首页 > 文章中心 > 机械与动力工程

机械与动力工程

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇机械与动力工程范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

机械与动力工程

机械与动力工程范文第1篇

【关键词】多体动力学,机械工程,航天器,机器人

多体力学是一门综合性质的学科,这门学科中包含了计算力学与工程力学等很多学科,是推动机械工程产业的重要支撑学科之一。一般机械系统能够通过多体系统获得较为全面的以及完整抽象的有效描述与高度概括,在对机械系统进行研究与分析时,是一个最优模型形式。在当前先进的航空航天也、技术制造也以及人体与假肢等高科技领域中,多体系统这门高新学科得到了广泛的推动与发展。在机械工程领域,多体力学有着十分重要的作用,并且逐渐的也引起了人们的重视。

一、对多体力学进行模型构建

机械多体系统是由很多不同的部件进行连接进而构建而成的,机械装置中的每个部件都会在机械设备进行运作时发生位移、更改速度以及其它方面的作用力参数。在对多体力学系统实施建模的过程中,一般需要构建出系统中的坐标系、构建系统中各个部件的模型并且还要对一些相关的约束以及力偶进行定义。在对多体动力学进行研究的过程中,最为主要的两个方向就是动力学与运动学。同经典力学相比较而言,使用多体力学来研究出的系统一般都会较为复杂,同时每个部件在自由度方面都会存在着不同程度的区别,并且各个部件在相对位移上也会发生很大的变化。故此,建立与求解运动微分方程的过程都是十分复杂的,并且想要准确的对运动方程进行求解还需要计算机技术辅助。

(一)多体动力学模型在表述上的分析。机械系统中的基础构件就是多体动力学中的各个部件,这些部件会承受来自于系统内外其他部件施加的约束作用,在对多体动力学进行机械设备模型的构建时,就会涉及到对各个部件的定义。力元:就是指多体力学环境中各个部件之间的相互作用。理想的力元可以等效成弹簧(扭转弹簧)或-阻尼器-致动器。铰:是机械设备中的运动副,会在实际应用的过程中,称多体力学中每个部件之间产生的约束叫做铰。外力偶:是多体系统内部的各个部件所承受的外力作用。拓扑结构:系统以及系统内部中的所有构件间存在相互关系以及链接的方式。

(二)模型和模型元素。以上描述的部件、力元以及约束等各种要素构成的这种拓扑结构系统都涵盖在多体动力学系统中动力学模型内。针对机械设备而言,在机械设备中的力元、铰、力偶以及部件等这些要素有着很多的种类。故此,想要方便对机械件各个要素进行更好地管理,可以将其按照不同的属性归类处理,一般 可以划分成约束模型约束、分析力模型元素、力模型约束以及部件模型约束。

(三)参考框架与坐标系。我们称机械运动中能够在两者之间永久保持不变距离的物理为刚体。任一选择刚体上的一点A构建出一个空间三角坐标系将刚体固定住,并且将A点视为该坐标系中的原点,这个坐标系对于刚体而言是连体基,也可以将其称作是局部坐标系。连体基需要全部固定与机械的部件上,一旦部件发生运动,连体基就相应的随之运动,并且连体基也不会由于刚体发生了运动状态的变化就随之发生变化。这样说来,只要是连体基的位置确定了,也就能够对刚体中任意一点的位置进行确定了。通常用地面坐标系作为连体基的参考对象,地面坐标系可以看成是全局坐标中的一个固定值。刚体与柔体在多体系统中的坐标定义是存在一定差异的,在对刚体坐标进行定义时,可以选择固定的坐标定义,这样一来,当刚体在状态上发生变化时,其坐标不会跟着发生变化。在对柔体进行定义时,需要选择浮动的坐标进行定义,这样一来柔性性的变化就会使坐标系发生线与角的位移,还能将柔体在局部发生的变化清晰的表现出来。

