前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇智能通信技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
针对我国电力资源,多数集中在中东部地域,智能电网的运用实现脱离工业发展轨道,在通信分配上缺乏平衡,智能电网实际运用中,在其传送网络信息之时,由于当前智能电网缺乏统一标准及配置规则,导致无法确定定位网络通信中的信息路径,则可能会导致数据的包丢失。在智能电网之中,智能电网系统设备覆盖范围广泛,信息和通信体系类型不同,不能确保协调运作。对此,实现电网智能化,提供客户的大范围信息服务,有效解决电网信息通信关键问题。
二、优化当前智能电网信息和通信技术
1完善信息管理技术
在智能电网中,其智能电网信息技术管理之中,主要是包括针对电网信息的采集、分析,以及针对电网信息的显示、管理,可以有效确保信息采集的高准确性。在管理中,可以通过分析智能电网信息客观系统,提升智能电网管理者的分析决策,从而有效提升信息管理水平。同时,对于智能电网信息的显示方面,也应该要具有个性化的服务,以便能够及时满足对于各种不同用户的多样化需求,确保管理安全性。
2确保智能电网的安全运行
应用无线局域网技术,提供身份验证,将无线局域网技术和智能化的电网通信交融,确保电网通信安全,避免电网用户遭受安全问题。智能电网中,在其通信方,应构建专业的网络安全防护队伍,使工作人员可以积极的监督管理网络通信安全;并且,针对智能电网通信中,构建智能化的网络防控体系,可以提早扫除智能电网的安全侵略,确保当前国家智能电网的运行安全。
3完善电网的标准体系
能够在智能电网中,利用无线技术,确立统一标准体系,传输电网信息。规划智能电网,首先,应该它根据智能电网信息的模块功能以及特点,细分国家电网的信息操作以及电网构成特征,将所得信息数据均用于智能电网的通信模块中,有效发挥电网智能化中的信息技术优势。
4优化电网智能通信模块
关键词:智能家居;电力载波;RS-485;ZigBee;WiFi;GSM/GPRS
中图分类号:TP393 文献标识码:A 文章编号:2095-1302(2017)02-00-03
0 引 言
智能家居是一种居住环境,其基础是住宅,其目的是构建高效的住宅与家庭日程管理系统,其手段是利用网络、布线、音频、自控、安全等一系列技术将家居生活有关的设施集成。
作为一个新兴产业,智能家居还未真正进入成长期,市场消费观念还未形成,但随着智能家居市场推广普及的进一步落实,在消费者的观念形成后,智能家居市场未来拥有无穷潜力,产业前途无量。正因为如此,越来越多的智能家居生产企业开始投入对行业市场的研究,特别是对企业成长环境和消费者需求变化的深入研究。随着科学技术日新月异的发展,数据通信技术迅速向智能家居渗透。居住环境信息获取和传输技术需要运用适宜的现代通讯手段来实现。按通信技术传输介质的不同可分为有线和无线两种方式。有线通信方式具有系统可靠性高、抗干扰能力强等优点。但传感器与执行机构数量多且分散,导致布线复杂、维护困难。无线通信以组网灵活、无需布线等优点在智能家居中逐渐兴起。智能家居中常见的有线方式有电力载波和以太网等,无线方式则包括ZigBee、WiFi、GSM/GPRS、无线射频技术等,本文对这些通信技术在智能家居领域中的应用进行了综述。
1 有线通信方式
有线通信方式具有稳定、安全和高速等优点,但存在设备移动性差和布线繁琐、布线成本高等不足。常用的有线通信方式有电力载波和以太网等。
1.1 电力载波通信
电力线载波(Power Line Carrier,PLC)是电力系统特有的通信方式,电力线载波通讯是指利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。其最大特点是不需要重新架设网络,只要有电线就能进行数据传递。
马乐等(2013)[1]设计了基于物联网体系的智能家居系统,以Internet和GSM为远程控制基础,以RF无线射频技术为近程控制手段,以PLC为通讯总线,解决家庭内部点对点高速多媒体数据传输的问题。罗玉平等(2014)[2]设计了基于电力线载波通信的智能家居控制系统,系统以STM32主控制器为核心,内嵌Web服务器,结合GPRS网络、电力载波通信技术以及传感器技术可实现远程智能控制。宣航(2015)[3]开发了基于物联网的智能家居监控系统,该系统基于电力线载波通信技术,以TOP6410开发板为核心,以OFDM调制技术为基础建了智能家居系统的硬件体系结构和软件平台。
