前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇移动通信概述范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
一. 前言
二. 关键字
三. 第一部分 CDMA 系统概述
四. 第二部分 CDMA 信道编码
五. 后记
六. 参考文献
前言
移动通信是当代通信领域发展最快,前景最好的部分,移动通信以其特有的灵活,便捷的优点符合了现代社会人们对通信技术的要求,成为20世纪80年代中期以来发展最为迅速的通信方式。中国的移动通信自从1987年投入运营以来,经过十余年的快速发展,现已形成数网并存的局面,并逐渐为GSM让出频率,第二代数字网络有GSM和CDMA两种.我国现已形成世界上最大的GSM网络,移动用户占世界第二位,CDMA将作为下一世纪的无线接入技术,而WCDMA则将成为目前各种第二代移动通信系统,(GSM、IS-95、PDC等)的交汇点,发展成第三代系统。CDMA技术将在未来的通信中起越来越重要的作用,这种高效的新型通信模式将随同其宽带衍生技术--WCDMA快速发展,满足用户对个人通信系统的要求,并成为全球无线本地环路的必然选择.
本文综合论述了CDMA系统基本原理结构功能操作特性、容量分析、iS-95标准,重点分析了信道鳊码部分及CDMA系统几种常用编码.
关键字
CDMA 香农定理
IMT-2000 WCDMA MAP算法 TURBO码 卷积码
点击查看全文转贴于
大规模MIMO 认知中继网络 频谱效率 能量效率 5G
Review on Key Technologies in 5G Mobile Communication System
YANG Jing, CHEN Lei, LIU Qi, WANG Hong-yan, XU Cai-hong
For cognitive relay network, in which cooperative relay and cognitive radio technologies are integrated, the adoption of massive MIMO is able to constitute massive MIMO multi-user cognitive relay network. It is beneficial for deep development of spatial dimensional radio resources to greatly enhance spectral efficiency, energy efficiency and transmission reliability. In this paper, several key and representative technologies in 5G mobile communication system were reviewed, including massive MIMO, cooperative relay and cognitive radio, as well as their important significance was analyzed in depth.
massive MIMO cognitive relay network spectral efficiency energy efficiency 5G
1 引言
