前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇模拟集成电路的分析与设计范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
2001年我国新增“集成电路设计与集成系统”本科专业,2003年至2009年,我国在清华大学、北京大学、复旦大学等高校分三批设立了20个大学集成电路人才培养基地,加上原有的“微电子科学与工程”专业,目前,国内已有近百所高校开设了微电子相关专业和实训基地,由此可见,国家对集成电路行业人才培养的高度重视。在新形势下,集成电路相关专业的“重理论轻实践”、“重教授轻自学轻互动”的传统人才培养模式已不再适用。因此,探索新的人才培养方式,改革集成电路设计类课程体系显得尤为重要。传统人才培养模式的“重理论、轻实践”方面,可从课程教学学时安排上略见一斑。例如:某高校“模拟集成电路设计”课程,总学时为80,其中理论为64学时,实验为16学时,理论与实验学时比高达4∶1。由于受学时限制,实验内容很难全面覆盖模拟集成电路的典型结构,且实验所涉及的电路结构、器件尺寸和参数只能由授课教师直接给出,学生在有限的实验学时内仅完成电路的仿真验证工作。由于缺失了根据所学理论动手设计电路结构,计算器件尺寸,以及通过仿真迭代优化设计等环节,使得众多应届毕业生走出校园后普遍不具备直接参与集成电路设计的能力。“重教授、轻自学、轻互动”的传统教学方式也备受诟病。课堂上,授课教师过多地关注知识的传授,忽略了发挥学生主动学习的主观能动性,导致教师教得很累,学生学得无趣。
2集成电路设计类课程体系改革探索和教学模式的改进
2014年“数字集成电路设计”课程被列入我校卓越课程的建设项目,以此为契机,卓越课程建设小组对集成电路设计类课程进行了探索性的“多维一体”的教学改革,运用多元化的教学组织形式,通过合作学习、小组讨论、项目学习、课外实训等方式,营造开放、协作、自主的学习氛围和批判性的学习环境。
2.1新型集成电路设计课程体系探索
由于统一的人才培养方案,造成了学生“学而不精”局面,培养出来的学生很难快速适应企业的需求,往往企业还需追加6~12个月的实训,学生才能逐渐掌握专业技能,适应工作岗位。因此,本卓越课程建设小组试图根据差异化的人才培养目标,探索新型集成电路设计类课程体系,重新规划课程体系,突出课程的差异化设置。集成电路设计类课程的差异化,即根据不同的人才培养目标,开设不同的专业课程。比如,一些班级侧重培养集成电路前端设计的高端人才,其开设的集成电路设计类课程包括数字集成电路设计、集成电路系统与芯片设计、模拟集成电路设计、射频电路基础、硬件描述语言与FPGA设计、集成电路EDA技术、集成电路工艺原理等;另外的几个班级,则侧重于集成电路后端设计的高端人才培养,其开设的集成电路设计类课程包括数字集成电路设计、CMOS模拟集成电路设计、版图设计技术、集成电路工艺原理、集成电路CAD、集成电路封装与集成电路测试等。在多元化的培养模式中,加入实训环节,为期一年,设置在第七、八学期。学生可自由选择,或留在学校参与教师团队的项目进行实训,或进入企业实习,以此来提高学生的专业技能与综合素质。
2.2理论课课堂教学方式的改进
传统的课堂理论教学方式主要“以教为主”,缺少了“以学为主”的互动环节和自主学习环节。通过增加以学生为主导的学习环节,提高学生学习的兴趣和学习效果。改进措施如下:
(1)适当降低精讲学时。精讲学时从以往的占课程总学时的75%~80%,降低为30%~40%,课程的重点和难点由主讲教师精讲,精讲环节重在使学生掌握扎实的理论基础。
(2)增加课堂互动和自学学时。其学时由原来的占理论学时不到5%增至40%~50%。