二、机械领域中对多体力学的实际应用

(一)柔性机械臂实施振动控制。作为一种精度较高的航天技术设备,轻质重载航天机械臂在端点处需要完成高精度大范围的位置跟踪任务,故此,需要对该机械臂在振动情况上实施必要的控制。对于那些需要在很大范围内进行运行的柔性臂,想要对其端点的振动进行关键性的抑制需要选择一个恰当的时间并在设备的端头出施加一个制动力。应当注意的是,这个时间点同柔性臂固有频率与固有阻尼之间存在着密切的关联。此外,想要实施有效的控制,还需要对伺服系统在动态特征上进行周全的考虑。相关研究发现,最佳的效果就是实施柔性臂端点变形进而实现全闭环反馈,可以令机械臂的振幅控制在一定数量级内。

(二)工业机器人中的应用。多体动力学中,工业机器人是十分经典的模型,其构成为一个分支、六个自由度,由铰对各个部件进行衔接。以PUMA760这一常用的机器人为例进行分析,从时间域以及频率域进行考虑,使用高速摄像仪对设备的一些相关的运动参数进行测量,并且将获得的电枢电流值向驱动转矩进行转化,大臂值为7.1N・m/A。把已经拟合好的模态参数向物理参数进行转化,能够对工业机器人在当前的阻尼系数还有刚度系数进行识别。对于机器人在关节上的特性研究来说,多体力学的应用是十分有意义的。

结束语:综上所述,多体动力学能够为机械航空领域、机器人领域以及兵器领域提供有利的理论工具以及技术支撑。一般机械系统能够通过多体系统获得较为全面的以及完整抽象的有效描述与高度概括,在对机械系统进行研究与分析时,是一个最优模型形式。对于多体力学在机械工程方面的研究,我们应该投入更大的精力,进而使机械工程能够得到更好的发展,最终为人们提供更加便捷的服务。

参考文献:

[1]产文兵.球轴承―齿轮系统多体动力学建模与仿真分析[D].昆明理工大学,2014.

[2]吴春峰.机械工程中的多体系统动力学问题研究[J]. 中华民居(下旬刊),2014,02:171-174.

机械与动力工程范文第2篇

关键词:热能;动力;锅炉

中图分类号: R151 文献标识码: A

一、热能动力工程

热能动力工程顾名思义主要研究热能与动力方面,其包括热力发动机,热能工程,流体机械及流体工程,热能工程与动力机械,制冷与低温技术,能源工程,工程热物理,水利电动力工程,冷冻冷藏工程等九个方面,其中锅炉的运行方面主要运用热力发动机,热能工程,动力机械,能源工程以及工程热物理等部分专业技术。热能动力工程主要研究方面为热能与动力之间的转换问题,其研究方面横跨机械工程、工程热物理等多种科学领域。其发展方向多为电厂热能工程以及自动化方向、工程物理过程以及其自动控制方向、流体机械及其自动控制方向、空调制冷方向、锅炉热能转换方向等,热能动力工程是现代动力工程的基础。热能动力工程主要需要解决的问题是能源方面的问题,作为热能源的主要利用工程,热能动力工程对于我国的国民经济的发展中具有很高的地位。

二、我国的热能动力工程发展情况

随着改革开放,我国国民经济体制发生很大的变化。社会对人的培养提出了新的要求。为了适应这种要求, 1993年7月国家教委颁布的普通高等学校本科专业目录,将几十个小专业压缩为9个专业,即热能工程、热能工程与动力机械、热力发动机、制冷及低温工程、流体机械与流体工程、水利水电动力工程、工程热物理、能源工程和冷冻与冷藏。1998年教育部颁布的新专业目录进一步将以上9个专业合并为1个,即热能与动力工程专业。从原来的几十个专业合并为1个专业,全国现在有120多所高校设有热能与动力工程专业。热动主要研究热能与动力方面,是跨热能与动力工程、机械工程等学科领域的工程应用型专业。热动主要学习机械工程、热能动力工程和工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术。本专业涵盖的产业领域十分广泛。能源动力产业既是国民经济的基础产业,又在各行各业中有特殊的应用,也是国家科技发展基础方向之一。能源动力领域人才教育的成败关系到国家的根本利益。随着我国市场经济的建立,社会需求和经济分配状态的变化、科技发展的趋势、对本专业的生源、就业等形成了挑战,更是热能动力专业教育的关键。同时,热动还是现代动力工程师的基本训练,可见热动是现代动力工程的基础。