随着移动互联网的迅猛发展,人们对无线传输速率要求越来越高,通信系统能源消耗所占的比例不断增加,绿色通信也越来越受到人们的关注。因此,如何在4G基础上,进一步提升无线移动通信的频谱效率和能量效率,是4G/5G移动通信的核心所在[1-2]。为了提高无线资源利用率、改善系统覆盖性能、提升通信的能量效率,多用户多输入多输出(MIMO,Multiple-Input Multiple-Output)技术、协作中继技术以及干扰对齐技术得到了业界的广泛关注。然而,这些技术并不能从根本上带来系统容量的飞跃提升,也无法满足用户的需求。为此,研究者们提出大规模MIMO技术,在基站设以大规模阵列天线代替目前所采用的多天线,由此形成大规模MIMO通信系统,大规模MIMO系统具有无可比拟的技术优势:空前的频谱效率,更高的能量效率,精准的空间区分度,相对廉价的硬件实现等[3-4]。另一方面,无线中继技术和认知无线电(CR,Cognitive Radio)技术分别被认为是提高系统传输可靠性和频谱利用率的核心技术。无线中继技术具有潜在能力扩展通信业务覆盖区域,实现分集增益以抵抗大小尺度衰落[5]等优点;认知无线电技术允许非授权用户或认知用户(SU,Secondary User)在不影响授权用户(PU,Primary User)的服务质量(QoS,Quality of Service)的前提下,灵活、动态地进行频谱接入,共享分配给PU的频谱资源[6],从而提高频谱效率。
综上所述,大规模MIMO技术、协作中继技术、认知无线电技术在提升频谱效率、能量效率、传输可靠性等方面具有较强的技术优势,是第五代移动通信系统中最具潜力的技术。
2 大规模MIMO技术
大规模MIMO技术通过在基站端架设数百根低功率天线,使得天线数较4G系统中的4(或8)根增加了一个数量级,天线数目远远超过在同一时频资源上同时调度的单天线用户数量,模型框图如图1所示。大规模天线阵列所带来的分集增益、阵列增益以及干扰抑制增益,使得每个用户与基站之间通信的功率效率和频谱效率得到极大提升。由于大规模MIMO技术的研究都才刚刚起步,有大量的未知空间待探索,比如信道建模、导频污染、最优波束成型等。
图1 大规模天线通信系统框图
关键词 4G技术 移动通信 电信
中图分类号:TN916.2 文献标识码:A
0引言
由于采用不同频段的不同业务环境,需要移动终端配置有相应不同的软、硬件模块,而3G移动终端目前尚不能实现多业务环境的不同配置。由于3G系统以上的局限性,目前,很多公司已经开始着手4G 概念通信系统的研究。本文主要介绍4G概念通信的技术特点以及可能采用的关键技术。
1 4G概念通信技术特点
目前,业界专业人士对4G概念移动通信系统的共识主要有以下几点:
(1) 具有很高的数据传输速率。对于大范围高速移动用户(250km/h),数据速率为2 Mbit/s;对于中速移动用户(60km/h),数据速率为20 Mbbit/s;对于低速移动用户(室内或步行者),数据速率为100 Mbit/s。
(2) 实现真正的无缝漫游。4G 移动通信系统实现全球统一的标准,能使各类媒体、通信主机及网络之间进行“无缝连接”,真正实现一部手机在全球的任何地点都能进行通信。
(3) 高度智能化的网络。采用智能技术的4G 通信系统将是一个高度自治、自适应的网络。采用智能信号处理技术对信道条件不同的各种复杂环境进行结合的正常发送与接收,有很强的智能性、适应性和灵活性。
(4) 良好的覆盖性能。4G 通信系统应具有良好的覆盖并能提供高速可变速率传输。对于室内环境,由于要提供高速传输,小区的半径会更小。
(5) 基于IP 的网络。4G通信系统将会采用IPv6,IPv6将能在IP 网络上实现话音和多媒体业务。
(6) 实现不同QoS 的业务。4G 通信系统通过动态带宽分配和调节发射功率来提供不同质量的业务。
2 4G概念通信关键技术探讨
(1)正交频分复用(OFDM )技术
