前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇热能动力工程范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
DOI:10.16640/ki.37-1222/t.2017.03.067
0 前言
S着社会发展,计算机在社会生活中应用较为广泛,尤其在一些热力和热能研究和应用环节,提高了查找效率。传统的人为查表需要把查表作业和热力运算作业结合,计算较为繁琐,容易产生计算失误,降低计算效率。IFC公式的产生和发展,改变了传统单一计算形式,增加了IFC公式和计算机设备的关联,提高了计算效率和准确性,本文主要就200MW设备进行举例说明。
1 IFC公式阐述
随着经济和科学技术的不断发展,计算机技术的日渐成熟,被当下社会生产广泛应用。尤其是各企业的设计环节和热力体系的计算环节,极其需要一个系统化计算机统计公式来确保准确性。因此IFC公式和计算机技术紧密结合,满足了电厂和热力体系发展需要,在实际活动中应用较为普遍,发挥着重要作用。
由此可以看出,IFC公式具有时代性的发展特点。由于水和水蒸气的性质较为独特,因此在实际计算过程中,假使把压力和温度设置为变化量,进而对于比容和焓和熵的变化公式,我们可以利用以下函数方程式进行表达:g=g(P,T)。在这一函数方程式中,g代表焓元素[1]。进而,对这一函数方程进行分析和阐述,假使设置比容和温度具有变化性质,进而压力和焓的函数表达形式,我们可以用下面函数方程进行展示f=f( V,T),对这一方程形式进行分析和阐述,可以得出,f是具有自由性质的变量。IFC公式主要是利用压力和温度的变化,依据上述两个不同函数公式,对温度和压力值进行划分,在现实工作中具有实际意义[2]。
2 利用计算机进行查找作业
计算机在当今社会生活中应用较为广泛,尤其在一些热力和热能研究应用环节,改变了传统单一的人为查找弊端,提高了查找效率。传统的人为查表和找焓和熵图表,需要把查表作业和热力运算作业结合,计算较为繁琐,容易产生计算失误,降低了计算效率[3]。
2.1 利用计算设备进行查找作业
利用计算机技术进行查表作业,首先是建立在IFC公式基础上,把IFC公式和计算机技术整合运算,来给出水和蒸汽的性质特征。例如:在计算这一形式时,基于蒸汽压力和温度基础上,判断出蒸汽的性质。首先,我们可以利用:g=g(P,T),f=f( V,T)这两个公式进行计算,给出蒸汽中焓和熵的比例。在进行这一计算活动时,对于温度和压力的数值,可以设置为具有连续性的数值形式,保证计算机统计的真实性和计算结果的准确性,降低失误发生率。
2.2 利用计算机设备进行焓和熵的查图作业
进行熵和焓的查图作业时,不能直接利用计算机设备和IFC公式进行计算。在实际计算过程中,可以利用维寻根系统进行运算,对水和水蒸汽性质进行判断。为了增加公式的简洁性,把公式展现为:h=f1(p.t),s= f2(p,t),在知道蒸汽压力数值与熵的数值前提下,依据g=g(P,T),f=f( V,T)这两个公式进行对蒸汽的焓和温度进行计算,存在一定难度,不具有应用价值。进而可以把h=f1(p.t),s= f2(p,t)这两个公式进行变化,展示为:s-f2(p,t)=0,这一公式来进行计算。在s-f2(p,t)=0这一公式中,根据压力和温度数值,进而判断s-f2(p,t)=0这一公式的温度是具有变化性特点,可以把蒸汽的温度计算工作,变化为一元方程的计算作业,对一元方程 s-f2(p,t)=0 进行求根。