三、热能动力工程在锅炉风机方面需要解决的问题

风机主要作用为气体的压缩和气体的输送,其原理是吧旋转的机械能转换为气体压力能和动能,将气体输送到特定的地点的机械,风机经常用于锅炉中,随着对于能源的需求越来越大,锅炉中的风机在工作中经常会烧坏电机的事故,对于工厂的经济产生巨大损失,严重危害工作人员的人身安全,因此,正确运用热能动力工程技术不断改进风机,对于风机和锅炉的安全性提出更高的要求势在必行。

四、热能动力工程中锅炉及工业炉的发展

1872 年第一台锅炉在英国被制造,随着锅炉的产生,蒸汽机时代出现,1796 年瓦特发明了分离冷凝器,代表着锅炉的完整运作体系的初步确立,工业炉和锅炉原理类似,从某些方面来讲,锅炉也是工业炉的一种,工业炉是指在工厂的工业生产过程中通过燃料的燃烧进行热量的转换,对材料进行加热的设备,工业炉产生于中国商代,主要的工作方式是通过加热提炼铜器,春秋时期产生了铸铁技术,这证明着工业炉的温度控制正在进步。1794 年熔炼铸铁的高炉出现,1864 年马丁建造了气体燃料加热的平炉,随着现代化科技的进步,计算机逐渐代替了人工进行对锅炉系统的控制,推钢式炉和步进式炉成为吸纳带连续加热炉的两种基本类型,两者只有运输燃料的方式有所不同而已。

五、热能动力工程炉内燃烧控制技术运用

锅炉的燃烧控制是调整能量转换幅度的核心技术,在当今社会,锅炉由人力向锅炉内填充燃料逐渐转型为步进式的自动控制填充燃料所代替,更加先进的锅炉甚至使用全自动燃烧控制,根据其运用热能动力自动控制技术的不同,锅炉的燃烧控制分为以下几种:

1、以烧嘴、燃烧控制器、电动蝶阀、热电偶、比例阀、流量计、气体分析装置以及PLC 等部件组成的空燃比里连续控制系统。这种燃烧控制系统是由热电偶检测出数据传送至PLC 与其本身设定的数值进行比较,偏差值通过使用比例积分及微分运算输出电信号同时分别对比例阀门以及电动蝶阀的开放程度进行调节,从而达到控制空气与燃料比例调节锅炉内温度的目的,此种方式温度控制并不十分精确,需要仔细确认额定数值。

2、由烧嘴、燃烧控制器、流量阀、流量计、热电偶几个部分组成的双交叉先付控制系统,其工作原理主要是通过温度传感器热电偶吧需要进行精确测量的温度变成电信号,这个电信号即是用来代表测量点的实际温度,此测量点温度期望给定值是由预先存贮在上位机中的工艺曲线自动给定的,并根据两者数据之间的偏差值的大小,由PLC 自动调整燃料与空气流量阀门的开合程度,通过电动的方式运行机构的定位以及空气和燃料的控制比例,并接住孔板和差压变送器测量空气的流量,燃料的控制也通过一个专用的质量控制装置来测量,是温度精确的控制在必要的数值上。这种燃烧控制优点在于方式节省部件,并且温度控制精确。

六、仿真锅炉风机翼型叶片

锅炉的内部的叶轮机械内部流畅需要带有十分强烈的非定常特征,并且其内部构造十分复杂,不容易进行十分细致的测量实验,并且到目前为止,仍然没有可以解释流动分离、失速和喘振等流动现象的完善的流体力学原理,因此要了解机械内部流动的本质需要更加可靠详细的流动实验和数值模拟实验,通过使用软件二维数值模拟锅炉风机翼型叶片,对空气以不同方向吹入翼型叶片造成流动分离进行模拟,并根据模拟的数值创建而未模型,进行网格的划分,设定边界条件和区域,最后输出网格,在使用求解器求解,这样才可以对不同的气流攻角的流动进行二维数值模拟,,达到模拟的目的,同时可以根据模拟不同攻角下所得到的速度矢量制成矢量图进行比较和分析,最后得出锅炉风机翼型边界层分离和攻角的关系。

