前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇生物燃料的前景范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
中图分类号 S572;S216 文献标识码 A 文章编号 1007-5739(2017)05-0243-02
Abstract The biomass solid fuel is a new high efficience and clean fuel.Its utilization status in tobacco flue-curing of Jinggu County was introduced.The application prospect of biomass solid fuel was analyzed,and in view of the existing problems,countermeasures were proposed for further development.
Key words biomass solid fuel;tobacco leaf;curing;status;prospect;Jinggu Yunnan
生物质固化燃料是将作物秸秆、稻壳、木屑等农林废弃物粉碎后送入成型器械中,在外力作用下压缩成需要的形状,然后作为燃料直接燃烧,也可进一步加工形成生物炭[1]。生物质固体燃料的主要形状有块状、棒状或者颗粒状等[2]。生物质固体燃料具有体积小、容重大、贮运方便,易于实现产业化生产和大规模使用;热效率高;使用方便,对现有燃烧设备包括锅炉、炉灶等经简单改造即可使用;容易点火;燃烧时无有害气体,不污染环境;工艺和设备简单,易于加工和销售;属可再生能源,原料取之不尽,用之不竭等特点[1,3]。
1 景谷县烟叶烘烤燃料使用情况
景谷县位于云南省普洱市中部偏西,地处东经100°02′~101°07′、北纬22°49′~23°52′,总面积7 550 km2,人均占有土地2.67 hm2,人口密度38人/km2。有热区面积48.8万hm2,占总面积的64.6%,北回归线从县城附近通过,总地势由北向南倾斜,最高海拔2 920 m,最低海拔600 m,典型的南亚热带地区。由于生态环境良好、土地资源丰富、光热水气条件优越,适合烤烟种植,烟叶清香型风格特征较明显,具有香气绵长、透发、明快,留香时间较长,饱满丰富感较好,烟气较为柔和等特点,具有较高的使用价值,深受省内外卷烟工业企业的喜爱。目前,烤烟已成为景谷县重要的农业经济作物之一,成为财政收入的重要来源和烟农脱贫致富的重要途径。2016年景谷县烟叶种植面积4 546.67 hm2,收购烟叶1.075万t,全县烟叶烘烤燃料以煤炭为主,按照1 kg干烟叶耗煤量1.5~2.0 kg[4]计算,景谷县2016年的烟叶烘烤用煤达到16 125~21 500 t,在烟叶烘烤中大量使用燃烧煤炭释放出的烟尘、SO2、NOX、Hg、F等对大气环境造成污染[5]。
2 生物质固体燃料应用现状
2.1 生物质固化成型设备研发现状
生物质固化成型技术根据不同加工工艺可以分为热成型工艺、常温成型工艺、碳化成型工艺等几种类型;根据成型压缩机工作原理不同,可将固化成型技术分为螺旋挤压成型、活塞冲压成型和环模滚压技术[6]。我国在生物质固化成型设备上也进行了较多的研究,王青宇等[7]O计了斜盘柱塞式生物质燃料成型机,可以完成连续出料,为生物质颗粒成型提供了一种新思路。张喜瑞等[8]设计了星轮式内外锥辊固体燃料平模成型机,整机工作过程中噪音低,经济效益与生态效益明显,为热带地区固体燃料成型机的发展与推广提供了参考。目前,我国生物质固体成型设备的生产和应用已实现商业化,可以满足生物质燃料固化成型加工需求。
2.2 生物质固体燃料在烟叶烘烤中的应用现状
20世纪90年代,叶经纬等[9]在烟叶烘烤上研制了生物质气化燃烧炉,使用这种生物质气化燃烧炉能源利用率提高了50%以上,同时优质烟叶的比例也有所提高。张聪辉等[10]研究表明,使用烟杆压块的生物质燃料部分代替煤炭,可以满足烟叶烘烤的需求,并且烘烤成本比使用煤炭更低。徐成龙等[11]通过对比不同能源类型密集烤房在烘烤成本、经济效益及烤房温度控制方面的烘烤效果,认为使用生物质燃料的燃烧机烤房改造方便、空气污染小、节能环保,是最具推广价值的烤房。