(3)采用多样化课堂教学手段,包括团队合作学习、课堂小组讨论和自主学习等,激发学生自主学习的兴趣。比如,教师结合当前本专业国内外发展趋势、研究热点和实践应用等,将课程内容凝练成几个专题供学生进行小组讨论,每小组人数控制在3~4人,课堂讨论时间安排不低于课程总学时的30%[3]。专题内容由学生通过自主学习的方式完成,小组成员在查阅大量的文献资料后,撰写报告,在课堂上与师生进行交流。课堂理论教学方式的改进,充分调动了学生的学习热情和积极性,使学生从被动接受变为主动学习,既活跃了课堂气氛,也营造了自主、平等、开放的学习氛围。
2.3课程实验环节的改进
为使学生尽快掌握集成电路设计经验,提高动手实践能力,探索一种内容合适、难度适中的集成电路设计实验教学方法势在必行。本课程建设小组将从以下几个方面对课程实验环节进行改进:
(1)适当提高教学实验课时占课程总学时的比例,使理论和实验学时的比例不高于2∶1。
(2)增加课外实验任务。除实验学时内必须完成的实验外,教师可增设多个备选实验供学生选择。学生可在开放实验室完成相关实验内容,为学生提供更多的自主思考和探索空间。
(3)提升集成电路设计实验室的软、硬件环境。本专业通过申请实验室改造经费,已完成多个相关实验室的软、硬件升级换代。目前,实验室配套完善的EDA辅助电路设计软件,该系列软件均为业界认可且使用率较高的软件。
(4)统筹安排集成电路设计类课程群的教学实验环节,力争使课程群的实验内容覆盖设计全流程。由于集成电路设计类课程多、覆盖面大,且由不同教师进行授课,因此课程实验分散,难以统一。本课程建设小组为了提高学生的动手能力和就业竞争力,全面规划、统筹安排课程群内的所有实验,使学生对集成电路设计的全流程都有所了解。
3工程案例教学法的应用
为提升学生的工程实践经验,我们将工程案例教学法贯穿于整个课程群的理论、实验和作业环节。下面以模拟集成电路中的典型模块多级放大器的设计为例,对该教学方法在课程中的应用进行详细介绍。
3.1精讲环节
运算放大器是模拟系统和混合信号系统中一个完整而又重要的部分,从直流偏置的产生到高速放大或滤波,都离不开不同复杂程度的运算放大器。因此,掌握运算放大器知识是学生毕业后从事模拟集成电路设计的基础。虽然多级运算放大器的电路规模不是很大,但是在设计过程中,需根据性能指标,谨慎挑选运放结构,合理设计器件尺寸。运算放大器的性能指标指导着设计的各个环节和几个比较重要的设计参数,如开环增益、小信号带宽、最大功率、输出电压(流)摆幅、相位裕度、共模抑制比、电源抑制比、转换速率等。由于运算放大器的设计指标多,设计过程相对复杂,因此其工作原理、电路结构和器件尺寸的计算方法等,这部分内容需要由主讲教师精讲,其教学内容可以放在“模拟集成电路设计”课程的理论学时里。
3.2作业环节
课后作业不仅仅是课堂教学的巩固,还应是课程实验的准备环节。为了弥补缺失的学生自主设计环节,我们将电路结构的设计和器件尺寸、相关参数的手工计算过程放在作业环节中完成。这样做既不占用宝贵的实验学时,又提高了学生的分析问题和解决问题的能力。比如两级运算放大器的设计和仿真实验,运放的设计指标为:直流增益>80dB;单位增益带宽>50MHz;负载电容为2pF;相位裕度>60°;共模电平为0.9V(VDD=1.8V);差分输出摆幅>±0.9V;差分压摆率>100V/μs。在上机实验之前,主讲教师先将该运放的设计指标布置在作业中,学生根据教师指定的设计参数完成两级运放结构选型及器件尺寸、参数的手工计算工作,仿真验证和电路优化工作在实验学时或课外实训环节中完成。
3.3实验环节
在课程实验中,学生使用EDA软件平台将作业中设计好的电路输入并搭建相关仿真环境,进行仿真验证工作。学生根据仿真结果不断优化电路结构和器件尺寸,直至所设计的运算放大器满足所有预设指标。其教学内容可放在“模拟集成电路设计”或“集成电路EDA技术”课程里[4]。
3.4版图设计环节