七、热能动力工程的发展方向

1、热能动力及控制工程方向(含能源环境工程方向)主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。

2、热力发动机及汽车工程方向掌握内燃机(或透平机)原理、结构,设计,测试,燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。

3、制冷低温工程与流体机械方向掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。

4、水利水电动力工程方向掌握水轮机、水轮机安装检修与运行、水力机组辅助设备、水轮机调节、现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂现代测试技术方面的知识。

结束语

热能动力工程的迅速发展使得热力发动机专业方向,其中包括热力发动机主要研究高速旋转动力装置,包括蒸汽轮机、燃气轮机、涡喷与涡扇发动机、压缩机及风机等的设计、制造、运行、故障监测与诊断以及自动控制等行业的发展都到了提速。热动能的发展为航空、航天、能源、船舶、石油化工、冶金、铁路及轻工等部门培养高级工程技术人才,若能将这些理论知识转换成实际的运用,我国的能源压力将大大降低。

参考文献

机械与动力工程范文第3篇

[关键词]热能与动力工程、现状、科技创新

[中图分类号]TM621[文献标识码]A

1热能与动力工程

热能已被广泛应用于我国许多行业,并在国民经济中占有核心地位。最广泛使用的是电力工业,在使用核电、火电及其他设备、热能动力工程及相关技术,是其工作的基础。钢铁行业,尤其是在高炉炼铁、炼钢和轧制过程中,也得到了广泛的应用机械工业及相关工业建筑,包括物质生产、物质生产、锻造、焊接、铸造技术、热能利用率;农业生产和水产养殖,也有广泛的应用,同时,在广大人民的日常生活中,热量也有着许多的用处,如北方冬季供暖等。基于上述分析,我们可以看到,热能与动力工程,在人们的生活和生产中起着非常重要的作用,是最重要的能源之一,我们将根据热能的特性,来研究更深入的热能的状态,在日常使用中发挥更大的作用。热能与动力工程是以工程热物理为主要理论基础,以内燃机和开发其他新型动力机械和系统为研究对象,采用物理知识和工程力学、机械工程、自动控制、计算机科学、环境科学、微电子技术等知识,研究如何将燃料的化学能和液体的高、低(或无)污染转化为动力的基本规律和过程,在过程中的自动控制技术。随着常规能源的日益短缺,人们的环保意识不断增强,节能,高效,减少或消除污染排放,开发新能源等可再生能源已成为能源、交通、汽车、造船、电力、航空航天等许多领域的重要课题,在国民经济中发挥着越来越重要的作用。

2热能与动力工程的现状

中国的能源与动力工程是在20世纪50年代形成的。在当时,国外社会发展体制的影响,形成在热能与动力工程专业包括电站锅炉、火力发电、内燃机、涡轮机、风机、压缩机、制冷、低温、加热、通风及空调工程、冷冻、冷藏、水电工程、水电站、水电站动力设备、水动力、自动化、机械、机电排灌工程、水力发电和提水工程和工程热物理几十个,形成了以工业产品生产人才培养目标的基本模式,在我国发展有着相互适应的时间和范围。随着改革开放的进行,我国国民经济体系发生了很大变化。社会对人的培养提出了新的要求。为了满足这一要求,国家发展了很多关于热能与动力工程的提案,即热能工程,热能和动力工程机械,热发动机,制冷和低温工程,流体机械和流体工程,水利水电工程,工程热物理等。这说明,在短短的十年时间里,热能与动力工程的发展是突飞猛进的。这样拓宽了专业人才培养模式。让更多的学生基础知识的不断扩大,对市场的适应性需求大大加强。半个世纪以来,热能与动力工程为社会输送了大量的功能,他们是我国特别是能源领域的中坚力量,为建设我国的全面建设小康社会和在世界各国增加颜面做出了巨大贡献。但是,就目前社会对于热能的利用而言,却存在着许多问题,目前,人类所使用的热量,所以它主要是通过一次能源转换而来,燃料的化学能转换中,燃料的化学能转换主要是通过燃烧的方式,将化学能转化为热能,并通过技术手段,转化为人类生活和生产机械能的需要。但对环境的影响是存在的,主要存在于热污染,空气污染,噪音污染和放射性危害,主要河流的水站,在很大程度上会影响水生生物和空气质量变化,热能给环境带来的影响是巨大的,在人们的生活中处处都是其带来的环境污染,漫天的雾霾,细微的空气颗粒等等都是燃烧所形成的空气污染,这会让我们的生活质量贬低,这回让中国的国民的身体健康受到威胁和换上疾病,让人们每天都为出行担心,所以在热能的转化中,我们要更加的注重环境,这将是我们必要的责任,为了我国的发展做出贡献,让我们的人民生活得到一定的保障。如何开发和利用热能和动力工程,是非常关键的工作内容,也是国家的重点。将根据热能和动力工程的开发和利用进行了详细的分析,对环境和能源节约和减少排放的发展和影响的前景,努力帮助更好的能源开发和利用,为人类的发展作出更突出的贡献。