3 应用前景分析
景谷县为云南省第二大林业县,全县林地总面积为595 862.4 hm2,活立木蓄积48 324 350.0 m3,每年森林采伐量约1 537 300.0 m3;全县农作物平均种植面积40 385.9 hm2,粮食平均产量为467 425.2 t,具备开发生物质燃料的潜力。路 飞等[12]研究表明,景谷县生物质理论资源量高达1 355 647.3 t,资源优势较为明显,可以加工成生物质固体燃料,满足全县烟叶烘烤需要。2014年,普洱市申报的国家绿色经济实验示范区获得国家发改委批复,为普洱市的发展提供了巨大的机遇,目前全市已开展多个生物质能源项目[13]。景谷县在烟叶烘烤中,创新烟叶烘烤模式,推广使用生物质固体燃料,降低烟叶烘烤能耗,减少主要污染物的排放,改善环境质量,符合普洱“生态立市,绿色发展”的发展需求。
4 存在的问题
4.1 认识不到位
目前,烟叶烘烤主要以燃煤作为原料,烘烤设备较为成熟且烘烤工艺较为完善;使用生物质固体燃料,可降低烟叶烘烤污染、维护农村生态环境、促进烟叶烘烤可持续发展等优势,但尚未引起广泛关注。
4.2 配套不完善,投入成本高
开发生物质固体燃料前期投入高,不确定因素较多,风险较大,收益难以控制。目前,景谷县尚无生物质固体燃料加工企业,生物质固体燃料产业配套不完善,燃料使用成本高。将传统烤房改造成生物质燃料烤房需对原有设备进行改造更换,短期内难以大量推广。
4.3 缺乏政策支持
生物质固体燃料在烟叶烘烤中具有良好的社会效益,但政府、烟草行业对生物质固体燃料的生产、传统烤房的改造等未制定明确的扶持措施和奖励办法,没有形成加工使用生物质固体燃料的长效机制。
5 对策
5.1 加强宣传力度,树立可持续发展理念
大力宣传使用生物质固体燃料在节能减排、农林废弃物循环利用、减工降本、提质增效方面的积极作用,让全社会都充分认识到使用生物质固体燃料所具有的良好的经济效益、社会效益和生态效益,为全面推进使用生物质固体燃料营造良好的舆论氛围。
5.2 开发利用生物质固体燃料,提高绿色生态烘烤能力
景谷县林产工业较为发达,农林废弃物资源丰富,目前国内生物质固体成型燃料技术和设备已较为成熟,可就地规划建设生物质固体燃料生产基地,就地消化农林废弃物,保护环境卫生,实现绿色烘烤。
5.3 加大政策和Y金扶持,调动参与积极性
在生物质固体燃料生产、废弃物回收、烤房设备改造利用等方面出台相应的扶持和补贴政策,提高社会和烟农参与使用生物质固体燃料的积极性和主动性。
6 参考文献
[1] 王庆和,孙勇.我国生物质燃料固化成型设备研究现状[J].农机化研究,2011(3):211-214.
[2] 李泉临,秦大东.秸秆固化成型燃料开发利用初探[J].可再生能源,2008(5):116-118.
[3] 邱凌,甘雪峰.生物质能利用现状与固化技术应用前景[J].实用能源,1990(3):21-23.
[4] 王卫锋,陈江华,宋朝鹏,等.密集烤房研究进展[J].中国烟草科学,2005,26(3):12-14.
[5] 严金英,郑重,于国峰,等.燃煤烟气多污染物一体化控制技术研究进展[J].热力发电,2011,29(8):9-13.
[6] 周冯,罗向东,秦国辉,等.浅谈生物质燃料因化成型技术[J].应用能源技术,2016(8):54-55.
[7] 王青宇,蓝保桢,俞洋,等.斜盘柱塞式生物质燃料成型机的设计[J].木材加工机械,2014(3):48-50.
[8] 张喜瑞,甘声豹,李粤,等.星轮式内外锥辊固体燃料平模成型机研制与实验[J].农业工程学报,2014,30(22):11-19.
[9] 叶经纬,江淑琴,高大勇.生物质能在烤烟生产中的应用技术[J].新能源,1991,13(6):35-39.
[10] 张聪辉,赵宇,苏家恩,等.清洁能源部分代替煤炭在密集烤房中应用技术研究[J].安徽农业科学,2015,43(4):304-305.
[11] 徐成龙,苏家恩,张聪辉,等.不同能源类型密集烤房烘烤效果对比研究[J].安徽农业学,2015,43(2):264-266.