版图是电路系统和集成电路工艺之间的桥梁,是集成电路设计不可或缺的重要环节。通过集成电路的版图设计,可将立体的电路系统变为一个二维的平面图形,再经过工艺加工还原为基于硅材料的立体结构。两级运算放大器属于模拟集成电路,其版图设计不仅要满足工艺厂商提供的设计规则,还应考虑到模拟集成电路版图设计的准则,如匹配性、抗干扰性以及冗余设计等。其教学内容可放在课程群中“版图设计技术”的实验环节完成。通过理论环节、作业环节以及实验的迭代仿真和版图设计环节,使学生掌握模拟集成电路的前端设计到后端设计流程,以及相关EDA软件的使用,具备了直接参与模拟集成电路设计的能力。
4结语
合理设置课程体系和课程内容,是提高人才培养水平的关键。2009年,黑龙江大学集成电路设计与集成系统专业制定了该专业的课程体系,经过这几年教学工作的开展与施行,发现仍存在一些不足之处,于是在2014年黑龙江大学开展的教学计划及人才培养方案的修订工作中进行了再次的改进和完善。首先,在课程设置与课时安排上进行适当的调整。对于部分课程调整其所开设的学期及课时安排,不同课程中内容重叠的章节或相关性较大的部分可进行适当删减或融合。如:在原来的课程设置中,“数字集成电路设计”课程与“CMOS模拟集成电路设计”课程分别设置在教学第六学期和第七学期。由于“数字集成电路设计”课程中是以门级电路设计为基础,所以学生在未进行模拟集成电路课程的讲授前,对于各种元器件的基本结构、特性、工作原理、基本参数、工艺和版图等这些基础知识都是一知半解,因此对门级电路的整体设计分析难以理解和掌握,会影响学生的学习热情及教学效果;而若在“数字集成电路设计”课程中添加入相关知识,与“CMOS模拟集成电路设计”课程中本应有的器件、工艺和版图的相关内容又会出现重叠。在调整后的课程设置中,先开设了“CMOS模拟集成电路设计”课程,将器件、工艺和版图的基础知识首先进行讲授,令学生对于各器件在电路中所起的作用及特性能够熟悉了解;在随后“数字集成电路设计”课程的学习中,对于应用各器件进行电路构建时会更加得心应手,达到较好的教学效果,同时也避免了内容重复讲授的问题。此外,这样的课程设置安排,将有利于本科生在“大学生集成电路设计大赛”的参与和竞争,避免因学期课程的设置问题,导致学生还未深入地接触学习相关的理论课程及实验课程,从而出现理论知识储备不足、实践操作不熟练等种种情况,致使影响到参赛过程的发挥。调整课程安排后,本科生通过秋季学期中基础理论知识的学习以及实践操作能力的锻炼,在参与春季大赛时能够确保拥有足够的理论知识和实践经验,具有较充足的参赛准备,通过团队合作较好地完成大赛的各项环节,赢取良好赛果,为学校、学院及个人争得荣誉,收获宝贵的参赛经验。其次,适当降低理论课难度,将教学重点放在掌握集成电路设计及分析方法上,而不是让复杂烦琐的公式推导削弱了学生的学习兴趣,让学生能够较好地理解和掌握集成电路设计的方法和流程。第三,在选择优秀国内外教材进行教学的同时,从科研前沿、新兴产品及技术、行业需求等方面提取教学内容,激发学生的学习兴趣,实时了解前沿动态,使学生能够积极主动地学习。
二、变革教学理念与模式
CDIO(构思、设计、实施、运行)理念,是目前国内外各高校开始提出的新型教育理念,将工程创新教育结合课程教学模式,旨在缓解高校人才培养模式与企业人才需求的冲突[4]。在实际教学过程中,结合黑龙江大学集成电路设计与集成系统专业的“数模混合集成电路设计”课程,基于“逐次逼近型模数转换器(SARADC)”的课题项目开展教学内容,将各个独立分散的模拟或数字电路模块的设计进行有机串联,使之成为具有连贯性的课题实践内容。在教学周期内,以学生为主体、教师为引导的教学模式,令学生“做中学”,让学生有目的地将理论切实应用于实践中,完成“构思、设计、实践和验证”的整体流程,使学生系统地掌握集成电路全定制方案的具体实施方法及设计操作流程。同时,通过以小组为单位,进行团队合作,在组内或组间的相互交流与学习中,相互促进提高,培养学生善于思考、发现问题及解决问题的能力,锻炼学生团队工作的能力及创新能力,并可以通过对新结构、新想法进行不同程度奖励加分的形式以激发学生的积极性和创新力。此外,该门课程的考核形式也不同,不是通过以往的试卷笔试形式来确定学生得分,而是以毕业论文的撰写要求,令每一组提供一份完整翔实的数据报告,锻炼学生撰写论文、数据整理的能力,为接下来学期中的毕业设计打下一定的基础。而对于教师的要求,不仅要有扎实的理论基础还应具备丰富的实践经验,因此青年教师要不断提高专业能力和素质。可通过参加研讨会、专业讲座、企业实习、项目合作等途径分享和学习实践经验,同时还应定期邀请校外专家或专业工程师进行集成电路方面的专业座谈、学术交流、技术培训等,进行教学及实践的指导。