3探究热能和动力工程的科技创新

现如今的热力和动力工程存在着许许多多的问题需要解决,下面我们就来讨论下热力与动力工程的创新。加快相关产业结构调整。对于火电工程,需要很好的调整和改进的产业结构,努力提高能源利用效率。积极服务业是生产,发展和满足人民的方便,提高生产质量的核心内容,在工业生产,淘汰落后的产品,对旧技术和相关设备必须要加快淘汰速度,并及时发展新技术,提高生产质量和生产效率,优化产业结构,进一步促进产业转型升级。加强技术创新。对于热能与动力工程及相关行业,需要一个良好的技术手段来进行创新,对行业上的设备进行一定的创新,来让我国的热能与动力工程的行业在我国起到一定的价值,在本行业中让我国在世界上起到一定带头作用。针对目前存在的主要弊端,完善和促进市场经济,环境和系统的良好节点。加强合作和相关研究机构,建立技术研发和服务平台,积极开展相关的还原技术,替代技术,回收技术和资源技术,并努力减少排放,减少环境污染,同时提高能源利用效率。同时,也需要发展创新模式,以加快经济周期,依靠现代科学技术,节能减排工作管理,作为工作的关键内容和核心内容,加快发展新技术,并结合实际的特点和具体应用的热能与动力工程的步伐。新能源技术的发展得到具体的使用,根据企业的能源消耗和生产,采取节能措施,并进行回收利用,进而达到节能降耗的效果。

4结论

总之,根据热能与动力工程我们作了详细的阐述,分析了相关的热工设备,针对目前存在的主要弊端,完善和促进市场经济,环境和系统的良好节点,并实施方案和把我工作重点,力求更全面的热能与动力工程实际情况的把握,更好的使用他们,然我们的社会得到一定的保障,让我们生活的环境得到一定的保障,让未来的人类有着更多的生存空间,为了我们的将来,让我们一起努力,建设美好的明天。

[参考文献]

[1]阳帆.试析火电厂中热能与动力工程的改进方向[J].科技创新与应用,2014(20).

[2]田青.热能与动力工程在锅炉领域的应用探究[J].科技创新与应用,2014(19).

机械与动力工程范文第4篇

关键词:热能与动力工程 锅炉 应用与创新

中图分类号:TK22 文献标识码:A 文章编号:1674-098X(2015)10(c)-0079-02

目前,我国锅炉种类比较多,且在锅炉的生产制造和能源分配上也存在着相当多的问题[1]。因此我们目前的任务是深入探讨并研究热能与动力工程,制定锅炉设计的合理方案,从而使锅炉的利用率得到更好提高,进一步促进锅炉业的发展,这样才能实现未来热能与动力工程技术在锅炉专业中的创新[2]。下面该文从热能与动力工程在锅炉中的应用角度展开论述,同时深入分析并探讨了其在科技创新方面的有关问题及今后的发展趋势。