如今,面对油价高企和环境污染的困扰,在大豆、玉米等生产生物燃料近年来争议不断的情况下,海藻燃料产业正在加速发展,多国科学家正在致力于寻找在经济和环境上可行,且可以商业规模生产海藻燃料的方法。
产油率是其他作物数十倍
西班牙一家生物公司日前与欧洲合作伙伴共同启动了一项绿色工程,其在位于西班牙北部的奇克拉纳市建造了海藻养殖池,利用污水处理场的废水作为养料,通过海藻的光合作用生产并提炼出生物燃料,希望以此向人们展示这一技术的广阔前景。不同菌种的海藻生产不同种类的燃料―一些海藻用来生产像大豆或其他油料作物生产出来的那种甘油酯,其他的海藻则用来生产类似碳氢化合物的混合物。此项目预计将在一年时间里生产出500升生物燃料和1500立方米甲烷。
研究人员将富含有机物的废水输入养殖池中,通过光合作用加速海藻的繁殖。当海藻繁殖到一定程度,就会被取出。经过脱水、液化和高压处理后,就能够获得几乎与目前石油一样的生物燃料。
与甘蔗、油菜籽等其他能够产生生物燃料的作物相比,海藻相当高产。美国能源部一份报告中提及,目前特定藻类的出油量已经达到大豆的60倍。
公司创新与技术部经理弗兰克表示,如果将现有的养殖池扩大到10公顷,那么每年将产出20万升生物燃料和60万立方米甲烷,足以供400辆汽车使用一年,而且生产过程绿色环保,这家公司希望尽早推动这项技术的商业化运营。
投入商业运营尚需十几年
海藻产油研发专家表示,这一产业前景之所以诱人,是因为海藻生产出来的燃料不仅和现行的汽车的油路结构如管道、油箱和油泵等兼容一致,而且燃烧起来比化石类柴油更清洁。
目前很多公司已经看到了这一技术的潜在商机,纷纷加大力度进行研究,但是许多研究人员认为将这一技术投入商业运营可能还需要十几年时间。因为,要想真正在未来取代石油,就必须要过“价格关”。
目前海藻产油技术还需要解决产油量低和耗能高的问题。研究员克劳迪奥说:“把生物燃料从水中提取出来还是个技术难题,因为如果生产环节的耗能比产出还高就得不偿失了,更谈不上绿色环保。”
对此弗兰克表示,“我们需要把生产环节的费用降低到目前的五分之一才能与化石燃料竞争。”他所在的公司希望能在2015年之前实现这一目标。
除西班牙外,美国、法国、英国等多国早在几年前就纷纷开始了研究,致力于减少生产过程中的能耗,希望能在海藻产油领域拔得头筹。有的公司选择在封闭的黑暗环境中养殖藻类。封闭式光合反应器的优点在于水分不易散失,可以长期省水省肥地培养藻类,成为比较受欢迎的海藻培养模式,但是研究发现这也并非尽善尽美。
比如,缺少了水分蒸腾这一天然降温手段,就需要额外耗费能量控温。此外,密闭的容器内部容易形成细菌菌落的生物被膜结构,造成细菌大量繁殖,因此需要定期清洁,这也是一大笔开支。还有,一般而言,光合反应器中藻类的密度会比露天池塘大,伴随高密度而来的另一个问题,就是如何确保管中的藻类都能得到足够的光线。为了优化光照,目前采取的通用手段是用泵让藻类不断翻动,结果是消耗了大量的能量,产生了额外的碳
电池在我们的生活中发挥着非常重要的作用,但在使用过程中却带来了严重的环境问题。一节一号电池腐烂在地里,能使一平方米土壤永久失去利用价值;一粒纽扣电池可使600吨水受到污染,相当于一个人一生的饮水量。严峻的现实迫使我们寻找电池发展的新出路,生物燃料电池的问世让我们看到了曙光。本文初步介绍了生物燃料电池的基本情况,以期能开阔视野,对中学化学教学有所裨益。
1穿越历史,生物燃料电池向我们走来
早在19世纪初,英国化学家戴维就提出了燃料电池的设想,1839年英国人格拉夫发明了最早的氢燃料电池[1]。可以说发展到今天,氢燃料电池已成为了最成熟的燃料电池,但在氢气的制备、输送、电池的能量转化率、使用安全性等方面存在许多问题,陷入了尴尬的发展处境[2]。生物燃料电池的出现又让我们充满了新的期待。
生物燃料电池的发展可追溯到20世纪初,1910年英国杜汉姆大学植物学教授Michael Cresse Potter用酵母和大肠杆菌进行试验时,发现了微生物也可以产生电流,从而拉开了生物燃料电池研究的序幕。六十年代,为了将长途太空飞行中的有机废物转化成电能,美国航空航天管理局投入了大量的人力和物力进行研究,真正掀起了生物燃料电池研究的。后来尽管由于技术原因,生物燃料电池曾一度陷入停滞状态,但七、八十年代出现的石油危机又让电池家族的新成员成为人们瞩目的中心,自此之后迎来了更加广阔的发展前景[3]。
简言之,生物燃料电池就是以微生物、酶为催化剂,将有机物(如糖类等)中的化学能直接转化成电能的一种电化学装置。根据电池中使用的催化剂种类,可将生物燃料电池分为微生物燃料电池和酶燃料电池两种类型。