1.2 以太网
以太网(Ethernet)首次由罗伯特・梅特卡夫和施乐公司帕洛阿尔托研究中心的同事研制,如今已成为最流行的通信协议标准。以太网可以分为标准以太网、快速以太网、千兆以太网以及万兆以太网。
南春辉等(2013)[4]设计了基于Web技术的嵌入式智能家居系统,通过构建Web服务器对家居设备的工作状态进行记录和控制,内部家居通过以太网相连,以Socket协议与服务器通信。陈玮等(2015)[5]设计了基于Andriod平台的智能家居系统,将云计算中心与路由器用以太网连接,使用内外网通信方式,当家庭宽带不可用时仍能通过内网实现对家居设备的控制。侯维岩等(2015)[6]设计并实现了智能家居网关及其Web控制软件,提出了一种能够同时兼容ZigBee、Bluetooth和以太网,并能方便操作的B/S智能家居控制系统。
1.3 RS-485总线
RS-485是串行数据接口标准,1983年在RS-422基础上制定了RS-485标准,增加了多点、双向通信能力,即允许多个发送器连接到同一条总线上,同时增加了发送器的驱动能力和冲突保护特性,扩展了总线共模范围,后命名为TIA/EIA-485-A标准。
陶莉等(2007)[7]设计了基于RS-485总线的智能家居系统,采用RS-485总线的主从网络实现了以PC机为家庭网关的基于RS-485总线的智能家居系统。徐锋等(2009)[8]设计了智能家居远程控制系统,以ARMLPC2364为核心,由MAX3088构成RS-485接口,不仅可以节省开支,其省电节耗效果也十分明显。刘Z(2010)[9]设计了基于PXA270-Linux的智能家居系统,通过运用RS-485总线接入各种传感器模块的思想,实现了家居安全报警、家用电器及照明系统远程控制。张小贝等(2012)[10]设计了基于嵌入式控制和RS-485的智能家居系统,具有良好的应用性。张玲(2014)[11]设计了基于STM32的智能家居系统,各智能产品通过RS-485总线方式和控制器通讯,具有控制方式多样灵活、模块功能可扩展性强、设备操作简单易行等优点。
RS-485接口具有良好的抗干扰性,按其接口组成的半双工网络一般只需两根连线,长的传输距离和多站能力等使其成为首选的串行接口,但RS-485总线的主从和半双工工作方式难以实现各节点之间的数据交换,且存在效率低、实时性差等问题。
2 无线通信方式
与有线通信方式相比,无线通信网络是一种以数据为中心的自组织无线网络,具有可快速临时组网、拓扑结构可动态变化、抗毁性强、无需架设网络基础设施等优点。常用的无线通信方式有ZigBee、WiFi、GSM/GPRS、无线射频技术等。
2.1 ZigBee技术
ZigBee类似于蓝牙,是一种新生的短距离通信技术。与蓝牙高昂的价格,组网复杂等特点不同,ZigBee成本低、功耗低,且组网方便,因此许多厂商都对其感兴趣。ZigBee遵循IEEE 802.15.4标准,工作在204 GHz的频段上。
运用这种技术将智能家居中的各种电子设备组成一个无线传感网络,从而快捷方便地对居住环境参数进行自动监测,意义重大。辛海亮等(2013)[12]设计了一种基于ZigBee的物联网智能家居控制系统的总体方案,以Linux系统为核心,以ZigBee无线通信技术进行信号传输并以GPRS通信技术进行系统远程监控。高鹏等(2014)[13]设计了基于ARM和ZigBee的智能家居监控网络,在家庭内部通过基于德州仪器CC2530无线收发芯片的ZigBee无线网络将家用电器与其他监控设备连接在一起组成无线家庭网络。庞泳等(2014)[14]设计了基于ZigBee的智能家居改进系统,通过改进的MAC协议与ZigBee数据帧结合,对网内不同数据类型采取针对性处理措施,使系统具有较低的功耗和较高的安全性。季建华(2015)[15]设计并实现了基于物联网的智能家居远程监控系统,同时又以JN5139芯片为核心设计了各ZigBee终端节点,采用星型网络实现ZigBee无线组网。Chatura等(2016)[16]基于ZigBee设计了低复杂度展频智能家居网络体系,提升了共存能力,增强了多径衰落影响下的鲁棒性。Raafat等(2016)[17]基于ZigBee面向残疾人设计了可配置的智能家居控制系统,结果表明,该系统可为残疾人提供更好、更便捷的生活方式。孙正凤等(2016)[18]设计了基于改进ZigBee路由算法的智能家居控制系统,仿真表明,当节点数越多,改进的算法可减少30%的能耗,并且随时间的增长,死亡节点数将降低10%,有效均衡了网络负载。