第四代移动通信系统主要是以OFDM为核心技术。OFDM 技术实际上是多载波调制的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。
OFDM技术之所以越来越受关注,是因为OFDM 有很多独特的优点:
①频谱利用率高,频谱效率比串行系统高近一倍。OFDM信号的相邻子载波相互重叠,其频谱利用率可以接近Nyquist极限。
②抗衰落能力强。OFDM把用户信息通过多个子载波传输,这样在每个子载波上的信号时间就相应地比同速率的单载波系统上的信号时间长很多倍,从而使OFDM 对脉冲噪声和信道快衰落的抵抗力更强。
③适合高速数据传输。OFDM 自适应调制机制使不同的子载波可以按照信道情况和噪声背景的不同使用不同的调制方式。当信道条件好的时候,应采用效率高的调制方式;而当信道条件差的时候,则应采用抗干扰能力强的调制方式。再有,OFDM 加载算法的采用,使得系统可以把更多的数据集中放在条件好的信道上以高速率进行传送。因此,OFDM 技术非常适合高速数据传输。
(2)智能天线技术
智能天线采用了空时多址(SDMA)的技术,利用信号在传输方向上的差别,将同频率或同时隙、同码道的信号进行区分,动态改变信号的覆盖区域,将主波束对准用户方向,旁瓣或零陷对准干扰信号方向,并能够自动跟踪用户和监测环境变化,为每个用户提供优质的上行链路和下行链路信号从而达到抑制干扰、准确提取有效信号的目的。这种技术具有抑制信号干扰、自动跟踪及数字波束等功能,被认为是未来移动通信的关键技术。
(3)无线链路增强技术
可以提高容量和覆盖的无线链路增强技术有:分集技术,如通过空间分集、时间分集(信道编码)、频率分集和极化分集等方法来获得最好的分集性能;多天线技术,如采用2或4天线来实现发射分集,或采用多输入多输出(MIMO)技术来实现发射和接收分集。MIMO技术是指利用多发射、多接收天线进行空间分集的技术,它采用的是分立式多天线,能够有效的将通信链路分解成为许多并行的子信道,从而大大提高容量。
3结束语
4G移动通信系统目前还只是一个基本概念,4G网络的定义仍然还不明确,IEEE等标准化组织仍处于制定标准和规范的过程中。但是融合现有的各种无线接入技术的4G系统将成为一个无缝连接的统一系统,实现跨系统的全球漫游及业务的可携带性,是满足未来市场需求的新一代的移动通信系统,它将帮助我们实现充满个性化的通信梦想。
参考文献
【关键词】 移动通信 高速公路 隧道 泄漏电缆 多普勒频移
一、前言
据统计,至2012年年底,中国高速公路的通车里程已到96000公里,是世界上规模最大的高速公路系统。高速公路移动信号覆盖是实现无线网络无缝覆盖的一个重要组成部分。是各运营商提高综合竞争力的一个有效手段。在我国公路隧道占比非常高。特别是高速公路途经山区地段,占比会更高。隧道占整个干线50%以上。所以,隧道的有效移动通信信号的有效覆盖对于高速公路的覆盖来说至关重要。
本文结合山区各种隧道无线覆盖的特点,对各种隧道覆盖信号源选择、天馈系统选择、传输方式选择等方面的优缺点进行对比分析;对高速公路环境下应该重点考虑的几个问题进行探讨。提出了4种典型隧道场景的覆盖方案。希望能对移动通信隧道无线覆盖的工程建设规划和优化工作起到借鉴作用。
二、高速公路隧道覆盖的特点
隧道的结构特点决定了其需要的覆盖特点:(1)洞内空间狭长,会产生多重折射,还要考虑车体的阻挡;(2)信号纵向延伸对覆盖要求高;(3)高速公路用户数较少,信号覆盖主要以连续通话为目的;(4)隧道出入口可能为切换边界。
三、隧道的移动通信信号的无线传播特性