2两种典型的生物燃料电池
2.1 微生物燃料电池
典型的微生物燃料电池如上图所示,它由阳极室和阴极室组成,质子交换膜将两室分隔开。它的基本工作原理可分为四步来描述:(1)在微生物的作用下,燃料发生氧化反应,同时释放出电子;(2)介体捕获电子并将其运送至阳极;(3)电子经外电路抵达阴极,质子通过质子交换膜由阳极室进入阴极室;(4)氧气在阴极接收电子,发生还原反应。我们以葡萄糖为例来具体地说明这个过程[1]:
阳极半反应:
C6H12O6+6H2O6CO2+24H++24e-E0=0.014V
氧化态介体 + e-还原态介体
阴极半反应:
6O2+24H++24e-12H2O E0=1.23V
2.2 酶燃料电池
如下图,葡萄糖在葡萄糖氧化酶(GOx)和辅酶的作用下失去电子被氧化成葡萄糖酸,电子由介体运送至阳极,再经外电路到阴极。双氧水得到电子,并在微过氧化酶的作用下还原成水。
阳极半反应:葡萄糖葡萄糖酸+2H++2e
阴极半反应:H2O2+2H++2e2H2O[3]
2.3生物燃料电池中的介体及其作用
2.3.1介体的作用
在生物电池的设计中一个最大的技术瓶颈就是如何有效地将电子从底物运送至电池的阳极。科学家设想在阳极室加入一种或几种化学物质,作为运输电子的介体。介体的作用如图3所示。
2.3.2 介体需满足的条件[1][3]
经过研究发现充当介体的分子必须具备严格的条件:①介体的氧化还原电极电势应与代谢物的电势相一致;②介体的氧化态和还原态都应易溶于电解质溶液;③在溶液中有足够的稳定性且不能吸附在细菌细胞或电极的表面;④介体的电极反应快;⑤微生物燃料电池中的介体应易于穿透细胞膜且对微生物无毒害作用;⑥微生物燃料电池中的介体在得到电子后应易于从细胞膜中出来;⑦介体的任一种氧化态都不会对微生物的代谢过程造成干扰。
生物燃料电池中常用的介体有硫堇、EDTA-Fe(Ⅲ)、亚甲基蓝、中性红等。
3 生物燃料电池的优点
与传统的化学电池技术相比,生物燃料电池具有操作上和功能上的优势(表1)。首先它将底物直接转化为电能,保证了具有高的能量转化效率。其次,不同于现有的生物能处理,生物燃料电池能在常温、常压甚至是低温的环境条件下都能够有效运作,电池维护成本低、安全性强。第三,生物燃料电池不需要进行废气处理,因为它所产生的废气的主要组分是二氧化碳,不会产生污染环境的副产物。第四,生物燃料电池具有生物相容性,利用人体内的葡萄糖和氧为原料的生物燃料电池可以直接植入人体。第五,在缺乏电力基础设施的局部地区,生物燃料电池具有广泛应用的潜力。
表1化学燃料电池与生物燃料电池比较[3]
4生物燃料电池的用途[1][5]
4.1改善汽车的燃料结构
使用生物燃料电池,1L糖类物质的浓溶液氧化产生的电能可供一辆中型汽车行驶25-30 Km,如果汽车的油箱为50L的话,装满糖后可连续行驶1000Km而不需要再补充能源。使用生物燃料电池,一方面可控制因化石燃料燃烧导致的空气污染问题,另一方面还可避免因发生交通事故而引发的汽油起火燃烧甚至是爆炸。
4.2污水处理
2005年,由美国宾夕法尼亚州立大学的科学家洛根率领的一个研发小组宣布,他们研制出一种新型的微生物燃料电池,可以把未经处理的污水转变成干净用水和电能。
4.3为可植入人体内的设备提供能量支持
2005年日本东北大学教授西泽松彦领导的研究小组新开发出了一种利用血液中的糖分发电的燃料电池。这样的生物电池可为植入糖尿病患者体内的测定血糖值的装置提供充足电量、为心脏起搏器提供能量。
4.4 在机器人设计中的作用
2001年英国西英格兰大学的科学家们研制出了一种名为“Slugbot”的机器人(如图5),专门用于搜捕危害种植业的鼻涕虫。“Slugbot”将抓获的鼻涕虫放在一容器里,在酶的作用下将其转化成电能。
2000年美国南佛罗里达大学科学家斯图亚特.威尔金森(Stuart Wilkinson)宣称,他们已经研制出了一种需要吃肉以给体内补充电能的机器人Chew Chew。 这种机器人体内装有一块微生物燃料电池,为机器人运动和工作提供动力。这种微生物燃料电池可以通过细菌产生酶,消化肉类食物,然后把获取的能量再转化为电能,供给机器人使用。
4.5在航空航天上的使用
为处理密闭的宇宙飞船里宇航员排出的尿液,美国宇航局设计了一种巧妙的方案:用微生物中的芽孢杆菌来处理尿液,产生氨气,以氨气作为微生物电池的电极活性物质,这样既处理了尿液,又得到了电能。一般在宇航条件下,每人每天排出22克尿,能得到47瓦电力。