应用ZigBee技术可通过无线传输方式实现每个节点家居环境控制器与管控计算机的组网及灵活的网络数据传输,提高了智能家居系统的灵活性和可靠性,并大幅降低了成本。
2.2 无线WiFi技术
WiFi (Wireless Fidelity)网络符合IEEE/802.11b协议,由AP(Access Point)和无线网卡组成,组网方式较为简单,具有无线接入、高速传输以及传输距离远等优点。
董思乔等(2015)[19]设计了基于WiFi构建的智能家居控制系统,采用PC机和智能手机作为基本硬件平台,辅以WiFi插座和WiFi智能传感器来实现智能家居控制系统。应闻达等(2015)[20]提出了家庭网络中智能家居设备无限快速连接技术,经测试,无线连接所需时间为10~20 s,连接成功率几乎为100%,明显优于基于多播或广播的WiFi一键配置技术。乔季军等(2015)[21]设计了融合ZigBee和WiFi无线技术的智能家居系统,研究了采集数据的程序开发、单片机系统的底层编程和数据传输校验等软件程序。Wang等(2016)[22]设计并实现了基于iOS的智能家居声控系y,手机通过路由器的WiFi信号向终端发送指令。贾阳静等(2016)[23]设计了基于Android和WiFi通信的智能家居系统,采用具有Android操作系统的智能手机或平板电脑作为家居控制终端,通过无线路由器搭建智能家居系统平台。
智能家居充分利用现有普及的WiFi网络资源,极大地扩展了信号的覆盖面积,组网成本大大下降,加之其固有的传输速度快的优点,在消费者中具有较大普及潜力。
2.3 GPRS/GSM通信技术
GPRS(通用分组无线服务)是一种收费的数据承载业务,属于第二代移动通信中的数据传输技术,其传输距离远、稳定性较好、传输速度快,一般用于远距离实时通信。
Zhang等(2013)[24]设计了由SMS控制的智能家居系统,通过手机短信发送一系列指令,实现远程监控家居系统。刘练等(2014)[25]设计并实现了基于App的智能家居环境监测系统,传感器将污染气体及PM2.5浓度信息通过GPRS传送到后台服务器。武一等(2014)[26]设计了基于GSM和ZigBee技术的智能家居系统,通过GSM网络实现用户手机对智能家居的远程监控。实验表明,该系统具有功耗低、可靠性高、易扩展、使用方便等优点。曹梦龙等(2014)[27]设计并实现了基于Internet和GSM的智能家居网关,系统重要的报警信息可以通过手机模组以短信的形式及时发送至用户的手机上。R.Gnanavel等(2016)[28]针对老年人设计了无线传感网络智能家居系统,其中,GSM用于紧急情况下向就近医院发送短信。
GPRS/GSM通信方式适合远距离且不具备有线网络情况下的数据传输,采用包交换的优点是在有效数据需要传送时才会占用频宽,还可以以传输的数据量计价,对用户而言,这是比较合理的计费方式。
2.4 RF无线射频技术
无线射频是20世纪90年代兴起的一种非接触式自动识别技术,其识别系统主要由电子标签、读卡器、上位机组成,通过射频信号识别标签并获取信息。
刘杰等(2012)[29]实现了利用433 MHz射频通信技术的智能家居系统,测试结果表明,使用433 MHz射频技术可以很好地解决传输能力和频带资源分配问题。曾艳等(2014)[30]设计并实现了智能家居RF通信模块的问题,测试表明,该无线通信模块能够满足低成本、低功耗和远距离无线传输的要求。曾明如等(2015)[31]设计了基于ARM和nRF905组网的智能家居系统,系统对射频数据传输协议进行了设计,给出了室内多个微控制器的组网方案,万能遥控器通过射频信号实现对家电的近距离控制。曾明如等(2015)[32]设计了基于ARM和RF无线技术的智能家居系统,控制信息以射频信号的形式发送到无线通讯节点或智能插座,试验结果表明,各家电能够响应相应的控制要求。葛阳等(2015)[33]设计并实现了智能家居433 MHz射频通信协议栈,并详细讨论了协议栈的工作原理。