这时计算机可以充分发挥作用,利用计算机的维根系统,来进行蒸汽温度和压力数值的统计,不仅可以提高计算效率,也保证了计算准确性。把计算机给出的温度和压力的数值,带入到s-f2(p,t)=0公式中,就可以计算出焓的数值,进而,在知道蒸汽的温度和焓的数值时,就可以把公式整合为:h-f1(p,t)=0来展开计算,在利用计算技术维根程序基础上,可以求出 h-f1(p,t)=0的解。对h-f1(p,t)=0这一方程进行观察,可以发现,这一方程式的解就是压力的数值。进而在给出压力的解后,可以直接把其带入到f=f( V,T)这一公式中,给出熵的数值[4]。
3 对200MW设备的热力计算举例说明
热力的计算要依据热力运作环节进行判断。如果电力体系产生甩负荷时,这一设备的开关将产生关闭现象,关闭蒸汽的主要运作端口,进而减少设备的出力。为了保证设备运作稳定性和平衡性,需要理由计算机系统的维根系统和IFC公式进行统计和计算。首先在对图表的观察中,我们可以发现,对于设备不同环节的蒸汽的压力和温度的变化数值,可以计算出焓的主旨和熵的数值。因为这一设备断开关相互的焓和熵在实际运作过程中会产生膨胀现象,进而可以判断出出口环节的蒸汽的熵和叶片后蒸汽的熵具有相等性,进而,利用焓和熵的查找,在世道P1和P2和S0数值基础上,利用IFC公式g=g(P,T),f=f( V,T)可以计算出不同环节熵和焓的数值,利用静力计算理论,来计算出设备的快关变化树立,观察设备的装子和端点,不同轴节的应力,来计算出设备动态强度[5]。
4 结论
在热能动力工程中,利用计算机维根系统和IFC公式,可以增加蒸汽熵、焓计算的准确性,提高解题效率。保证计算数值的准确性,具有非常重要的实际作用。
参考文献:
[1]张晓杭.新形势下电厂锅炉应用在热能动力工程中的应用[J]. 中国高新技术企业,2015(13):52-53.
[2]郑建华.新形势下电厂锅炉应用在热能动力工程中的应用[J]. 科技风,2015(18):159.
[3]房建军.电厂锅炉应用在热能动力工程中的探索[J].山东工业技术,2016(04):181.
【关键词】热能动力装置;类型;电厂;检修;维护
一、热能动力装置的类型
热能动力装置分为两大基本类型:(1)主要是以燃烧之中产生的燃气进入到发动机之中,进而进行相关能量的转换,并且加以循环利用,比如内燃机等装置,是此种类型的典型代表;(2)首先将燃料燃烧过程之中所产生的热能,通过技术手段,传递至相关液体之中,并且使液体汽化,进而气化之后产生的蒸汽导入到发动机当中,从而进行热能的传递以及转换,蒸汽机是其典型的代表。
二、电厂热能动力装置检修分析
1、热能动力装置检修目的是借助于检修工作的方式,掌握热能动力装置的实时运行状态,确保其运行安全、经济且可靠。同时,以检修为手段,还能够实现对各检修工作项目的合理安排,在降低热能动力装置检修工作成本的同时,提高相应设备的可用率。在此基础之上,还可构建能够与状态检修工作要求充分契合的管理工作体制,达到提高电厂运行质量与水平的重要目的。
2、热能动力装置检修方式通过借助于对检修的方式,能够及时判定热能动力装置存在的运行异常及故障,同时对热能动力装置部分可能出现故障的区域及故障类型加以预测与评估。同时,电厂还可借助于状态检修及诊断技术的合理应用,达到动态且真实反映相关设备运行状态信息的目的。需要注意的一点是:在电厂选取相关检修技术,实现对热能动力装置检修作业的过程当中,需要注意检修方式的针对性以及多元性,在提高热能动力装置运行可靠性的同时,实现对电厂发电成本的有效控制。但设备检修并无法完全替代常规意义上的定期检修工作,需要采取两者结合的方式,保障设备运行可靠且稳定。