5 生物燃料电池发展展望
在化石燃料日趋紧张、环境污染越来越严重的今天,生物燃料电池以其良好的性能向我们展示了一个美好的发展前景。但不可否认的是,由于技术条件的制约,目前生物燃料电池的研究和使用还处于不成熟阶段:电池的输出功率小、使用寿命短。例如美国得克萨斯大学亚当・海勒博士研制的葡萄生物电池能提供的功率仅为2.4微瓦,这说明要点燃一个小灯泡需要100万株葡萄,并且产电能每天都在衰减。由此导致生物燃料电池的使用范围非常狭小,远没有达到全面推广的时期。研究人员正在积极研究,努力克服这一瓶颈。
本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文
5.1开发无介体生物燃料电池[5]
有一类铁还原性微生物,由于其细胞膜上有丰富的细胞色素,表现出较强的电化学活性,在生物电池中能直接将电子转移至阳极而不需要借助任何介体。研究表明Rhodoferax ferrireduler和Geobacteraceae种群的微生物都具有这种功能,它们在电池内发生的反应可表示为:
C6H12O6+6H2O+24Fe(Ⅲ) 6CO2+24Fe(Ⅱ)+24H+
+24e-。
无介体生物燃料电池的优点主要表现为有充足的空间,有利于提高电子转移的效率和速率。
5.2加强对电极的修饰[4]
学者Derek R. Lovley等用石墨毡和石墨泡沫代替碳棒作为电池的阳极,研究发现电池的电能输出大大增加,约为原来的三倍。说明增大电极的表面积可以增大吸附在电极表面的微生物和酶的密度,从而增加电量的输出。
Zhen He等在微生物燃料电池中用微生物来修饰阴极,加快了氧气的还原反应速率,极大地提高了电池输出的电流密度。
5.3 选择合适的质子交换膜[4][6]
质子交换膜能有效地维持电池两极室内酸碱度的平衡,保证电池反应的正常进行。Liu和Logan在电池的设计中取消了质子交换膜,结果发现电池的库仑输出效率由55%降到了12%;Min et al.研究发现如果氧气由阴极室进入阳极室,电池的库仑输出效率会从55%降至19%。这说明质子交换膜的质量好坏关系到生物燃料电池的性能,选择合适的质子交换膜,增强质子的穿透性而降低氧气的扩散成为了生物燃料电池开发中的一个重要环节。
5.4 开发光化学生物燃料电池[5]
利用光合细菌或藻类吸收太阳光,并将其转化成电能的装置称为光化学生物燃料电池。科学家曾设计出这样的一种电池:用石墨作阳极,阳极室内有项圈藻和可溶性奎宁介体;阴极也为石墨电极,电解质溶液为铁氰化钾。把这种电池先放在阳光下光照10小时,然后在黑暗的环境中放置10小时,发现可产生1mA的电流(外电路电阻为500欧),只不过光子转化成电子的效率只有0.2%。后来人们又用Synechococcus细菌来代替项圈藻,发现转化率可提高到3.3%。
参考文献:
[1] A.K.Shukla,P.Suresh,S.Berchmans ,A.Rajendran.Biological fuel cells and their applications[J]. Current Science,2004,(4):455-468.
[2] 沈萍.微生物学[M].北京: 高等教育出版社, 2000,446-450.
[3] 刘强,许鑫华,任光雷,王为.酶生物燃料电池[J].化学进展,2006,(11):1530-1536.
[4] 连静,祝学远,李浩然,冯雅丽.直接微生物燃料电池的研究现状及应用前景[J].科学技术与工程,2005,(22):1671-1815.
[5] Frank Davis and Séamus P.J.Higson.Biofuel cells-Recent advances and applications[J].Biosensors and Bioelectronics, 2007,(22):1224-1235.
[6] Alyssa L.Walker,Charles W.Walker Jr.Biological fuel cell and an application as a reserve power source[J].Journal of Power Sources,2006,(160):123-129.
[7]袁丽霞.多种多样的电池[J].化学教学,2006,(12):53-56.
[8]仇红亮.漫谈氢能源发展的尴尬[J].化学教学,2005,(6):37-38.
致谢:本文在写作过程中,得到化学系乐翠娣老师的指导和帮助,谨致以诚挚的谢意!