3 常用通信技术比较
上述7种作为智能家居系统常用的通信方式各有特点,在不同的应用场景可以发挥各自优势,扬长避短,也可以将这7种通信方式进行组合,实现高效、远程传输的目的。常见的是将适合近距离的通信方式和适合远距离传输的GPRS/GSM相结合。
有线通信具有高可靠性、速度快、稳定性高等优点。但布线繁琐、成本较高。无线通信方式具有设备移动性好,不需或只需少量布线的优点,但存在易受环境影响和延迟较大的不足。
从发展角度看,无线通信将是智能家居系统重要的研究方向。各种通信方式的性能比较见表1所列。
4 结 语
本文介绍了几种智能家居系统信息传输方式,包括有线及无线传输方式,比较了他们的优缺点,并提出了未来发展的趋势。信息传输是智能家居系统不可缺少的组成部分,合理选择信息传输方式对整个智能家居系统起着重要作用。随着网络技术和通信技术的发展,各种技术相互结合,发挥各自优势。结合后的数据传输技术可实现优势互补,既能充分发挥各种技术的突出优势,又能最大程度发挥整体效应。无线网络是未来的发展重点。
⒖嘉南
[1]马乐,燕炜,姜思羽,等.基于物联网体系结构的智能家居系统设计[J].北京师范大学学报(自然科学版),2013,49(5):458-461.
[2]李玉平,罗友,秦会斌,等.基于电力线载波通信的智能家居控制系统设计[J].电子器件,2014,37(3):487-492.
[3]宣航.基于物联网的智能家居监控系统的开发[J].电源技术,2015,39(4):836-837.
[4]南春辉,李博,武颖.基于Web技术的嵌入式智能家居系统设计[J].电视技术,2013,37(3):86-92.
[5]李琪,秦会斌,杨永舒,等.基于Android平台的智能家居系统设计[J].电子设计工程,2014,22(24):52-54.
[6]侯维岩,魏耀徽,庞中强.智能家居网关及其Web控制软件的设计与实现[J].自动化仪表,2015,36(5):64-67.
[7]陶莉,黄佩伟,温细金.基于RS-485总线的智能家居系统[J].自动化仪表,2007,28(11):49-51.
[8]徐锋,刘欣,方加宝.智能家居远程控制系统设计[J].电气与能效管理技术,2009(4):21-24.
[9]刘Z.基于PXA270-Linux的智能家居系统研究[J].现代电子技术,2010,33(13):207-208.
[10]张小贝,周凤星.基于嵌入式控制器和RS485的智能家居系统[J].电子测量技术,2012,35(8):62-65.
[11]张玲.一种基于STM32的智能家居系统设计[J].电子技术,2014(11):51-54.
[12]辛海亮,钟佩思,朱绍琦,等.基于ZigBee的物联网智能家居控制系统[J].电子技术应用,2013,39(12):79-81.
[13]高鹏,郑超,任岐鸣,等.ARM和ZigBee的智能家居监控网络设计[J].计算机测量与控制,2014,22(10):3206-3209.
[14]庞泳,李光明.基于ZigBee的智能家居系统改进研究[J].计算机工程与设计,2014,35(5):1547-1550.
[15]季建华.基于物联网的智能家居远程监控系统设计与实现[J].计算机应用与软件,2015,32(11):143-146.
[16] Chatura S,Henry L.A Low Complex Spectrum Scheme for ZigBee based Smart Home Network[C].13th IEEE CCNC.,2016:984-987.
[17] Raafat A,A.R.A,Nourthan K,Diala A.Configurable ZigBee-based Control System for People with Multiple Disabilities in Smart Homes[Z].2016,IEEE.