隧道可以看做一管道,信号传播是隧道壁反射与直射的结果,直射信号为主要分量。ITU-R提出室内覆盖适用的传播模型,此传播模型对隧道内无线信号覆盖也有效,公式为:Lpath=30lgd+20lgf+28dB d:距离(米)、f:频率(MHz);
隧道中不同距离的路径损耗:
四、高速公路隧道无线覆盖基本方案
(1)洞内分布系统方案:天馈系统安装于隧道内。适用于长隧道,空间不够宽敞隧道或有较大弧度隧道。此方案结构:信号源+天馈分布系统。(2)洞外无线投射方案:天馈线系统安装于隧道外。适用于中隧道、短隧道。且隧道内较为宽敞。没有弧度。此种方案结构:信号源+定向天线系统。(3)泄漏电缆方案:泄漏电缆安装于隧道内墙体。适用于超长隧道,或隧道内比较狭窄。方案结构:分布式基站+泄漏电缆系统。
五、高速环境下几个重点问题分析
5.1 信号覆盖的场强分析
5.1.1 隧道内侧定向天线覆盖方式
在隧道中无线电波传播时具有隧道波导效应,信号的传播是由墙璧反射与直射信号几何叠加的结果,直射信号为主分量。此方式是指将天线安放于隧道口或隧道内侧,如果距离隧道口外有一定的距离,会有所偏差。
5.1.2 隧道内安装泄露电缆覆盖方式
通过缜密的理论计算和大量的工程实际验证可以得出如下结论:信号源功率单方向覆盖(信号源放置在覆盖区域一端时)的覆盖距离稍大于2倍信号源用功分器分开时,双方向覆盖(信源放置在覆盖区域中部向两个方向进行覆盖)的距离。
5.2 隧道内/隧道外切换分析
隧道内的小区切换分析:如果隧道长度过长。需要采用两个或两个以上的小区进行信号覆盖。手机用户经过隧道的中段时,接收到的原小区信号强度逐渐减弱,目标小区的信号强度逐渐增强。不会有信号突然消失的情况,这样可避免移动台因切换判决时间不足造成掉话的问题。
隧道内、隧道外的小区切换分析:在实际无线网络中,实现内外小区重叠有两种方法。一是把隧道外信号引入至隧道内。二是把隧道内信号引至隧道外。由于室外无线信号复杂,可靠性不够高,工程中多数采用延伸隧道内无线信号的方法,使得隧道口与隧道外一定距离内的信号一致,高速环境下在切换方面应该着重考虑。
5.3 高速条件下多普勒频移问题
5.3.1 多普勒频移概念
快速运动的移动台会发生多普勒频移现象。使用定向天线方式顺着铁路沿线覆盖信号时。频率偏移公式如下:fD=V*cos I/X=V*COS I/(c/f0)
fo:工作频率;fD:最大多普勒频移;V:移动台的运动速度
频移大小和运动速度成正比,运动速度越快频偏越大。(1)MS靠近和远离基站,合成频率会在中心频率上下偏移。(2)MS靠近基站,波长变短,频率增大。(3)MS远离基站,波长变长,频率减少。(4)高速载体上的MS频繁改变与基站之间的距离,频移现象非常严重。
5.3.2 多普勒频移的克服
可以采用增强AFC算法应对多普勒频移:(1)AFC是针对快速移动的特点设计的基站频率校正算法;(2)通过快速测算由于高速所带来的频率偏移,补偿多普勒效应,改善无线链路的稳定性,从而提高解调性能。
六、高速公路隧道覆盖方案实施
6.1 洞内分布方案实施
天馈系统装于隧道内。适用于长隧道,空间不宽敞隧道或者有较大弧度的隧道。
6.1.1 隧道覆盖的信号源选择
需要解决隧道覆盖。信号源与分布式系统是必须要的。隧道覆盖需要根据隧道附近的无线覆盖状况及话务、传输、现网设备等情况来决定隧道覆盖所采用的信号源。通常信号源类型有以下几种:微蜂窝基站、宏蜂窝基站、直放站等。