3、热能动力装置检修的原则要求在电厂针对热能动力装置进行检修作业的过程当中,严格遵循以下两个方面的基本原则:(1)确保热能动力装置能够始终安全且稳定的运行,即针对电厂热能动力装置所涵盖设备检修工作期间的合理配置,重视对设备的检测与维护,同时需要制定并落实针对性的管理工作制度,确保对热能动力装置相关设备检修的及时性与有效性;(2)确保热能动力装置的检修工作计划能够自总体至分部,有计划地实施。在热能动力装置检修工作的实施过程当中,需要及时总结相关的经验教训,结合实际情况,对设备检修工作进行合理调整,尽可能地保障设备生产运行状态的稳定与合理。
三、锅炉装置的检测与维护
1、电厂锅炉装置的检修工作分析:(1)日常检修。需要以检修的方式避免因锅炉运行管道泄漏问题而引发的水蒸气温度降低问题,避免因运行管道传输热能失效问题而对发电作业产生的不良影响;(2)锅炉装置定期检修中需要保障一次、二次鼓风系统在正常运行状态以及风量的合理性,杜绝出现漏风的问题;(3)锅炉装置定期检修中需要安排工作人员专门针对锅炉运行系统蒸汽装置、管道回路、阀门部件的运行状态进行合理检测,确保锅炉装置能够始终安全且稳定的运行;(4)防止锅炉装置人孔、手孔出现泄漏问题。
2、从电厂锅炉装置的维护工作分析,维护工作中应当重点关注以下四点:(1)锅炉装置在修理或者是年检之后,需要对手孔、头孔、人孔等位置的螺栓部件进行定期的检查,防止因长时间且持续性使用而对螺栓部件的紧固性产生不良影响;(2)每周需要针对锅炉装置燃烧器系统及电眼运行质量进行检查。结合实际情况,可将相关零件拆卸下进行清洗,清洗之后重新安装,最大限度地保障零件运行稳定且可靠;(3)对停运锅炉而言,同样不能忽视保养的重要性。其中,对于拟停运时间在一个月以内的锅炉设备而言,需要在停炉之后将锅炉内部的液体放出,此过程中还需要注意提前关闭手孔以及阀门部件,并向锅炉中注入一定剂量的软化水,最后以专用泵将事先配置的碱性保护溶液注入锅炉装置内部,以达到保养锅炉装置的目的;(4)每年度需要对安全阀阀门进行校验处理,确保其密封可靠。
四、给水泵装置的检测与维护
结合笔者的工作经验,在有关电厂给水泵装置的检测过程当中发现:绝大部分给水泵系统均是由多台给水泵装置共同构成的。其中,2~3台给水泵装置被用作启动给水泵,剩余1~2台给水泵装置则作为辅助用/备用给水泵。按照此种配置方式,最为突出的优势在于:能够在主机系统出现运行故障的情况下,通过启动备用给水泵装置的方式,来保障整个系统运行的持续性与稳定性。然而,在多台给水泵综合运行的状态下,给水泵装置电动机的运行过热问题却始终是潜在的安全隐患之一。
在电厂给水泵装置出现发电机过热的情况下,对于因电压问题所引发的给水泵电动机过热问题而言,需要首先检查电动机供电系统的运行质量,通过缓解电压波动,维护供电系统运行稳定的方式,来解决此类故障。与此同时,对于因轴承部件损坏以及传统系统转动轴承缺油问题所引发的给水泵电动机运行不畅(引发过热)的问题而言,需要通过排除性检修的方式,明确具体的故障点以及故障类型,采取对传统系统相应轴承部件进行更换或者是加油的方式解决此类问题。而对于因通风孔道堵塞或者是风扇运行失效所引发的通风系统运行不畅问题而言,需要采取逐项排查的方式,对失效风扇进行合理修补。