[18]孙正凤,井娥林,窦如凤.基于改进ZigBee路由算法的智能家居控制系统[J].电子器件,2016,39(1):199-204.
[19]董思乔,赵荣建,孙通.基于WiFi构建的智能家居控制系统的设计[J].电视技术,2015,39(4):89-91.
[20]应闻达,徐龙杰,郭涛,等.家庭网络中智能家居设备无线快速连接技术[J].电信科学,2015,31(11):119-124.
[21]乔季军,王德宇,李玉琳,等.融合ZigBee与WiFi无线技术智能家居系统的设计[J].自动化仪表,2015,36(12):48-51.
[22] Wang Y L,Dong P.The design and implementation of the voice control system of smart home based on iOS[C].Proceedings of 2016 IEEE International Conference on Mechatronics and Automation:133-138.
[23]贾阳静,邹念育,雷冬鸣,等.基于Android和WIFI通信的智能家居系统设计[J].大连工业大学学报,2016,35(1):67-71.
[24] Zhang J B,Bao K Y,Liu X,et al.The Intelligent Home System Controlled by SMS[Z].2013 ICACSEI:268-271.
[25]刘练,周凤星.基于APP的智能家居环境监测系统的设计与实现[J].计算机测量与控制,2014,22(7):2018-2023.
[26]武一,包春兰.基于GSM和ZigBee技术的智能家居系统设计[J].河北工业大学学报,2014,43(1):15-18.
[27]曹梦龙,邹云东.基于Internet和GSM的智能家居网关设计与实现[J].电视技术,2014,38(3):73-75.
[28] R.Gnanavel,P.Anjana,K.S.Nappinnai,N.Pavithra Sahari.Smart Home System Using A Wireless Sensor Network For Elderly Care[Z].2016 2nd ICONSTEM:51-55.
[29]刘杰,章韵,陈建新.利用433MHz射频通信技术实现智能家居系统[J].计算机应用,2012,32(S2):68-72.
[30]曾艳,程文彬,戴跃洪.智能家居RF通信模块的设计与实现[J].电信科学,2014,30(7):95-99.
[31]曾明如,罗浩,徐小勇,等.基于ARM和nRF905组网的智能家居系统设计[J].计算机测量与控制,2015,23(4):1418-1420.
随着现代经济与科技的飞速发展,智能电网也逐步进入人们的视野,并成为电力行业在现阶段的热门课题。对于智能电网而言,系统通信是其建构的重要基础,因而备受行业关注。笔者就此简述了智能电网的定义与特征,进而探讨了智能电网中现代通信技术的应用,希望有所指导和帮助。
【关键词】电力系统 智能电网 通信技术
随着当前资源环境形势日益严峻、能源价格剧烈波动、用电负荷不断攀升、用户供电要求日趋严格,电力行业也因此而面临极大的挑战,推动电力系统建设,使之更为环保、安全、经济成为现阶段国内电力行业建设的一个首要目标。
智能电网的概念最早由欧美发达国家提出,其要求建设经济环保、安全友好以及灵活的智能电网,并就此启动了相关研究与示范。智能电网对于不同能源类型发电方式均能够适应,可协调太阳能、石油、风能、天然气、煤炭以及核能等不同发电方式,有利于降低电网损耗,提高运行可靠性,有效避免大规模停电事故。由此来看,智能电网已成为电力系统在未来的主要发展趋势。
1 智能电网定义与特征
智能电网以电力系统为对象(包括发电、输变电、配电、用户、电力调度以及信息等),研发探索电网控制技术、管理技术以及信息技术,实现三者有机结合,从而以智能交流方式覆盖发电到输电、用电各个环节,对电力生产、输送以及使用予以系统性优化。智能电网特征表现主要包括如下几点:
(1)交互。
(2)自愈。
(3)活跃市场。
(4)互动。
(5)对资产予以优化并保持高效运行。