(1)微蜂窝基站。对于公路隧道覆盖来说,由于话务量小,宏蜂窝基站作为信号源较为少用。微蜂窝使用的较多。使用微蜂窝基站的优点是:所需配套设备少,所需设备空间小,总的投资费用低。新建的微蜂窝基站可以增加系统容量,相比较直放站来说,输出功率更大,覆盖范围更广。缺点:用户享受的信道资源较少、需要电源到位、传输资源,扩容需换设备。目前比较常用的是BBU+RRU的DBS3900分布式基站。(2)直放站。如果在需要覆盖的区域附近的网络容量足够,不必增加新的容量,且在附近有较好的GSM信号可以利用(满足直放站对施主信号电平大小的要求,如-70dBm),则可采用无线直放站作为隧道覆盖的信号源。在实际工程之中,要根据覆盖的隧道附近覆盖状态,隧道长度,建站条件,基站分布,话务分布等因素选择一种合适的信号源。
6.1.2 传输方式的选择
高速公路隧道一般都位于大山之间,林密山高,通信传输是个重要问题。一般可以采用如下三种传输方式:
(1)无线移频传输(传输射频信号)。安装无线移频覆盖端设备,需要的较少的馈线,造成的干扰也少,在网络中设计更加灵活。在铺设传输光纤资源不便或者其他特殊情况下,还可以采用无线移频直放站使得移动TD-SCDMA信号在隧道里得以延伸。隧道内电磁环境比较好,采用此方式能取到良好的效果。(2)光纤有线传输(传输射频信号)。优点:传输的稳定性更好,在隧道内安装的馈线减少可使用更细的馈线,施工更方便。(3)微波传输(传输基带信号)。除了移频传输和光纤传输方式之外,还可以选用微波传输。优点:建设速度快,受地物地貌等环境影响较小。缺点:受气候影响,信号传输质量会有波动,易遭雷击,维护工作量大。
6.1.3 隧道覆盖天馈线系统的选择
(1)同轴电缆无源分布式天线系统。同轴电缆无源分布式天线覆盖的方案设计较灵活。价格相对较低、安装方便。同轴电缆的馈管衰耗较小。天线增益选择取决于安装条件限制。条件允许下,可选用增益较高的天线,覆盖距离会更远。其简化方案是用单根天线覆盖隧道。对较短的隧道覆盖来说成本最低。对短隧道,可以在隧道口或延伸至隧道内用定向天线(如八木天线或短背投天线)进行信号覆盖。(2)光纤有源分布式天馈系统。在有些复杂的隧道环境中。可采用光纤馈电有源分布式天馈系统来代替同轴电缆无源分布式天线系统。其优点是:在室内安装的电缆数较,可以适用更细的电缆,采用光缆可避免电磁干扰,在较复杂的网络中设计更加灵活,缺点是成本较高。
6.2 洞外投射方案实施
洞外投射方案,天馈系统安装于隧道外或隧道口。该方案适用于短隧道、中隧道,并且隧道内较宽,隧道直没有弧度。
6.2.1 隧道覆盖信号源选择
隧道覆盖要根据隧道附近的无线覆盖环境及传输、话务、现有网络设备等情况来决定隧道覆盖所采用的信号源。信号源类型通常有如下下几种:微蜂窝基站、直放站等。(1)微蜂窝基站 + 定向天线。对公路隧道覆盖来说,由于话务量比较小,宏蜂窝基站作为信号源较为少用。所以微蜂窝使用的较多。使用微蜂窝基站的优点是:所需设备空间小,所需配套设备少,总的投资费用低。缺点:需传输资源,扩容需换设备。(2)直放站。A:无线同频直放站 + 定向天线。优点:安装灵活、投资少、可以有效提高信号源所在小区的信道利用率;缺点:不能进行独立的话务处理、易产生自激,需要考虑天线隔离度问题。B:无线移频直放站 + 定向天线。优点:信号较纯净,不会产生自激问题;缺点:需要额外的传输用频率资源,传输天线间要求可视,不能有阻挡。(3)有线光纤直放站 + 定向天线。优点:利用有线光纤资源可得到纯净信号源,可以把信号延伸到较远的距离,信号源可以从基站耦合或从直放站耦合;缺点:需要考虑信号源基站与覆盖目标周围基站的参数设置。考虑邻区切换关系,同邻频干扰等问题。
实际工程中,要根据所需覆盖隧道长度,隧道附近覆盖情况,基站分布,话务分布情况,建站条件等因素选择信号源。
6.2.2 传输方式的选择
同洞内分布方案类似,洞外投射方案也可以采用如下三种传输方式:(1)无线移频传输(传输射频信号,采用直放站时用);(2)有线光纤传输(传输射频信号,采用基站和光纤直放站时用);(3)无线微波传输(传输基带信号,采用基站时用)。