五、结束语
热能在我国许多行业当中都有着广泛的运用,并且在国民经济当中,也占据了核心的地位。为提高整个电厂的运行质量,必须对热能动力装置进行系统且有效的检测与维护。
参考文献:
[1]陈威.电厂优化运行中汽轮机能损相关问题的探讨[J].中国新技术新产品,2010(5)
【关键字】:锅炉;能源领域;热能动力工程;发展现状;
就现阶段的世界能源使用情况来看,积极的开发新能源,已经成为了一项重要的责任指标,我们从能源的利用率出发,对其工程的能源资源利用率来说,其高低就决定了工程的合理性。专业领域在研究的过程中,会 影响到自身能源资金的有效性,因工程领域内的环境来说,其所发挥出的基本能力以及供给发挥作用,都能够对其运行效率有所提升。下面我们对锅炉与能源领域额热能动力工程进行简要分析。
一、能源动力工程概述
能源动力工程是对现代热能工程以及热力发动机的研究,其主要包括了对基本工程技术与热物冷藏等多个工程方面的合理化设计,这一点与热能的动力转化形式来说,可根据其技术的热能工程以及热力发动机的多个方面,其作用在于对热能和动力发动机的综合设计。在我国的煤炭资源丰富建设上,可结合企业的节制性质来看,可结合世界范围内的场景分析,并完善其在废气的处理,根据土壤环境的诸多危害,改善对脱硫技术等多方面的改进,对于基本的威胁作用,都会严重影响到资源的使用率,在应用的过程中,我们从环境的污染情况进行综合发展研究,其利用率是影响其转化率的重点。
就我国近年来的社会发展程度来说,对于工业锅炉的电站锅炉发展情况,其作用对于锅炉的使用来说,作用也可以确保其基本的设施需求,在连接上,根据整体的能应用渠道进行整体检测控制,这从基本的燃气阀冰箱调控等,都会产生主体形式上的调控失调,从配件的通过率上,可满足其整体的设计。其作用技术形式,对热力的发动机以及工程物理作用等,都会形成一套有效的促进作用,这在我国的人口基数以及促进的煤炭效应等方面,根据其科技水平的发展,也逐渐的影响到了对科技水平的实践作用。对于存储量的资源设施受益建设,其科技的进步是确保电脑控制方法得体的根本所在。
二、锅炉与能源领域的动力工程中存在的相关问题
从现代的设施发展情况来看,其动力工程中存在的诸多问题,都会因锅炉内部问题而导致其基本运行出现故障问题,这就需要我们加强基本的设施建设,并通过安全威胁上的控制,从而确保其发展过程中的有效性。下面从不同方面的问题进行简要分析。
(一)锅炉方面存在的诸多问题
锅炉建设过程中对主要问题的设施检查,则主要集中在了锅炉的内部以及风机上,从现代锅炉的主体设施,在建设中,就可根据其相互的转换过程,实现对基本器件设施上的安全防护建设,这对于风机在转动上的策略发展上,间接的影响到基本设施上的基本设施建设,这对于我们的锅炉基本设施,其设施风机的安置工作,也就形成了对整体运动负荷作用的合理化创建,对于经济损失操作上的现象调整问题,可根据人员的安全威胁,促进其不同阶段上的安全性能保障,从而让避免出现操作中的特重大事故发生。对于热能的动力工程设置,就需要建立在对基本发展措施上的有机控制,这对于基本形式上的有效控制,都能避免事故发生。
(二)热能动力工程在风机应用中的问题