1 简介热能与动力工程在锅炉中的应用

1.1 热能与动力工程在工程中的概述

简单来说,热能与动力工程我们从字面上就可以看出主要研究的是热能与动力两者之间的能量关系,即热能有时转化为动能,动能有时再转化为热能,但在一些情况下,也可通过蒸汽等技术将热能转化为电能,进而促进电力行业发展。作为一门综合性学科,热能与动力工程涵盖了热力发动机、流体工程及流体机械等内容,另外,与热能工程相关的因素也相对较多,主要包括热能工程、热力发动机、流体工程及流体机械、动力机械与热能工程、能源工程、制冷与低温技术、冷冻冷藏工程、水利电力工程及工程物理等方面,而能够综合体现热能与动力工程相关研究内容的是锅炉业,在锅炉制造设计的方案中,很多方面均与热能和动力工程的研究内容相关,而且还具有一定程度的系统综合性[3]。虽然热能与动力工程是锅炉中的重点研究对象,但对其他多种相关领域的研究也不能忽视,如工程物理、能源工程、机械工程等,而在所有的研究内容中,热能与机械能之间的能源转化占有相当大的比重。纵观我国热能与动力学的发展过程及其未来发展方向,可以得出其具有多面性的特点,而主要发展方向是电厂热能工程。

近年来,随着科技水平的不断发展提高,极大的带动了热能与动力工程的发展进步,使其逐渐趋于自动化,然而我国在物理工程方面的人才相对比较匮乏,无法满足现在的市场需求,因此未来还需特别重视对该类人才的培养,除此之外,还需要进一步提高锅炉热能转换及空调制冷等方面的能源利用率,从而保证热能动力工程的顺利发展,只有解决了能源使用问题,才能够使热能与动力工程在生产中的重要作用得到充分发挥,进而保障我国经济的顺利发展,因此,对热能与动力工程进行深入研究具有相当重要的意义。

1.2 锅炉构造及动力的应用原理分析

锅炉的燃气控制、锅炉的外壳及锅炉的生产配套部分共同构成了锅炉,而燃气锅炉外壳还包括底壳和面壳两方面,每个部分都发挥着不同的作用,其中底壳主要负责锅炉燃烧,也是锅炉燃烧的关键环节,因底壳上有电控盒和热交换器等部件,锅炉通过底壳与其他部分更好的进行连接,从而形成一个完整的结构。而面壳的作用主要是防止灰尘等杂物进入锅炉,更好的保护锅炉,进而使其使用寿命得到延长[4]。除此之外,锅炉的核心部件电气控制也在锅炉的运行中发挥着关键作用,其主要任务是保障锅炉各项工作和锅炉燃烧的正常运转。近年来,随着科技水平的不断进步,使锅炉行业得到较快发展,目前锅炉业均已实现自动化控制,这样就能很好的控制锅炉的热平衡及锅炉的燃烧,从而使锅炉的燃烧效率得到提高,保证热能的利用率,从而有效地减少能源浪费。

1.3 热能与动力工程在锅炉中的应用

能量转换调节在锅炉燃烧控制中是相当必要的,随着时代的不断发展,锅炉的类型也发生了相当大的变化,并且实现了智能填料,不仅节省了劳动力,还使锅炉燃烧得到更好的控制。锅炉在人类工业发展进程中发挥了重要作用,从某种角度讲,工业炉的前身就是锅炉,是工业革命进程中不可或缺的重要力量。锅炉主要是通过燃烧能源产生大量热能,从而实现能源的有效转化,不仅为进一步发展工业文明提供保障,也为提高人类生产力作好基础铺垫。

2 热能与动力工程在锅炉生产中存在的问题分析

在锅炉生产中,锅炉的风机是不可或缺的关键组成部分,其主要承担着将电能向动能转变的作用,在实际生产过程中,保证将气体顺利地输送到锅炉内部。因此,我们不仅要调机的运行状态,还要将热能与动力工程技术正确合理的应用到锅炉的制造改进中,不过,需要特别注意的是锅炉内部叶轮机械的结构相当复杂,外界一些不确定因素很容易影响测量的相关温度变化值,造成了测量中的不可靠性。针对这种情况,目前我国还未研究出有效的解决对策,但是从多种方向将热能与动力工程已开发的相关软件有效测定风机叶片燃烧的速度,并且还可对所测数值进行相关模拟,从而获得较为准确的软件模拟结果,为风机叶片的使用寿命作出准确评估,从而使锅炉燃烧得到更好的控制,降低其生产运行中的使用风险。