(6)能够兼容储能与发电系统。
(7)供给优质电能。而要想实现智能电网,技术支撑极为关键。
2 智能电网通信技术
在智能电网建设中,具有实时、高速、集成以及双向特征的通信系统是必要前提和基础,智能电网无法在脱离上述通信系统的前提下实现自身特征,因为智能电网需要通过通信系统实现数据的采集、保护以及控制。所以建立通信系统意味着智能电网建设迈出了最初一步。与此同时,通信系统也必须像电网一样普及到终端用户,从而将电网与通信网有机互联,紧密联系,智能电网由此才能实现其既定目标,体现出主要特征。当前,通信系统的实时集成与高速双向特征使得智能电网成为具备电力以及实时信息交换互动的动态性基础设施,电网供电安全性与可靠性得到提升,同时资产利用率也相应提高,有利于促进电力市场发展繁荣。
智能电网以双向、高速通信系统为基础,进而实现持续性自我矫正与常规监测,从而能够发挥自愈的功能;其对于各类扰动能够给予实时监测,并根据实际情况进行补偿,或者对电流重新分配,确保电网安全运行。而在通信系统中,以智能表计、保护系统、智能电子设备(IEDs)、控制中心以及电力电子控制器等为主的各类技术的应用也在很大程度上提高了电网掌控能力,有利于提升供电服务水平。
智能电网技术领域重点体现在两个方面,首先是开放性通信架构,营造即插即用环境,从而为电网元件提供网络化通信环境;其次是统一技术标准,各类智能电子设备和电路传感器之间能够实现彼此无缝通信,从而使不同设备之间、设备与系统以及不同系统之间实现相互操作功能。就此点来看,电力公司与设备标准制定机构以及制造企业彼此深入合作,确保通信系统能够实现互联互通。
传统电力网络构成中,发电、输电、配电到终端用户之间均彼此独立,属于单一通信体系,一旦出现电力运行事故则无法及时通联信息,对各方面资源也难以做出有效调配。所以构建安全可靠、高速集成的双向通信网络成为智能电网运行的必要基础。
智能电网建设中,集成通信系统主要包括两个部分:
(1)主网通信,覆盖智能电网信息架构调度与控制中心、发电以及输电网络通信系统、管理平台等组成部分。其旨在推动全自动化控制这一目标的实现,重视可靠性较高、可控性传输路由以及高带宽,该部分管理层面相对简单且不会受到人为因素影响,变电站则形成多方向、多路互联模式,从而实现了N-M状态下的通信需求,通过网络固有的坚强性确保整个系统具有高度可靠性。
(2)终端用户侧与配电网通信,此种模式主要为高、中、低压配电网,如电器以及用户电表等各类通信系统,具有多样化的通信方式,例如电力线载波技术、光纤通信技术以及无线通信技术等等。
就电力通信技术发展层面而言,电力通信网络在智能电网主网架上仍然会采取高速率、宽带化、大容量、智能化以及分组化的发展趋势,并且以OPGW、ADSS以及OPPC在内的各类光缆通信为重点。而下一代光网络建设则多以IP扁平化集中控制网络结构为主,在多点对多点的基础上构建网状结构以及高速宽带模式的多重传输网络,控制中心工作可靠性得到提升。在光传送网络的发展下,数据网络和传输网络之间将不断深度融合,从而提高网络业务适应性,增加其承运成本以及优先级控制,基础传送网络固有利用效率也大大提升。与此同时,数据网也逐步演变向IPv6,并且在基础传输网络中引入电信级以太网。而就技术细节而言,网络安全技术将用户行为和业务流量统计性质相互结合,从而构建出高QoS、自适应型以及高效性网络系统。
3 结语
在智能电网建设与发展过程中,通信技术是其重要的基础;随着智能电网的不断发展完善,相信通信技术也将获取巨大发展空间,从而在智能电网建设中得到更为广泛的应用,为智能电网运转提供优良保障。但在实践过程中依然存在诸多问题需要我们去解决,例如基础平台的可扩展性、规范性以及兼容性不足等等。笔者就此探讨了智能电网及其电力系统通信技术,希望有所贡献。
参考文献
[1]包达志.基于电力通信专网的统一通信技术研究与应用[J].移动通信,2014(21):74-80.
[2]孟凡军.电力系统智能电网的信息网络应用分析[J].中国信息化,2012(18):35.
[3]张强,孙雨耕,杨挺等.无线传感器网络在智能电网中的应用[J].中国电力,2010,43(6):31-36.
[4]乔恒涛.探究智能化电网电力通信及农村智能化建设的应用[J].城市建设理论研究(电子版),2013(10).