三、加强EDA实践教学
首先,根据企业的技术需求,引进目前使用的主流EDA工具软件,让学生在就业前就可以熟练掌握应用,将工程实际和实验教学紧密联系,积累经验的同时增加学生就业及继续深造的机会,为今后竞争打下良好的基础。2009—2015年,黑龙江大学先后引进数字集成电路设计平台Xilinx和FPGA实验箱、华大九天开发的全定制集成电路EDA设计工具Aether以及Synopsys公司的EDA设计工具等,最大可能地满足在校本科生和研究生的学习和科研。而面对目前学生人数众多但实验教学资源相对不足的情况,如果可以借助黑龙江大学的校园网进行网络集成电路设计平台的搭建,实现远程登录,则在一定程度上可以满足学生在课后进行自主学习的需要[5]。其次,根据企业岗位的需求可合理安排EDA实践教学内容,适当增加实践课程的学时。如通过运算放大器、差分放大器、采样电路、比较器电路、DAC、逻辑门电路、有限状态机、分频器、数显键盘控制等各种类型电路模块的设计和仿真分析,令学生掌握数字、模拟、数模混合集成电路的设计方法及流程,在了解企业对于数字、模拟、数模混合集成电路设计以及版图设计等岗位要求的基础上,有针对性地进行模块课程的学习与实践操作的锻炼,使学生对于相关的EDA实践内容真正融会贯通,为今后就业做好充足的准备。第三,根据集成电路设计本科理论课程的教学内容,以各应用软件为基础,结合多媒体的教学方法,选取结合于理论课程内容的实例,制定和编写相应内容的实验课件及操作流程手册,如黑龙江大学的“CMOS模拟集成电路设计”和“数字集成电路设计”课程,都已制定了比较详尽的实践手册及实验内容课件;通过网络平台,使学生能够更加方便地分享教学资源并充分利用资源随时随地地学习。
四、搭建校企合作平台
关键词:带隙基准 温度补偿 电源抑制比 正温度系数电流
中图分类号: TN7文献标识码:A 文章编号:1007-3973 (2010) 03-070-02
1引言
近年来,随着CMOS工艺技术的进步,模拟集成电路设计技术得到了飞速发展。现在受到学术界和工业界广泛关注的系统芯片集成(system on chip)、数模混合电路、模拟集成电路等对芯片内集成的基准电压源的要求比以往更高。在诸多电压基准源中,带隙式基准源的应用最为广泛。而在功放等集成电路中由于功率较大,系统的温度变化也较大,因此过温保护电路也必不可少。本文设计了带自启动和过温保护电路的带隙式基准电路,并使用了负反馈的方法使输出基准电路与电源电压基本无关,从而提高了电源抑制比。
2带隙基准原理
带隙基准是一种几乎不依赖温度和电源的基准技术,一般的带隙基准在0~70℃温度范围内有10ppm/℃的温度系数,图1所示的是带隙基准源的原理示意图。pn结二极管的电压降为VBE,其温度系数在室温时大约为-2.2mV/K.而热电压VT(VT=kT/q)在室温时的温度系数为+0.085mV/K,将VT电压乘以常数K并和VBE电压相加可得输出电压为:
(1)
将式(1)对温度微分并代入VBE和VT的温度系数就可求得K,它可以使得VREF的温度系数在室温时理论上为0。由于VBE受电源电压变化的影响很小,带隙基准源受电源的影响也很小。本文中T定为温度参数,单位为K。
图1带隙基准电压产生原理
3传统的带隙基准