3 热能与动力工程在锅炉运行中的科技创新

3.1 锅炉燃烧控制技术的创新

如何有效地调节能量转换是锅炉燃烧控制中的重要部分。早期工业生产中,我国的锅炉填充燃料绝大多数是采取人工添加的方式,从而保障锅炉相关工作的正常稳定运转。不过,随着科学技术的发展,绝大部分企业已从人工填料方式向步进式的自动化转变,而连续控制系统是主要的锅炉燃烧方式,其主要由各种气体的分析装置及燃烧的控制器等部分构成,通过热电偶的有效检测来设定合理数值,再利用计算机准确计算出所测数值偏差,从而保证输出结果的准确性,与此同时,还能够有效且合理的对锅炉燃烧进行控制。

3.2 锅炉风机的仿真类翼型叶片

由于锅炉内部的风机结构复杂、运行精密,因此给实际测量带来一定的困难。目前我国尚未有科学且完整的体系来完善锅炉的叶轮制造及运行发展。如果想要获取准确有效的数值,就应通过实验模拟的方法对机械内部的气体流动进行有效评估,模拟空气以不同方式出入风机时的相关流动分离。最后,再利用计算机对这些数值进行模拟设定,采用模拟实验方法的主要目的是分析在不同速度情况下所得到的矢量图,将多组数据进行比较后,确定出锅炉风机翼型边界层分离及攻角之间的关系,从而进行深一步的研究。

综上所述,随着经济的发展,热能与动力工程在实际生产生活及锅炉发展中均越来越发挥着重要作用,是保证我国经济发展的基础,也是工业水平提高的一个重要标志。因此,不管现在还是未来,对热能与动力学的研究都是不可缺少的,从而使其在锅炉的正常稳定运转及能源生产中更好的发挥作用,为我国经济的可持续发展及能源利用率提供坚实的保障。

参考文献

[1] 武伟佳.浅析热能与动力工程的应用[J].科技创新与应用,2014(25):148.

[2] 田青.热能与动力工程在锅炉领域的应用探究[J].科技创新与应用,2014(19):21.

机械与动力工程范文第5篇

【关键词】 热能动力 能源 锅炉仿真

随着科学技术的迅速发展,我国热能和动力工程在方面已经取得了很大的成就,为了保证技术的完善性和全面性,还需要进步的研究和改进。而在工业发展过程中锅炉成为其重要的热能动力设备,但是锅炉烟气排放会造成一定的环境污染,同时也增加了排烟管的热量。本文主要针对热能动力在锅炉和能源中的发展情况进行分析和概括。

1 热能动力工程的研究发展方向

热能动力工程的研究也是科学领域中重要应用型专业,主要针对热能源和动力的发展方向和应用型进行详细的分析和研究。由于其专业的重要性,我国基本上有上百个院校已经开设了有关专业课程,以此培养关于此方面的科学型人才。现代化热动能专业是依据旧版的流体机械工程和热能工程以及动力机械、水利水电工程、能源工程等结合而成。热能动力属于机械工程研究项目,主要学习的内容是有关机械类、热动工程、工程热物理等的知识理论技术。并通过理论力学、传热学、电子电工技术、工程制图、热工测试技术等的专业学习方向和相关研究发展方向让学习或研究人员能够具备工程热力学、传热学和热工测试等热能动力工程理论方面的知识和实验技能。从而熟悉的掌握制冷装置、动力机械工程等能够准确的制定设计制造实验研究方向。

并且就业面比较广,其中包括电厂热能自动化、电厂热能工程、工程热物理过程以及流体机械自动化等的发展方向。现代化动力工程的基本训练内容就是热能动力学,由此可以看出,热动是现代化动力工程的基础。在上述基础上热能动力就是一个比较宽泛的专业知识体系,发展和研究的空间比较大,能从多角度,多方面进行分析探究。

2 热能工程技术在能源方面存在的问题

能源动力工业化发展与我国国民经济建设有着密切的联系,也是我国支柱型产业。能源问题越来越受全球人类关注,能否再生,能否采用更好的方法节约能源,体提高能源的利用率等已是当前社会各界谈论的热点话题。能源的发展利用涉及到我国多个领域和大型企业高科技技术应用,是国家经济发展和社会整体发展的重要命脉。