从我们现阶段所出现的风机作用来看,其机械的转化率,对人们在应用过程中对动能形式上的控制,这对随着能源的需求量问题来说,是促进其增加作用上的有机发展,我们从风机运行过程中所呈现出来的算坏问题,都会影响到基本设施的正常使用,对于基本的措施控制来说,促进热能的使用作用,可结合实际的使用规律来进行综合的控制调整。但是在实际使用过程中自身存在的问题,会影响到对风机装备的设施改善。
三、热能动力工程在建设过程中的锅炉应用策略
从现代社会的发展情况来看,对于基本设施的建设发展规律,需要结合以下的几点应用来进行相应的调整,其主要分为以下几点。
(一)热能动力工程的应用
能源动力的发展,是影响国家经济发展的重点,这在国防、民生多个方面都有极大的影响作用,我们从现代经济的发展积极性来看,其适应效果对热能动力工程的影响来说,都是影响自身发展的重点,为加强这一形式的风机作用应用等,需要从风机的应用效果来进行电厂等多个角度上的就控制,并促进对领域内通风效果的全面监控管理。为满足现代社会的告诉发展,对已有的机组容量与效率等,都需要进行操作上的控制强化,并通过安全性分析,从而实现对需求上的加强。这对系统的安全性,以及可靠性等,都能够为其提供有效的保障作用。
(二)动力工程的锅炉应用
从我国现阶段的动力工程应用来说,其燃料的使用对电能的转化作用等,都需要加强对物料以及使用工件形态结构上的有效控制,这对于锅炉队伍的动力能力来说,需要促进其在工程应用过程的综合作用,并以软件的方针锅炉效应进行综合的发展,并以此来加强对锅炉内部燃烧技术上的有效控制,通过有效的策略控制建设,从而是吸纳对控制方式上的交叉控制,这对于幅度的控制体系来说,都能够极大的促进其燃料比例上的有效控制,是促进其连续性的根本所在。
对于动力工程的应用,热能锅炉的使用,是将机械能转化为电力的根本所在,因此只有更好的完成对这挂历形式上的控制,才能够确保其使用的运作正常。
四、锅炉与能源动力工程的未来发展路线展望
伴随着现代社会的不断发展,在能源的使用理论上,需要结合实际使用过程中的是操作,而这对实际的生产需求来说,其能源的不可缺少效果,均会影响到对基本设施上的控制。从能源动力的利用效率来看,基本的热能控制,需要从风机的实际应用范围进行机械设施上的严格监控。
为提高能源动力的应用效率,我们从无用功率形式损耗形式上的有效 调控,并以此来加强对工业发展渠道内部的合理控制,这样对工业的发展持续作用来说,也能更好的促进其在基本设施方向上的有效控制,并促进其生产设备的安全性发展建设。
对于现代能源的综合性应用,我们需要加强对电厂、船舶等方面的控制,并通过风机的有效控制实现对主要能源需求上的控制,并促进其机械能的有效运作。
结语:
对于现代社会的不断发展,对能源需求上逐渐出现了供能不足的情况,这一问题的出现,在现代的社会发展中,就成为了主要的影响因素,我们需要结合综合行为上的合理化调控,从根本上完成对基本行为策略上的调整,真正的做到可持续发展。在实践中,通过不断的挖掘相关工程的技术动能,从领域内的潜力发展上,哇哈才能对高效率锅炉的有效转变,并以此来完成对高燃料利用率形式上的创新创建。
参考文献:
[1]齐盛.热能与动力工程在锅炉运用中存在的问题及解决对策[J].科技创新与应用,2014,(17):109-109.
[2]李晶鹏.热能动力工程在锅炉和能源方面的发展状况分析[J].商品与质量,2015,(2):81-82.
[3]金茜.热能动力工程在锅炉和能源方面的发展概况[J].科技与企业,2014,(23):78-78.
[4]张子轩.热能动力工程在锅炉和能源方面的发展状况分析[J].电子制作,2015,(3):263-263.