1.无线通信技术具有成本低的特点。
在过去,有线通信技术的使用需要进行沟槽施工、电缆架设等,需要电力企业投入大量的建设资金。而无线通信技术的使用则省去了很多地面施工经费,只需要在信号接收点安装一下信号接收器就可以了,大大降低了通信的资金,成本较低。
2.无线通信技术具有安装方便、工期短特点。
在有线通信的施工过程中,通信设备的安装环节复杂,施工周期也较长。与之相比,无线通信的安装比较简单,工期也短,能够在较短的时间内满足人们对信号传递的需求。
3.无线通信技术信号适应性强。
从信号强度来说,有线通信会受到地理位置等因素的影响给用户带来很多麻烦,而无线通信则很少受到外界因素的制约,信号的适应性更强。
4.无线通信技术扩展性大。
目前,我国经济发达地区已经普遍采用无线通信技术,但是在落后地区依旧采用的是有线通信技术。今后,随着经济社会和科学技术的发展进步,通信技术和通信设备将会在更大程度上得到发展,这就使得我国无线通信技术在将来也拥有更大的扩展空间。
二、无线通信技术在智能配电网中的实施要点分析
目前,无线通信技术已经在很多地方的智能电网中得到广泛应用。从现有的技术条件来看,我国目前智能电网中运用的无线通信技术主要包括3G技术、WLAN技术、WMN技术以及LMDS技术等,这些无线通信技术的应用在保证信号的稳定传递方面发挥着重要作用。下面,我们就对这些无线通信技术在智能电网中的应用进行分析。
1.3G技术的应用。
当前,3G技术已经形成了包括链路预算和传播模型预算以及计算机仿真在内的一套建网理论,并在很多地区得到了的大规模的商业应用。由此可见,3G技术网络技术已经具有相当多的实践经验,为智能配电网提供了成熟的技术支撑。
2.WLAN技术的应用。
WLAN技术是传统有线网络的延伸,通过射频技术来进行数据信息的发送和接收。现在,WLAN技术也逐渐走向成熟,WLAN产品也已经开始进行批量生产,为智能配电网提供物质帮助。但是,WLAN技术的应用过程中在数据安全方面存在一些隐患,需要做好防范工作。
3.WMN技术的应用。
与3G技术和WLAN技术相比,WMN技术是一种新兴的技术,它不仅在无线宽带的接入中发挥着重要作用,而且可以与数据和图像采集结合在一起对目标实行数据采集和监控等,现在已经在工业、交通以及环境检测等领域中得到广泛应用,也为智能配电网的构建提供技术支持和保证。
4.LMDS技术的应用。
在智能电网中,LMDS技术是一种固定宽带无线接入应用技术,它通过毫米波进行数据传输,从而在一定范围内提供数据、视频以及数字双工语音等业务,是智能配电网中一种很好的宽带固定无线接入解决方法。
三、小结
【关键词】智能电网 通信技术 问题
智能电网是指通过发电设备、用电设备以及储存设备实现的物理电网,将先进的智能化技术与通讯技术相融合,完成创新型电网。随着我国近年来的电网系统发展,电网结构呈现复杂化,实现智能化电网信息精准运用,就要找到智能电网信息与通信技术之间存在哪些的应用问题,对智能化电网的利用和发展,实现智能化电网和通信技术的共同优化。
1 智能电网应用的主要特点
1.1 安全性
智能电网具有很好的安全性。在应用的过程中,能控制各种硬件设备的安全,起到防护的目标,防止有人通过物理接触方式以使系统停止服务的目的,防止系统入侵,能追踪信息安全事件发生的途径。在智能电网中也保证了数据的安全,采用密码技术对数据进行操作处理,防止数据流失或盗用,也有效的保证了信息的完整性。
1.2 稳定性
智能化的电网系统打破了传统电网的结构,极大程度上增强了稳定性能,保证了在通信运输的过程中能流畅运行,也使得在信息传递的过程中高效完整。一旦电网出现了问题,也会保证用户的正常使用,将损失降到最低,一些严重的现象也能够保证电网的正常运行,保障电网系统稳定运行。
1.3 自愈性