[关键词] 生物质 颗粒燃料 清洁燃烧
正文
1、概述
生物质颗粒燃料是在一定温度和压力作用下,利用木质素充当粘合剂,将松散的秸秆、树枝和木屑等农林生物质压缩成棒状、 块状或颗粒状等成型燃料。中质烟煤相当;基本实现 CO2零排放,NOx和 SO2的排放量远小于煤,颗粒物排放量降低;燃烧特性明显得到改善,利用效率显著提高。 因此,生物质固体成型燃料技术是实现生物质高效、 清洁利用的有效途径之一。 生物质固体成型燃料主要分为颗粒、块状和棒状 3 种形式,其中颗粒燃料具有流动性强、燃烧效率高等优点,因此得到人们的广泛关注。
随着我国的再生能源快速发展,生物质成型燃料技术及其清洁燃烧设备的研究开发提高了秸秆运输和贮存能力,燃烧特性明显得到了改善,可为农村居民提供炊事、取暖用能,具有原料来源广泛、价格低、操作简单等特点,是生物质能开发利用技术的主要发展方向之一。
自2006年1月1日我国颁布实施了再生能源法。使我国生物质能源发展走上了快速规范化的道路。生物质能在我国主要是以农作物秸秆为主体的资源。秸秆长期被作为农村传统的用能,随着我国农村经济的发展,农民,特别是新一代的农民难以接受传统的、直烧秸秆生活用能的落后方式。但又苦于缺乏先进廉价的使用。也只能花高价用液化气、电、型煤等现代能源。由于现代能源的紧张和价格的日趋上涨,长期花高价用现代能源,农民又难以承受。特别是城镇及城市接壤区域居民采暖,800-900元每吨的煤,一个冬天要用上1-2吨满足采暖需要,农民甘愿受冻也不愿花如此大的费用,而城镇及城市接壤区域居民采暖受到环境要求的严格限制。目前,居民冬季用煤采暖的已越来越少。从这一点看,在现代社会有相当多的农民没有得到,也很难得到良好的能源服务,他们的现代生活水平还较低。国家早就重视如此重要的民生问题,从20世纪90年代初中国农业部和科技部就开始投资进行农作物秸秆资源化利用的研究、开发、试点示范和技术推广工作。近几年,中国农作物秸秆的清洁、方便能源利用的技术研究和开发工作已取得了一些成果,有些技术已趋于成熟,并得到一定程度的推广。现在,中国主要的农作物秸秆能源利用技术有秸秆气化集中供气技术、秸秆压块成型及炭化技术、利用秸秆制取沼气技术和秸秆直接燃烧技术。由于中国农村经济的发展,农民及城镇居民生活水平的提高,居民对清洁能源的需求,加上这些秸秆能源利用技术的不断发展和逐步完善,秸秆能源利用将逐渐由传统的、低效不卫生的直接燃烧方式向优质化和高效化方向发展。
国外关于生物质成型燃料与燃烧技术设备的应用以趋于成熟化和普遍化,我国生物质成型燃料的发展还刚开始,与之相适应的燃烧技术设备处于一种滞后状态。目前一些成型燃料的应用,主要是在现有燃烧设备的基础上,直接应用或改造应用,既使河南省科学院研制具有较高水平的家用颗粒燃料炉灶,也存在着技术不到位的情况,难以产业化发展,没有做到商品化应用。
有些单位在取得了生物质颗粒燃料炊暖炉灶的基础上,立足于建立一个秸秆成型颗粒燃料与高效清洁燃烧设备系统技术产品的有机统一,协调发展的机制。在进行“生物质冷成型燃料加工设备系统”和生物质颗粒燃料炊暖炉灶的研制过程中,重点解决了目前百姓采暖困难问题,创造了“生物质颗粒燃料供热锅炉”的成果。采用了生物质颗粒燃料炊暖炉灶的核心技术,实现了生物质高效、清洁燃烧、节能排放的目标。应用广泛,可满足城镇及城市接壤区域居民采暖需求。
2、物质颗粒燃料成型和清洁燃烧技术及设备
2.1传统成型方法。
它与现有的饲料制粒方式相同,即原料从环模内部加入,经由压辊碾压挤出环模而成粒状。
包括原料烘干、压制、冷却、包装等。该工艺流程需要消耗大量能量,首先在颗粒压制成型过程中,压强达到50~100MPa,原料在高压下发生变形、升温,温度可达100℃~120℃,电动机的驱动需要消耗大量的电能;其次,原料的湿度要求在12%左右,湿度太高和太低都不能很好成粒,为了达到这个湿度,很多原料要烘干以后才能用于制粒;第三,压制出来的热颗粒(颗粒温度可达95℃~110℃)要冷却才能进行包装。后2项工艺消耗的能量在制粒全过程中占25%~35%,加之成型过程中对机器的磨损比较大,所以传统颗粒成型机的产品制造成本较高。