关键词:电厂锅炉;发电厂;热能动力工程;燃烧效率;燃烧控制技术 文献标识码:A
中图分类号:TK229 文章编号:1009-2374(2015)13-0052-02 DOI:10.13535/ki.11-4406/n.2015.13.027
热能动力工程包含众多专业,这些专业所涵盖的内容也很广泛,几乎所有的专业都需要依赖和运用热能动力工程学的知识。拿火电发电厂来说,发电厂中的汽轮机和电厂锅炉都是热能动力工程所探究的领域,另外由于掌握先前热动能的相关知识,所以我国火力发电厂的前景才一片良好。随着经济的发展,为了适应社会变化,我们只有进一步提高电厂锅炉的燃烧效率才能符合市场要求,因此我们要积极运用热能动力技术来推动电厂锅炉的进步,提高整体经济效益。
1 电厂锅炉的构成要素
发电厂的运作离不开电厂锅炉的应用和支持,电厂锅炉作为发电厂的支柱设备,在发电厂中发挥着重要的作用。电厂锅炉主要由两个方面组成:一方面是外壳部分,另一方面则是燃气锅炉控制部分。从外壳来说,外壳是由底壳和面壳组成的,底壳的作用就是加强稳固燃烧器,另外,底壳的膨胀水箱等部分要件都是由底壳连接在一起的,通过底壳的作用从而固定在墙体上。从面壳来说,面壳的主要作用是防止风尘的污染,从而保护各个重要部件。燃气锅炉控制部分是电厂锅炉最重要的构成要素,是整个锅炉构造中的核心部分,它主要控制燃料的燃烧。传统的控制方式以人力为主,不能很好地控制温度,使其数值失真,而现在控制系统大部分都是由电子控制,这样能够保证操作准确,达到控制效果,实现控制目标,符合控制要求。
2 电厂锅炉在热能动力工程中的应用
社会生产和人们生活都需要电力的支持,社会和经济的发展也都离不开电。另外,我国主要是依靠火力发电来满足我们用电需求。随着人类的进步和社会的进展,人们对电力的使用需求也在不断增大,我们不仅要提供充足的电量,并且还要保证电力质量。因此,为了适应社会变革,火力发电厂只有改进生产技术,提高工作效率,不断完善电厂锅炉的运作系统和整体构造,从而提高锅炉性能和燃烧效率。我们在改进的同时,要明确电厂锅炉是由众多部分组成的,每一部分都要引起重视,提高各个部分的性能,从而促进整体发展。
基于以上研究,热能动力工程的应用研究便成为首要关注问题。电厂锅炉在应用中主要是实现热能和机械能的转换,而根据热能动力工程学的研究对象原理来看,电厂锅炉便是我们将要研究的对象,因此热能动力工程学具有极强的综合性和实践性。我们需要运用热能动力学知识来探究电厂锅炉的构造技术和工作流程。众所周知,随着经济的发展,我们可以使用的资源越来越少,地球上的资源受到了前所未有的挑战,面对当前形势,我们只有节能减排,重视电厂锅炉的应用技术才能实现社会的良性运转。
3 热能动力在电厂锅炉发展中的应用需要
热能动力和电厂锅炉本身就具有紧密的联系,如果把热能动力工程专业原理和电厂锅炉生产系统结合起来,那么对未来电厂锅炉的发展无疑具有极大的推动作用。以风机为例,风机在电厂锅炉中发挥极大的作用,随着时代的发展,当代风机一般都是至关重要的流体运行设备,其运作方式主要是通过叶轮的旋转来得到风能,并在此基础上,把机械能转化成气体压力,投放到电厂锅炉中使用,一旦气体扩散,便能够保证燃料的燃烧率,这足以可见风机的重要性。但是,就我国目前来看,很多锅炉的问题便出在风机方面,风机运作强度大,工作量多,再加上运行环境的不良状态,所以风机容易发生损坏。因此,如何提高电厂锅炉风机工作水平和工作性能已经成为当前研究的重中之重。我们只有通过利用热能动力工程技术来不断增强风机的耐用性能,提高风机的承载力,解决当前风机使用过程中的疑难
问题。
4 热能动力工程炉内燃烧控制技术的运用