实际工程之中,要根据覆盖的隧道附近地形、地貌特征、现有传输资源情况、新建传输条件等因素选择合理的传输方式。
6.2.3 隧道覆盖天馈线系统的选择
采用同轴电缆无源分布式天线覆盖方案设计比较灵活。价格相对较低、安装方便。同轴电缆的馈管衰耗较小。天线增益的选择主要是取决于安装条件限制。在许可的条件时,可选用增益相对较高的天线,覆盖距离会更远。其简化方案就是采用单根天线沿着隧道进行覆盖。对较短的隧道是这一种成本最低的解决方案。
对于距离较短隧道。可以用在隧道口或延伸至隧道内的定向天线进行信号覆盖。根据基站的位置、隧道的长度、安装条件等因素可以选择抛物面、天线八木天线、短背射天线和角反射天线等。
6.3 泄漏电缆方案实施
6.3.1 隧道覆盖的信号源选择
采用泄漏电缆方案信号源的选择。隧道覆盖要根据隧道附近无线覆盖情况及话务、传输、现有网络设备等等情况来决定隧道覆盖所采用的信号源。此方案信号源通常采用:微蜂窝基站,目前较常用的是BBU+RRU的DBS3900分布式基站。高速公路隧道覆盖,由于话务量较小,较少用宏蜂窝基站作为信号源。所以微蜂窝使用较多。采用微蜂窝基站的优点是:总的投资费用低、所需设备占用空间小,所需配套设备较少。缺点:需要传输设备资源,扩容需要换主设备。
6.3.2 传输方式的选择
同洞内分布方案类似,采用泄漏电缆方案也可以采用如下两种传输方式:(1)有线光纤传输(传输射频信号,用于基站和光纤直放站);(2)无线微波传输(传输基带信号,用于基站)。
实际工程中,要根据覆盖的隧道口的地貌、地形特点、传输资源等因素选择一种合适的传输方式。
6.3.3 隧道覆盖天馈线系统的选择
采用泄漏电缆进行隧道覆盖是一种常用的方式。优点是:(1)可减小信号遮挡及阴影;(2)信号波动范围小,泄漏电缆信号覆盖更加均匀;(3)泄漏电缆是一宽带系统,多种不同的无线系统信号可以通过合路共享同一泄漏电缆,这样使得架设多个天线系统工程安装的复杂性降低。(4)泄漏电缆覆盖设计技术成熟,相对简单。缺点是:成本较高。
七、典型隧道场景覆盖方案
7.1 短隧道覆盖
单洞短程隧道是最简单的隧道。由于孔洞短、通风好、洞相对较宽。采用洞口天线向内投射的方式覆盖,就可以达到理想的覆盖效果,且投资成本较低,信号源的选择可根据具体情况而定。如果洞口有满足条件的信号,可用无线直放站作为信号源。如果没有可用的信号,可用移频直放引入较远处的信号进行覆盖。如果有现成光纤或者可以方便铺设光纤,可用微蜂窝基站或光纤直放站进行覆盖。天线采用室外天线。如:短背射天线、八木天线、抛物面天线等方向性强的天线。从成本处罚,可以考虑将隧道和公路一起覆盖,或者隧道、公路以及附近村庄等区域共享一套设备。
推荐方案:(1)洞外无线覆盖方案;(2)共享覆盖方案(指村庄或公路覆盖时引信号来覆盖);(3)隧道内天线多采用八木天线,或容易安装的天线。
7.2 连续隧道群覆盖
如果,公路或铁路在山脉之间穿梭会出现隧道间隔小于900米的连续隧道。隧道连续不断,形状各异,长短不一,需要考虑传输、造价、施工、覆盖等更多因素。该情况主要考虑的重心在传输,还需综合考虑覆盖,要仔细分析每段隧道的特点和隧道之间公路的信号情况。可以根据现场实际情况采用如下几种方案:(1)光纤分布式覆盖,BBU+RRU(适合多段短隧道);(2)馈缆分布式覆盖(适合多段长隧道);(3)综合式覆盖(无线设备和其他有线系统配合)。
7.3 中长隧道覆盖
中长隧道是指单洞长度在1Km~3Km之间,公路隧道内部空间较宽敞,隧道内覆盖情况在有车时和没车通过时差别不大,天线安装较方便。可根据实际情况选用尺寸稍大的天线。中长直形隧道天线安装在中间,弯形隧道天线安装在转弯处。或者从隧道两出口处采用不同的两个小区向内对打的方式来覆盖,切换带设计在隧道中部。建议方案:(1)直放站+天线分布系统(可以是无线直放站、光纤直放站、移频直放站、视具体情况而定);(2)直放站+干放分布系统(用于较长公路隧道);(3)隧道内多采用八木天线,或用易于安装的板状天线。