2.2冷成型技术。
新型冷成型技术通过颗粒成型机直接压制,把秸秆、木料残渣等转化成大小一致的生物颗粒,其燃烧效率超过80%以上(超过普通煤燃烧约60%的效率);燃烧效率高,产生的二氧化硫、氨氮化合物和灰尘少等优点。
2.3清洁燃烧设备
目前燃烧设备的理论研究和应用研究还较少,国内也引进一些以生物质颗粒为燃料的燃烧器, 但这些燃烧器的燃料适应范围很窄,只适用于木质颗粒,改燃秸秆类颗粒时易出现结渣、碱金属及氯腐蚀、设备内飞灰严重等问题,而且这些燃烧器结构复杂、能耗高、价格昂贵,不适合我国国情,因此没有得到大面积推广。
哈尔滨工业大学较早地进行了生物质燃料的流化床燃烧技术研究,并先后与无锡锅
炉厂、杭州锅炉厂合作开发了不同规模、不同炉型的生物质燃烧锅炉。 此外,河南农业大学研制出双层炉排生物质成型燃料锅炉,浙江大学研制出燃用生物质秸秆颗粒燃料的双胆反烧锅炉等。
3、发展前景分析
我国生物质能资源非常丰富,农作物秸秆资源量超过7.2亿吨,其中6.04亿吨可作能源使用。国家通过引进、消化、吸收国外先进技术,嫁接商品化、集约化、规模化的管理经验,结合中国国情,在农村推广实施秸秆综合利用技术,在节省不可再生资源、缓解电力供应紧张等方面都具有特别重要的意义。秸秆综合利用不但减少了秸秆焚烧对环境造成的危害、减少了温室气体和有害气体排放,而且对带动新农村建设无疑将起到重要的促进作用。从秸秆资源总量看,广大农村、乡镇的各种秸秆产量大、范围广。生物质固体燃料是继煤炭、石油、天然气之后的第四大能源,是可取代矿产能源的可再生资源,是未来一个重点发展方向。
参考文献
[1]刘延春,张英楠,刘明,等.生物质固化成型技术研究进展[J].世界林业研究,2008,21(4):41-47.
[2]赵迎芳,梁晓辉,徐桂转,等.生物质成型燃料热水锅炉的设计与试验研究[J].河南农业大学学报,2008,42(1):108-111.
寻找新型能源形式是永恒话题
光合作用,为包括人类在内的几乎所有生物的生存提供了物质来源和能量来源。据估计,地球上的绿色植物每年大约制造五千亿吨有机物,远远超过了地球上每年工业产品的总产量。所以,人们把地球上的绿色植物比作庞大的“绿色工厂”。不仅如此,煤炭、石油、天然气等燃料中所含有的能量,归根到底都是古代的绿色植物通过光合作用储存起来的。因此,光合作用对于人类乃至整个生物界都具有非常重要的意义。
然而,诺贝尔化学奖得主哈特穆特·米歇尔却指出,植物光合作用仅有不到1%的太阳能会储存在生物质当中。如果我们完全依赖植物光合作用来生产能源作物,地球上的森林很快就会消失。
米歇尔提出:千万不要依赖光合作用作为能源生产的唯一途径。这揭示了未来能源发展的趋势:寻找新型能源形式将是社会实现可持续发展过程中的永恒话题。
新型能源- - - 浮游植物、转基因藻类
浮游生物,即在海洋、湖泊及河川等水域中,那些自身完全没有移动能力,或者有也非常弱,因而不能逆水流而动,而是浮在水面生活一类生物的总称。
浮游植物每年通过光合作用可制造高达360亿吨的氧气,占地球大气氧含量的70%以上,在进行光合作用的同时产生大量的能量储存在其体内。浮游植物中的藻类,其数量又占浮游植物数量的60%以上,其生产力占全球总生产力的45%以上,占地球上自养生物年蓄积碳元素量的40%。
无论是从储存能量,还是产生氧气、清除二氧化碳的能力来看,藻类等浮游植物可算是一大型光转化与储存工厂。
在大湖泊和海洋中,光合作用几乎都在真光层内进行。据科学家计算,整个海洋具有光合作用的浮游生物,每年通过光合成的总碳素量估计可达200亿甚至250亿吨。如果利用基因工程技术对能够进行光合作用的浮游生物,包括微生物,进行适当的基因工程改造,就能够使得这些生物的有机物合成效率进一步提高,并且能够选择性地为人类合成我们所需要的有机物。
要想实现充分利用浮游生物开发新能源的目的,需要建造新型的浮游生物养殖场,建造全方位透明的饲养池以增加单位面积的光照强度和光合作用的效率。