图2所示为传统的带隙基准的核心电路图,图中运算放大器工作在深度负反馈情况下,使A、B两点的电位相等。选取R2、R3两电阻的阻值相等,可以得到两个BJT晶体管支路上的电流相等。Q2的发射极面积为Q1的n倍,则由双极型晶体管的电流公式:
(2)
得:
(3)
(4)
电阻R1上的电压降为:
(5)
这样:
(6)
适当调整R1,R2,R3的电阻比例可以得到在室温时温度系数为0的输出电压Vref。
图2传统带隙基准原理图
4减小失调电压的影响
由于输入MOS管的非对称性,运算放大器存在有输入失调电压,也就是当运放的输入电压为零时,其输出电压不为零。当运放的输入电压为Vos时,我们可以得到基准电压的输出如(7)式所示:
(7)
等效的失调电压Vos在运放的输入端产生的影响被量化为:
(8)
得出:
(9)
由式(7)可见,如果同相比增大,即可减小失调对输出基准电压的影响。如图3所示为本文高精度CMOS带隙基准核心电路及其启动和保护电路,Q1、Q2面积是Q3、Q4的n倍,将Q1和Q2、Q3和Q4串联,将提高为2,减小运放失调的影响。
图3高精度CMOS带隙基准电路
核心电路产生一个和温度成正比的电流(PTAT电流)为:
(10)
仿真结果为4uA。
经过上方的电流镜,将PTAT电流镜像后流过电阻R4,得到一个PTAT电压,再与VBE5相加后得到输出电压Vref:
(11)
取VBE为0.7V,求得Vref=1.25V,由于所使用工艺模型的差异,仿真结果为1.23V。
5过温保护
过温保护由镜像管M16,M17,R7,R8,Q6,上拉电阻R9,以及反相器inv1,inv2组成。
PTAT电流经过镜像管M13,M16放大10倍后变成40uA从M16管漏端流出。正常情况下电阻R7,R8上的压降较低,不至于使Q6导通,因此OTout输出电位为“0”,M17栅极电位为“1”,管子导通,使R8短接,这样可以降低Q6基极的电位,使其截止。
当温度上升到大约125℃时,R7上的压降升高到Q6管BE结开启电压以上,Q6导通,输出OTout为“1”,从OTout输出的过温信号送到偏置部分的使能管栅端,用于关断电路。M17和R8起过温迟滞作用,当发生过温保护时,M17管关断,Q6基极点位进一步升高,温度必须降低到82℃左右,过温保护才被取消,电路进入正常工作状态。
带隙基准的过温保护迟滞效果如图4所示。
图4过温保护特性
电路采用CSMC 0.35um N阱CMOS工艺模型进行Spectre仿真,得到良好的温度扫描特性:
图5带隙基准的温度扫描特性
6电源抑制比
一般的带隙基准都要求较高的电源抑制比,但是如果带隙基准中的运放采用外加偏置,必然会受到电源电压纹波的影响,特别是随着工作频率的提高,电容耦合使得输出电压受到电源电压的影响更大。因而使得传统带隙基准电压源电路的性能指标的进一步提高受到很大限制。本文中的带隙基准采用负反馈自偏置电路,不仅简化了电路,而且利用一个负反馈使输出偏置电压受电源电压的影响更低。本电路考虑这个因素,采用了运放自偏置结构,将运放输出电压作为基准核心电路的偏置,形成一个负反馈自偏置环路,使电源电压对输出基准电压的影响进一步降低,在4V到7V范围内电源抑制比为0.01V/V,如图6所示。
图6带隙基准的电源电压扫描特性
7结束语
本文介绍了一种基于0.35um CMOS工艺设计的低温漂CMOS带隙基准源,常温下输出电压为1.23V;在-20℃~80℃温度范围内,温漂为10PPM/℃;在4V到7V范围内电源抑制比为0.01V/V;达到了设计的预期目标。整个电路结构简单,有一定的实用价值。
参 考文献:
[1]朱樟明, 杨银堂, 刘帘曦. 一种高性能CMOS带隙电压基准源设计[J]. 半导体学报, 2004, 25 (5): 542-546.
[2]艾伦•PE•霍尔伯格. CMOS模拟集成电路设计[M]. 第二版. 北京:电子工业出版, 2005:125-130.
[3]陈碧, 罗岚, 周帅林. 一种低温漂CMOS带隙基准电压源的设计[J]. 电子器件, 2004, 27 (1): 79-82.