燃气锅炉控制部分是电厂锅炉最重要的组成部分,锅炉的燃烧控制技术决定着锅炉的发展前景,是能量转化幅度的关键技术。传统的锅炉主要是依靠人力去投放燃料,随着科技的进步和普及,现代锅炉大多以自动化技术为主,先进的自动控制取代人力控制。锅炉燃烧控制技术主要分为下面两大类:一类是空燃比里连续控制系统;另一类是双交叉先付控制系统。这两种控制系统都有各自的特点,通过合理运用控制系统,将够达到生产目标。
4.1 空燃比里连续控制系统
空燃比里连续控制系统主要是由燃嘴燃烧控制器、电动蝶阀、热电偶比例阀、流量计气体分析装置和PLC等其他部分构成的,热电偶主要负责相关数据的处理和传递;PLC主要用于数据的比较,在此基础上,利用微积分等计算方法来设置信号。此外,我们还要抓好比例阀门和电动蝶阀的开放幅度,这样一切控制好之后,才能更好地调节温度。但是这种控制系统对温度的控制并不是很好,很多情况下并不是十分精准,因此需要我们认真确定相关数据。
4.2 双交叉先付控制系统
双交叉先付控制系统主要是由烧嘴、燃烧控制器、流量阀、流量计热电偶构成的。在这个控制系统中,电信号的生成是通过热电偶实现的,热电偶把温度转化成电信号,把电信号标记为测量点的实际温度。需要明确的是,这个测量点的温度期望给定值是自动给定的,是通过工艺曲线来获得的,毋庸置疑,这两者可能会产生一定的偏差。当PLC对阀门的开合程度进行调节的时候,其调节的范围幅度主要是依据这个偏差来衡量的。除此之外,该控制系统具有专门化的特点,燃料的控制测量是由一个专门的质量控制装置来负责的,采用这种控制系统能够节省其他部件的使用,降低损耗,另外还可以保障温度数值的精确性。我们要重视热能动力工程的燃烧控制技术,分清空燃比里连续控制系统和双交叉先付控制系统的优缺点,根据适当的情况选取合理的控制系统,从而提高电厂的经济效益。
5 结语
新形势下电厂锅炉的应用离不开热能动力工程的支持,运用热能动力技术来提高电厂锅炉的燃烧效率从而来改变整体经济效益已经成为当前发展的必然势头。因此,我们首先要认识电厂锅炉的组成部件,另外还要明确电厂锅炉构造和热能动力工程之间的联系,认识到电厂锅炉和热能动力互相影响、互相补给、互为所需。同时,我们还要不断优化热能动力技术,完善电厂锅炉构造过程,尤其是风机的使用和改善,解决当前风机应用中的不利因素,提高锅炉各部分的工作效率。最后,我们要发挥燃气锅炉控制部分的作用,采取空燃比里连续控制系统和双交叉先付控制系统来实现对温度的调节和
控制。
参考文献
[1] 李国平,胡鸣.变频技术在锅炉风机上的应用[J].应用能源技术,2007,(4).
[2] 张燕连.脉冲燃烧控制技术的应用实践[J].现代冶金,2009,(3).
关键词:热电厂 热能动力工程 合理运用
热电厂的主要功能是实现热能转化为动能,然后动能经蒸汽技术推动发电机工作,其中有些动能转化为电能,而另一些则消耗在这个转换中,因此,会产生的热损耗与焓降。研究其产生的相关原因,可有助于节能降耗,以及技术的更新。
一、重热现象的性能合理运用分析
在汽轮机中前一次损耗的热能,能够被下一次运行所应用,这就是所谓的重热。在每次运行中所产生的焓降累加后超过总体运行是所产生的焓降再除以整体运行所产生的焓降所得到的结果称之为重热系数。虽然各级热能的利用效率都高于单次的利用效率,然而这是以节能降耗为基础的,这能说部分热量得到了利用,并不追求高重热系数。通常在4%至8%之间。因此,重复利用热能可提高每次运行的能量利用率真,降低能量的损耗。合理的利用热能,控制好恰当的系数,既有利于能量利用率,也能增强操作人员对机组的熟悉程度。
二、调配选择与工况变动的合理运用分析