藻类生物具有光合效率高、生长周期短、速度快、数量庞大等特点,并有其自身独特的结构特点- - -结构中有一多半是油脂。以这一系列特点为基础,针对其潜在的利用价值,美国制定了1978-1996年间完成国家可再生能源实验室《水生物种计划- - -藻类生物柴油》计划以及2007年微型曼哈顿计划- - -藻类生物原油研究;与此同时于2009了《藻类生物燃料技术路线图》。
微藻制油的原理是利用微藻的光合作用,将化工生产过程中产生的二氧化碳转化为微藻自身的物质从而固定碳元素,再通过诱导反应使微藻自身的碳物质转化为油脂,然后利用物理或化学方法把微藻细胞内的油脂转化到细胞外,再进行提炼加工,从而产出生物柴油。
值得注意的是,特殊品系微藻类的产油能力可达油脂作物的数倍。藻类生物燃料采用燃烧产热的方式利用生物质能源,将微藻类的生物质干燥后,像高等植物木材般燃烧产能,此举也大大提高了藻类生物的利用率。
藻类产油日益受到人们的高度重视,但这一新型能源的开发依然存在问题,如大部分藻类的产油量不超过自身重量的10%。为寻找产油量高的藻类,目前美国的多个科技公司和实验室正在加紧进行转基因超级藻类的研发。现有公司已经测出了藻类的基因序列,拟通过添加和操纵基因造出高油产量的藻类系列,以期藻类的产油量超过自重的40%。
转基因藻类目标是“驯化藻类,把它变成一种作物”,从而生产出藻类生物原油、藻类生物汽油、藻类天然气、藻类氢气等产品,增加自然界光合利用率,缓解能源紧缺问题。在石油价格大幅上升、粮食短缺问题日渐突出的今天,该产业有着广阔的发展前景。
新型能源- - - 微生物发酵
随着科学技术的进步,微生物在新能源开发应用领域有着光明的前景。
如微生物与生物柴油。微生物油脂是酵母、霉菌、细菌、藻类等微生物在一定条件下,以碳水化合物、碳氢化合物和普通油脂作为碳源,在菌体内产生的大量油脂,将之规模化生产即可得到生物柴油。此方法污染少、成本低、工艺较为简便,同时充分利用了玉米秸秆等废弃物制造绿色能源。通过技术手段突变从而产生高产油菌株,使得生物柴油的生产回报更加丰厚。
再比如,微生物制氢。氢能源具有清洁无污染、能量密度高等特点,被认为是未来经济发展的理想绿色能源之一。生物制氢因其具有低能耗、低成本、无污染和可再生性等优势,一直是国际研究的热点。光合细菌可以使有机物分解产生氢气,且产氢的能量转化率及氢气的纯度均较高。其中,研究较多的是深红红螺菌。它能够以有机废料为原料进行光合产氢。据报道,只要在合适的底物和环境条件下,光合细菌就能进行光照放氢的代谢反应,生产出绿色清洁的能源。
还比如,微生物与燃料酒精。在微生物作用下,将糖类、谷物淀粉和纤维素等物质通过乙醇发酵生产出燃料级乙醇,从而替代石油作为新型燃料,这是微生物在能源领域的又一应用。该技术具有低污染、低成本、燃烧完全等特点,是当前许多国家应对能源危机的举措之一。
微生物与沼气运用也是值得关注的技术。沼气发酵又称为厌氧消化或厌氧发酵,是指有机物质如人畜家禽粪便、秸秆、杂草等,在一定的水分、温度和厌氧条件下,通过各类微生物的分解代谢,最终形成甲烷和二氧化碳等可燃性混合气体- - -沼气的过程。该技术的研发与应用,不仅有助于减少目前对矿物燃料的依赖,而且在工业、农业、环境改善等诸多方面都有积极作用。
重要的是,微生物能源是利用纯天然微生物自身发酵产生的能源,其自身燃烧产生的气体对地球环境的影响将比传统能源少很多,且赖于其巨大的数量及快速的繁衍速度,人们不用担心它会迅速枯竭。这些特点预示着这一能源形式将在未来人类发展中具有广阔前景。
清洁能源- - - 生物能
清洁能源是指在生产和使用过程中不产生有害物质,或可再生、消耗后可得到恢复,或非再生(如风能、水能、天然气等)及经洁净技术处理过的能源(如洁净煤油等)。其中,生物能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源于植物的光合作用。
生物能具有许多优点,如提供低硫燃料,在某些条件下提供廉价能源,将有机物转化成燃料从而减少对环境的公害,且与其他非传统性能源相比较,生物能技术上的难题较少。