风机是一种有有多个叶片的能进行轴旋转的机械,能将施加在叶片上的旋转能转化为机械能,实现气体的流动,并应用于工程机械。风机的应用及其广泛,如发电厂、工业炉通风、车辆、船舶等用来排热、引风等的作用。现代化发展过程中电站的容量也在不断增加、并且运转速度也越来越高、要求效率高无心爱你路故障发生、同时要向自动化方向发展。对此电机在电站的使用性能要求也越来越高,不仅要安全可靠、还要提高运行效率,避免在运行过程中出现叶片和旋转轴损坏或是电机烧坏等的现象,以免长期下去造成事故发生,甚至是经济损失严重。

3 炉内燃烧控制技术

随着科学技术的不断完善和提高,工业技术计算机控制系统也不断的向自动化发展,逐渐转变成为一种具有先进高科技技术含量的信息监测系统,在设备的管理水平方面有了显著的提高。工业炉中的连续加热炉也得到了实际应用,改变以往的燃料燃烧和能源消耗的转化热量应用,使得生产技术工技术得到了有效的提高和发展。

工业炉中燃料的控制技术很重要,高科技的自动化控制系统在各个领域中的广泛应用已经逐渐替代了传统的手动控制。目前现代化连续加热炉炉型主要为分两种,其中推钢式加热炉可以采用燃料自动控制的方式进行加工。

推钢式加热炉自动控制系统方式主要分为两种空燃比例连续控制和双交叉限幅控制。双交叉限幅控制系统主要是通过系统中安装的温度传感器将系统检测到的温度转变成一种信号,其信号的数据值就是实际温度。该系统的组成部分包括燃烧控制器、燃气流量阀以及燃气流量计等主要构件。空燃比例连续控制系统是通过气体装置将将所要检测的范围进行合理的检测,然后将所检测的数据传输给PLC编程技术,并将之前设定的值进行比较,最后将分析得出的数据值按照4-20mA的电信号分别对燃气或是空气阀、动力阀的开度做以适当的调整,以此有效的对燃炉中的燃气比例和温度进行合理的控制。该系统的主要组成部分包括,PLC编程技术、空气或燃气比例阀、燃料控制器、气体分析装置等。两种方式共同的特点就是燃料控制器都是其主要组成部分,也是现代化工业燃炉自动化控制系统中不可或缺的重要装置。

4 关于软件仿真锅炉风机叶片的研究

工业锅炉中的风机叶片旋转的的内部机械流场具有较强的不定性,比较复杂。因此,对锅炉风机进行详细的实验研究比较困难,其中涉及的细节比较繁琐,在当前研究成果中对其力学解释和分析方法还不够完善。一些关于锅炉研究中的流动分离等现象,是目前迫切研究的重要内容。研究过程中需要建立比较可靠的实验模型和数值模拟,以此对机械流场内部作以详细的分析。为了准确的对锅炉风机叶片旋转的空气流动情况进行探究,利用软件建立二维数值模拟实验的方式。其软件数值模拟实验首先要创建二维模型,然后再根据所提供的数值划分成网格的形式,再设定边界区域,利用这些相关条件对输出的网格进行求解,求解过程中可以利用求解器。最后将求解出的结果在建立一个二维数值模拟,对空气来留角下的流动进行模拟求解,将得出的结果与速度矢量图做以分析比较,得出锅炉风机叶片分离和攻角之间的关系。

5 结语

上述主要是对热能动力工程在锅炉和能源方面发展情况分分析和探讨,进一步说明了热能动力在现代化科技研究中的重要性和各领域应用的广泛性。

参考文献:

[1]周武,庄正宁,刘泰生,顾杰,夏华澄.切向燃烧锅炉炉膛结渣问题的研究[J].中国电机工程学报,2005(4).

[2]宁玲玲,刘秉钺.造纸厂动力锅炉排污的节能[J].黑龙江造纸.2009(4).

[3]罗自学,梁培露,周怀春,陈世和.引入辐射能信号的锅炉氧量寻优控制研究[J].中国电机工程学报,2006(23).