传统的电网在正常运行过程中一旦出现问题,整体信息将会失去,而智能化电网的自愈功能,通过对运行过程中的影响因素分析,实现了对智能电网的优化更新,电网系统出现故障时,在后台会将原有的信息传递给操控人员,通过诊断,然后修复故障。在运行过程中出现紧急故障,智能化电网的自愈功也能起到很好的保护作用,这也是智能电网的优点,通过自愈性可以很好的达到优化效果,实现信息运输的完整性。
2 智能电网与通信技术存在的问题
2.1 通信技术的稳定性问题
通信技术明显的特点就是移动性强,在此过程中保证通信技术的稳定性是至关重要的,在运用智能电网进行通信技术传递的过程中,首先也要保证电网后台操作强有力的稳定性能,目前随着智能电网的持续应用,稳定性能也有所下降,数据运输延缓,导致通信系统中的信号极其不稳定,这些问题都会造成数据运行错误,因此针对智能电网提出的首要问题就是完善电网稳定性。
2.2 通信技术的质量问题
目前通信信息系统总体呈现出接入网络弱的趋势,在信息运输的过程中实现信息快速有效运输,必须要保证通信技术水平与输电网水平保持一致,随着智能化电网的应用,问题也是随之而来,很多网络因素会造成整个网络系统的质量运行,无法保证质量,就会导致在通信信息传递中出现严峻的问题,实时管理和转换效率是质量的一大漏洞,会造成数据消失,发送延迟,这些问题都表明,现在需要进行通信网络改革和创新,维护系统正常运行。
2.3 通信技术的安全问题
在智能电网通信网络下,进行信息传输,要确保整个系统的安全性,从目前智能电网中通信技术的运行和应用现状分析,由于黑客等因素的存在导致了电网系统的安全性能遭到破坏的问题,最终导致通信信息传递过程中出现了安全性能的问题,要保证通信信息的安全传递,就要严格把守整个系统的安全性。
3 安全防护智能电网
3.1 确定系统的可靠性
智能电网系统主要是由计算机的监控、局域网络运行、调度维护以及数据采集等构成的,要保证通信信息的正常运输,是要在一定良好安全的智能电网内运行的。在信息运输数据的安全上要重点关注,保证信息不被丢破坏和丢失,通过加密等功能防止非法盗用,对侵害以及非法入侵要严格抵制,通过系统防止毁坏事故。智能电网系统是一项极具复杂性的工作,必须要通过智能输入、短距离无线通信以及网络路由等方面提高感知水平,使智能电网系统得以完善。
3.2 评估信息系统的风险
定期对一系列的信息系统进行评估,实现对问题的研究和解决。现在的网络信息系统的正常运行,不代表其中不存在问题,很多公司由于日常的通信信息的使用,在总体系统后设置风险评估的构建,但现在关于对系统风险的评估并没有覆盖完善,在通信信息运输过程是一定要对系统进行评估,然后进行改制,实现风险最小化。现在就是很多隐患没有及时的排除,才导致信息运输系统的不正常运行,达不到良好的技术优化,要定期查询信息系统的风险,及早做好保护措施,防止信息系统的瘫痪。
3.3 _立信息体系构架
实质上电网系统是由用、配、输、发四个环节组成的,是对通信信息传递的过程。从利用信息的角度来看,智能电网的监控是取决于通信信息的整体转变,不是部分信息,因此完善信息的整体体系构架也是相当重要的,可以通过数据运输平台的形式使各个区域分散开的信息实现完整,完善信息运输的操作流程,通过智能电网进行运输,优化通信方式。
4 结语
在智能化电网实施发展的过程中,实现通信技术的共同优化发展是首要的,期待能全方位满足数据需求。智能电网的形成与构建是通信技术实现的必然过程,为了实现标准体系的构架,必须研究两个相互适应的体系,时刻注重智能电网的管理维护,严格控制好一切可能存在的隐患,以免使电网系统以及通信技术遭到破坏,提高智能电网和通信技术的整体水平。
参考文献
[1]李果.智能电网信息与通信技术间的关键研究[J].沿海企业与科技,2011,05(10):25-27.
[2]麦树权,吕华良.智能电网信息与通信技术关键问题分析与探究[J].电子测试,2014,06(S2):157-158+130.
[3]韩一涛.智能电网信息与通信技术关键问题的分析[J].中国新通信,2016,10(11):57-58.