关键词:集成电路设计;版图;CMOS
作者简介:毛剑波(1970-),男,江苏句容人,合肥工业大学电子科学与应用物理学院,副教授;汪涛(1981-),男,河南商城人,合肥工业大学电子科学与应用物理学院,讲师。(安徽?合肥?230009)
基金项目:本文系安徽省高校教研项目(项目编号:20100115)、省级特色专业项目(项目编号:20100062)的研究成果。
中图分类号:G642?????文献标识码:A?????文章编号:1007-0079(2012)23-0052-02
集成电路(Integrated Circuit)产业是典型的知识密集型、技术密集型、资本密集和人才密集型的高科技产业,是关系国民经济和社会发展全局的基础性、先导性和战略性产业,是新一代信息技术产业发展的核心和关键,对其他产业的发展具有巨大的支撑作用。经过30多年的发展,我国集成电路产业已初步形成了设计、芯片制造和封测三业并举的发展格局,产业链基本形成。但与国际先进水平相比,我国集成电路产业还存在发展基础较为薄弱、企业科技创新和自我发展能力不强、应用开发水平急待提高、产业链有待完善等问题。在集成电路产业中,集成电路设计是整个产业的龙头和灵魂。而我国集成电路设计产业的发展远滞后于计算机与通信产业,集成电路设计人才严重匮乏,已成为制约行业发展的瓶颈。因此,培养大量高水平的集成电路设计人才,是当前集成电路产业发展中一个亟待解决的问题,也是高校微电子等相关专业改革和发展的机遇和挑战。[1-4]
一、集成电路版图设计软件平台
为了满足新形势下集成电路人才培养和科学研究的需要,合肥工业大学(以下简称“我校”)从2005年起借助于大学计划,和美国Mentor Graphics公司、Xilinx公司、Altera公司、华大电子等公司合作建立了EDA实验室,配备了ModelSim、IC Station、Calibre、Xilinx ISE、Quartus II、九天Zeni设计系统等EDA软件。我校相继开设了与集成电路设计密切相关的本科课程,如集成电路设计基础、模拟集成电路设计、集成电路版图设计与验证、超大规模集成电路设计、ASIC设计方法、硬件描述语言等。同时对课程体系进行了修订,注意相关课程之间相互衔接,关键内容不遗漏,突出集成电路设计能力的培养,通过对课程内容的精选、重组和充实,结合实验教学环节的开展,构成了系统的集成电路设计教学过程。[5,6]
集成电路设计从实现方法上可以分为三种:全定制(full custom)、半定制(Semi-custom)和基于FPGA/CPLD可编程器件设计。全定制集成电路设计,特别是其后端的版图设计,涵盖了微电子学、电路理论、计算机图形学等诸多学科的基础理论,这是微电子学专业的办学重要特色和人才培养重点方向,目的是给本科专业学生打下坚实的设计理论基础。
在集成电路版图设计的教学中,采用的是中电华大电子设计公司设计开发的九天EDA软件系统(Zeni EDA System),这是中国唯一的具有自主知识产权的EDA工具软件。该软件与国际上流行的EDA系统兼容,支持百万门级的集成电路设计规模,可进行国际通用的标准数据格式转换,它的某些功能如版图编辑、验证等已经与国际产品相当甚至更优,已经在商业化的集成电路设计公司以及东南大学等国内二十多所高校中得到了应用,特别是在模拟和高速集成电路的设计中发挥了强大的功能,并成功开发出了许多实用的集成电路芯片。
九天EDA软件系统包括ZeniDM(Design Management)设计管理器,ZeniSE(Schematic Editor)原理图编辑器,ZeniPDT(physical design tool)版图编辑工具,ZeniVERI(Physical Design Verification Tools)版图验证工具,ZeniHDRC(Hierarchical Design Rules Check)层次版图设计规则检查工具,ZeniPE(Parasitic Parameter Extraction)寄生参数提取工具,ZeniSI(Signal Integrity)信号完整性分析工具等几个主要模块,实现了从集成电路电路原理图到版图的整个设计流程。
