不是因为“学”而学。漳州城市职业学院电子信息工程系现有教职工26人,其中,教授1人,副高职称7人。博士1人,研究生11人,双师素质教师占58%,专业教师队伍具有较高的业务素质和良好的专业知识,学历、年龄、职称结构合理。同时充分发挥系内高级职称教师传、帮、带作用,认真落实“青年教师导师制”,制定了结对帮助的办法,安排每位高职称教师指导帮助2-3名青年教师的教学和科研工作,促使青年教师早日成熟。此外,还有校企合作单位一批高级技师作为专业实训全程指导教师。(2)及时更新教学内容,紧跟社会发展步伐。由于漳州城市职业学院移动通信技术专业采用的是“3+2+1”的培养模式,学生在校学习时间只有前5个学期,且在第5个学期的中旬漳州城市职业学院会召开大型招聘会,招聘会结束后很多同学就会放弃上课而选择参加企业顶岗实习。为了使这部分学生也能对专业课程的主要相关内容有所了解,并考虑到移动通信技术的现状及未来几年的整体发展趋势,漳州城市职业学院以关键技术内容和共同性的基本理论为基础,以移动技术典型系统内容为支撑,以前沿技术内容为向导,以社会实际应用需求为牵引,对移动通信教学内容进行更新。并对第二代移动通信CDMA网络和GSM网络的专业教学内容进行了有效整合,加重了对第三代移动通信系统的讲解,相应增加了第四代移动通信系统简介、移动通信关键技术应用、课堂设计及专业实践环节部分,使授课内容可以紧跟时展步伐,从而有利培养高职学生的实际应用能力。(3)坚持不断线的系统化岗位能力培养。从岗位技能(移动电话机测试、焊接、组装、维修等)培养来看,漳州城市职业学院通信学生从入学开始,就开始基于工学结合实现综合技能、基本技能、专业技能的不断线渐进岗位综合技能培养;从企业管理能力看,基于校企深度融合实现通信企业运作、通信企业文化、通信职场文化、通信企业管理的不断线训练;从专业外语看,基于现网通信产品实现传输系统、数据通信、程控交换、移动通信系统等通信全网核心模块的系统训练。(4)采用灵活运用多种教学模式和方法。综合运用板书+多媒体+网络化教学手段。对于基本原理和基本方法的证明和推导,仍然采用课堂板书的授课方式;而对于需要形象理解、图示举例以及演示操作的知识点,则采用多媒体课件辅助教学,并充分利用图像、声音、视频、flash 动画等多种形式进行互动式教学。建立网络化教学平台,将课件、批改作业、课后答疑、补充移动通信前沿知识等环节放在教学网站上进行,为师生之间提供更好的交流平台。
参考文献
[1]唐志凌.3G时代的高职通信专业课程教学模式改革探索[J].科技信息.2010,(28):454