7.4 超长隧道覆盖
公路隧道的单洞延伸长度超过3Km可算作超长隧道。隧道延伸可能是弯曲的。“S”形或“L”形或其他形状。单独一套设备不能满足隧道的覆盖。需要多设备配合使用,多方案综合运用。每段隧道的解决方案都可能会有所差别。必须因地制宜根据实际情况选择覆盖方案。对超长隧道;天馈线建议选择泄漏电缆或分布式天线。信号源可以选用如下方式:(1)微蜂窝基站覆盖;(2)射频拉远BBU+RRU覆盖(光纤拉远);(3)直放站分布系统覆盖。
【关键词】MDAS 老小区 信号覆盖 KPI
中图分类号:TN915.81 文献标识码:A 文章编号:1006-1010(2013)-08-0024-05
1 背景介绍
1.1 网络现状
老小区(农居点、多层小区)作为一个城市人口最集中的区域,其话务量需求非常高,因房屋结构密集、业主阻挠施工而产生的弱覆盖投诉量也非常大,深入覆盖及优化已经成为当前网络建设的重点。在敏感站点建设传统分布系统牵涉到物业及住户的协调问题,经常引发各类投诉及逼迁事件,是多年来杭州网络建设中的难点和覆盖的弱点。若要深度发展老小区内的用户,就必须要完善其信号覆盖,提升用户感知度。
老小区信号覆盖面临的问题如下:
(1)多层弱覆盖投诉需求强于高层“乒乓效应”;
(2)宏站覆盖有限,增加宏站设备发射功率容易导致越区覆盖产生干扰;
(3)业主维权意识强,对传统覆盖模式较敏感;
(4)TD信号空间损耗大,深度覆盖不足导致TD用户发展难度大。
1.2 传统解决方式介绍
近年来,建设小区分布系统应用各类型美化体或泄漏电缆覆盖,在解决农居点和多层小区的弱覆盖投诉、话务量吸收等方面取得了一定的成绩。但是随着居民自我防护意识的增强以及美化天线无法做到真正意义上的隐蔽,在项目实施过程中经常发生居民投诉和强拆事件,造成了资源的浪费,也使得物业协调越发困难。
借助现有技术手段,在部分敏感站点转变传统射频电缆+天线的覆盖模式,研发及使用低成本、隐蔽型、施工简单快速的新型覆盖延伸类产品就显得极其迫切和重要。经过市场调研和技术论证,多业务数字分布系统(MDAS,Mutiservice Digital Distributed Access System Solution)借助网线传输,隐蔽性较好,在不同的覆盖场景可以和传统覆盖方式形成互补。
2 多业务数字分布系统
(MDAS)简介
MDAS系统是集2G、TD于一体的多模系统,由接入单元、扩展单元和远端单元组成。其中,接入单元从BTS、TD-RRU耦合GSM和TD信号,采用数字传输方式,通过光纤传输到扩展单元,在扩展单元将信号进行光电转换后,由网线传输信号至远端,并为远端提供POE供电,远端机对信号进行数字处理后,GSM和TD信号通过天线转发实现覆盖。
与传统覆盖方式相比,MDAS系统具有外观隐蔽、施工方便、布点精确、覆盖效果好等优势,可真正实现全网监控,通过有线方式监控到每个终端及天线,大大提高了监控稳定性和有效性,便于网络维护,适合于老小区、沿街商铺等特殊站点的网络信号覆盖。其典型组网如图1所示。
3 毛家里MDAS系统站点简介
毛家里地理分布图如图2所示。
杭州拱墅区新文村毛家里为典型农居点,房屋建筑结构密集,宏站信号无法深度覆盖,多年来投诉严重。故此次选择该站点开展MDAS系统试点工程,希望解决其多年来弱覆盖问题。
毛家里村约有80户,共有160多幢楼,楼高5—6层,容纳人数约5000人。楼内大部分区域场强小于-100dBm,无法正常起呼和通话。