二、集成电路版图设计的教学目标
根据培养目标结合九天EDA软件的功能特点,在本科生三年级下半学期开设了为期一周的以九天EDA软件为工具的集成电路版图设计课程。
关键词:模拟电子技术;应用型本科;模块化教材;自主学习
作者简介:李旭琼(1973-),女,广西南宁人,桂林电子科技大学信息与通信学院,副教授;段吉海(1964-),男,广西桂林人,桂林电子科技大学信息与通信学院,教授。(广西 桂林 541004)
基金项目:本文系中国电子教育学会“十二·五”高等教育科学研究课题(课题编号:ZDJ11202)、桂林电子科技大学微电子专业主干课程教学团队基金(项目编号:ZJT1021A)的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)02-0131-02
应用型本科人才所具有的重要特征之一就是具有较强的实践动手能力,能够创造性地运用专业知识和技能解决实际问题。与普通本科教育相比,应用型本科教育更突出实际应用能力与工程素质的培养。
模拟电子技术课程是电力与电子信息类应用型本科课程体系的主干专业基础课程,由于该课程的实践性很强,所以对培养学生的工程意识、实践能力和创新能力起着举足轻重的作用。目前可供选择的模拟电子技术教材有近千种,而真正适宜于应用型本科教学的教材却非常匮乏。大部分的教材秉承传统的结构形式,存在内容相对陈旧、偏重理论、应用不足等缺点,不能很好地满足应用型本科的教育要求。因此,研究和建设适应于应用型本科人才培养目标的模拟电子技术教材显得尤为重要。
一、课程模块化教学内容体系的构建
传统的模拟电子技术教学内容一般是按章节进行编排,考核方式大多是由期末考试来决定学生的成绩。由于该课程的内容很多,学生往往会因为大量的概念、器件和方法,半途生出厌学心理,学习效果不佳。如果把课程内容划分为若干相对独立的模块,并将理论与实践有机融合,分段学习分段考核,可以帮助学生“化整为零”、“逐个击破”,从而改善教学效果。
根据课程的特点及内在联系,除“课程导学”外,笔者将教学内容划分为以下五大模块:常用半导体器件、基本放大电路及其分析设计方法、放大电路的频率响应与负反馈技术、通用集成运放及其应用以及实用模拟电子系统。
“课程导学”部分的作用是让学生建立电子系统的概念,了解模拟电子技术课程的教学要求、课程特点、学习方法、现代电子电路的设计方法以及常用EDA仿真软件,对学生的课程学习起到良好的导向作用。
模块一:常用半导体器件。介绍模拟集成电路中常用的半导体二极管、稳压管、双极型晶体管、场效应管和晶闸管。对于应用型本科人才的培养,从应用的角度考虑,重点介绍器件的外特性、主要参数和电路模型,对于器件本身的内部物理机制不做过于深入的探讨。
模块二:基本放大电路及其分析设计方法。本模块涉及构成复杂模拟集成电路的各种基本电路,包括双极型晶体管组成的共射、共集、共基单管放大电路;场效应管组成的共源、共漏、共栅单管放大电路;恒流源电路、差分放大电路和互补推挽功率放大电路。重点介绍基本放大电路的构成原则、工作原理、主要性能指标及其工程估算方法,多级放大电路的识图以及指标估算方法,单管放大电路的设计方法和设计实例,后两者突出了实践与应用。
模块三:放大电路的频率响应与负反馈技术。本模块包括放大电路频率响应的基本概念和频率响应的基本分析方法,反馈的概念以及负反馈技术在放大电路中的应用,负反馈放大电路的分析和设计方法,负反馈放大电路的稳定性。
模块四:通用集成运放及其应用。以应用较广的典型通用集成运放为例,介绍其电路结构、参数和使用方法,阐述集成运放在信号运算、信号处理和波形转换等方面应用电路的分析与设计方法。
模块五:实用模拟电子系统。该模块作为知识的拓展部分,介绍常用的模拟电路综合应用系统及其设计,包括直流电源、锁相环、滤波器、A/D和D/A转换器等。
二、突出集成与应用调整教材内容
现代电子技术发展非常迅速,新工艺、新器件和设计软件不断推陈出新。与之密切相关的模拟电子技术教材需要调整和更新传统教材的内容,以保证教学内容的先进性和实用性。
1.扩充场效应管电路的内容和篇幅
目前,金属-氧化物-半导体场效应晶体管(MOSFET)已经取代双极型晶体管(BJT)成为现代半导体集成电路的主流。为适应这一发展趋势,需要扩充场效应管电路的内容和篇幅,适当删减BJT电路的内容,增加由MOSFET组成的电流源电路、有源负载放大电路、集成运算放大电路、功率放大电路等,并在教学实施过程中侧重MOSFET电路的分析与设计。
2.增加集成器件的比重
与分立元件电路相比,集成器件优点十分突出,实际应用也主要是模拟集成器件,如集成运放、集成功放、集成三端稳压器、锁相环等。因此,可以在教材中增加常用模拟集成器件的芯片介绍、使用方法、参数测试和典型应用电路,并且在频率响应与负反馈技术模块中重点以集成运放为研究对象,分析其频率响应和负反馈技术的应用。
3.加强电路设计的内容
现行的模拟电子技术教材偏重电路的分析,较少涉及电路的设计,课后习题也基本上没有设计类的题目。相对电路的分析而言,电路的设计需要考虑更多工程因素(诸如可行性、可靠性、成本、功耗等)。与实际更加贴近有利于培养学生的实际应用能力、工程意识和创新意识,为此,笔者结合实用的家电产品、测控系统和通信系统,在教材增加一些测量放大器、音频放大器、视频放大器、滤波器、直流电源等电路的设计实例;在课后习题中增加适量的设计类题目,同时删去一些重复较多、应用性不强的分析类题目。
三、革新教材编写模式,设计自主学习型教材
长期以来,高校教材基本上是以教师为核心、以学科知识体系建构为意图进行规划编写。这种编写模式可以系统性地呈现课程的知识体系,方便教师进行教学,但是却忽视了学生的主体地位,不利于学生自主获取知识和知识体系的构建。笔者处在学生的角度考虑问题,参考国外同类优秀教材,尝试在教材的编写模式和呈现方式上做以下改进:
第一,以学生为主体,强调“学习者取向”。从学生的角度考虑他们有什么需求、对什么感兴趣、学习中可能遇到哪些困难、怎样利用他们已有的知识经验来解决问题等等。以此为基础来组织编写教学内容,通过“提出问题——引发思索——分析问题——解决问题”的方式有效呈现教材内容,激发学生的兴趣,引导其积极思考,从而促进其知识的建构。
第二,把教师的指导以及教学方法适当融入教材内容中,充分体现教师的指导功能。教材增加“课程导学”部分(其中包括课程教学大纲),教材的每个模块都有教学要求和学习方法建议,设置适量的讨论题,在例题中增加解题思路、方法提示和归纳总结等,指导和帮助学生有效地理解和吸收教材内容。
第三,增加教材的可读性,突出可自学性。为方便学生自主学习,教材结构应该清晰明了,语言表述通俗易懂,同时使用大量的实例、图表,增加必要的背景资料,结合生活实际精选练习题和思考题。
第四,采用模块测试,协助学生进行阶段性自我评估。在教材的每个模块后面增加“模块自测题”,借助测验激励学生的学习动机、诊断出存在的问题、鉴定学习的效果,让学生充分了解自己对教材掌握的程度。
四、优化教学方法和评价制度,发挥教材的最大效能
在组织课程教学所涉及的诸多要素中教材处于重要地位。根据应用本科人才培养目标的要求,模拟电子技术课程适宜采用分段式模块化教学方法,与之相适应,教材划分为五大模块进行分段教学,同时注意将理论知识与实践有机地融合,采用任务驱动方式实施教学。此外,还要建立相应的分段考核制度,改变过去那种靠期末闭卷考试“一锤定音”来确定学生成绩的方法,注重过程性评价。只有这样,才能充分发挥模块化教材的最大效能,切实提高教学的质量。
五、结语
本文立足于应用型本科的人才培养目标,针对现行模拟电子技术教材存在的不足,从教学内容体系、教材内容选择以及教材编写模式等方面进行了大胆的探索和改革。笔者主张教材建设应该紧跟电子技术的发展趋势,突出先进性、实用性和工程性,采用模块化编写模式,创建高质量的“模块化自主学习型”模拟电子技术教材,同时辅之以分段式模块化教学方法和分段考核方式,以期更好地满足应用型本科教育的要求。
参考文献:
[1]黄光扬.自主学习型教材——高校教材革新一种国际趋势[N].中国教育报,2012-09-27.
[2]刘微,苗壮.应用型本科院校《模拟电子技术》教学改革探索[J].赤峰学院学报(科学教育版),2011,(7).
[3]张春艳,杨光.基于CDIO理念电工电子课程体系的研究[J].科技创新导报,2010,(1).