4 毛家里MDAS系统工程实施
毛家里MDAS系统对新文村毛家里重点投诉区(东北片区域)进行2G+TD信号覆盖,前期试点MDAS系统覆盖户数约30户(超过60幢楼),覆盖人数1500人。
东北片区域由于房屋面积大,室外信号无法深度覆盖,话务量和投诉均发生在内部房间。方案设计采用MDAS室外型远端,网线入户,远端单元MRU安装在内部房屋的外墙上,通过远端自带天线覆盖内部住户,如图3所示。
(1)近端单元MAU安装在上城区科技孵化基地,耦合RRU信号,2G信源6载波,TD信源3载波;
(2)扩展单元MEU安装在住户家墙上,内置POE供电器,通过网线统一为远端单元MRU供电;
(3)远端单元MRU共安装25台,其中15台借助网线入户安装,深度覆盖内部住户,10台安装在室外电力杆上,覆盖周边道路和公共区域。
5 毛家里MDAS系统覆盖效果
5.1 MDAS试点效果——GSM系统
(1)毛家里MDAS系统开通前后覆盖对比
如图4所示,开通后GSM系统DT测试场强改善明显,尤其是室内覆盖区域,原手机信号基本脱网,现场强达到-50~-85dBm,通话质量0—2级。
由于室外有其他的宏站小区覆盖,MDAS覆盖区对室外有一定改善。而室外宏站信号对室内覆盖效果较差,远端单元MRU通过网线引入室内安装覆盖后,笔者选取了4层楼内进行开通前后的对比测试。
楼内覆盖区GSM开通前后覆盖对比如下:
1)大于-85dBm的场强占比:开通前为0%,开通后为98.15%,大于-85dBm的场强占比提升了98.15%;
2)0—2级的通话质量占比:开通前为0%,开通后为98.46%,0—2级的通话质量占比提升了98.46%。
从以上测试结果来看,开通后对之前为盲区或弱覆盖的室内有了明显的改善。MDAS远端机安装在二层,通过测试表明其可以很好地完成1—4层的覆盖,之前2G信号投诉较多的1—3层住户,经杭州移动拱墅分公司电话回访,投诉问题已全部解决,设备覆盖效果得到村民的一致认可。
(2)毛家里MDAS系统开通后KPI指标
根据MDAS系统开通后运行6—8月的话务统计可知,系统运行三个月日平均等效业务量约为540Erl(其中8月24日至25日TD系统信号引入施工对GSM系统业务产生了一定的影响)。如图5所示:
毛家里MDAS系统开通后,话务吸收明显,设备运行稳定,各项KPI指标均优于省公司室分考核指标,这说明MDAS系统在充分吸收话务量的同时,未对信源基站产生影响。
5.2 MDAS试点效果——TD系统
(1)测试数据分析
站点信息如表1所示。本次测试内容为:无线网络覆盖、CS12.2K语音业务、PS64K上传、HSDPA下行数据业务。
数据业务测试统计如表2所示:
从TD系统开通后的测试结果来看,毛家里TD覆盖各项指标能够达到覆盖要求。语音业务RSCP、C/I覆盖整体达标,PS64K上传数据业务上传平稳且达标,HSDPA下载数据业务下载平稳且达标。开通后,覆盖区吸收语音话务量、数据业务量效果明显。
(2)后台KPI指标数据
TD系统于2012年8月29日下午开通,查询8月30日至9月9日的KPI指标如表3所示。
毛家里MDAS-TD系统开通后,设备运行稳定,各项业务现场测试结果良好,观察后台KPI指标均能达到覆盖要求,且覆盖区语音话务、数据业务吸收明显,对GSM系统起到很好的分流作用。
6 总结
借助MDAS系统和传统分布系统的互补优势,建议在老小区(高话务农居点、弱覆盖多层小区)推广使用MDAS系统,以解决该部分区域因深度覆盖不足导致的弱覆盖投诉和话务吸收不充分等问题,提高用户感知度,提升移动品牌形象。
参考文献:
[1] 苏华鸿,孙孺石,薛锋章,等. 蜂窝移动通信射频工程[M]. 2版. 北京: 人民邮电出版社, 2007.