并网运行机组在遇到电网频率变动,外界负荷变化所致的情况下,会以自身的差异动态特性为依据,来进行增减负荷的自动启动,进而用于电网周波的维持,这样的一个完整过程就被称作是一次跳频。其特点是频率调速快,但发电机组随调整量不同而存在差异,且为有限的调整量,增加了值班调度员的控制难度。而当电力系统发出电力或负荷存在较大变化时,运用一次调频难以实现常规频率恢复时,就需要采用二次调频的方式。一般情况下,二次调频包括手动与自动调频两种形式,其中自动调频方式因在运用特性表现出诸多特性而成为普遍推广的二次调配形式。在热电厂中,恰当选择调配方式,对于提高其自身运行水平十分必要,立足对并网运行机组的正确认识和状况掌握,避免因错误调配方式,所造成的热能与动力工程运用效用低下。此外,焓降变化同汽轮机工况变化存在密切联系,当全开第一阀,增加工况流量时,压会随之增大,相比于焓降,调节级要减小,反之则呈现同上述相反的变化。而在关闭第二阀,全开第一阀时,相对于焓降,调节级到达最大中间级,此时,如发生工况变动,则中间级的压力比与焓降均维持不变。这为我们实际工况的调节提供了依据,结合所需得到的焓降变化,来进行恰当的工况变化,来更好地满足热能与动力工程在热电厂中的运用需要。
三、节流调节的有效利用分析
节流调节不存在调节级,在第一级就可完成全周进汽,当工况变化时,各级温度只有减小的变化,且表现出较好的负荷适应性,适用于基本负荷大机组和小容量机组,表现出较差的经济性,体现在节流损失方面。在热电厂实际运行当中,可应用弗留格尔公式,来保障热能与动力工程的有效运用,结合该公式的应用条件,来就同流量下各级的比焓降、压差进行推算,进而对相应的零部件受力情况和功率效率加以确定,并对汽轮机是否正常流通进行监视,即在流量已知的基础上,以运行时组前各级压力的公式符合度为依据,来对流动部分面积的变化情况作出判断。可以说,依靠弗留格尔公式的应用,保障了机组内节流调节的有效性,为热能与动力工程在热电厂中的有效运用提供了基础条件。
四、调压调节的性能合理运用分析
调压调节增加了机组对负荷的适应性和自身运行可靠性,促进了部分负荷下机组经济性的提高,为热能与动力工程在热电厂中的实际运用提供了条件,但同时,调压调节亦存在不足,如高负荷区域下实施滑压调节不负荷经济性要求;动叶栅内大机组蒸汽做功后,存在机械能的转化,会造成蒸汽的余速损失;鼓风损失与斥气损失等。这些调压调节损失的存在,亦表示着热电厂热能与热电厂动力工程的运用损失,但这部分损失,很大程度上是由机组运行机理决定的,而非简单的系统故障和人为失误,需要依靠先进工艺的引进,技术上的突破来减少损失。这就要求我们应当在调压调节损失方面,积极探索,研发出更具科技含量的产品,拜托现有的能量损失限制,从而使热电厂热能与热电厂动力工程的运用更具先进性和前瞻性。
五、湿气损失控制的合理运用分析
分析湿气损失的产生原因,主要包括如下方面:在湿蒸汽膨胀过程中,蒸汽发生部分凝结作用,造成蒸汽量的大大减少;蒸汽流速远高于部分水珠流速,在水珠牵制下,大量动能被消耗;湿蒸汽过冷现象等。湿气损失的直接危害就是动叶进汽边缘遭受损伤,叶顶背弧处所受冲蚀尤为严重。为减少湿气损失,可采取如下措施:应用去湿装置;应用中间再热循环;提升机组抗冲蚀能力;应用带有吸水缝的喷灌等。在汽轮机运行过程当中,除要克服推力轴承与支持轴承的摩擦力外,还应启动调速器和主油泵,这些动作的完成均需要消耗一定的能力损失,即机械损失。这时,就可考虑轴流式汽轮机的应用,一端引入高压蒸汽,另一端排除低压蒸汽,这样无形中就形成了高压向低压的指向力,降低了能量消耗,保证了热能与动力工程在热电厂中运行的高效性。
六、容易出现的问题
损耗湿气的因素:①湿润的气体发生膨胀,其中有些因气温降低而变成了水,从而不能做功;②这些液态水的流速小于气流速度,从而会降低气体的速度,也会产生一定的动能损耗;③液态水都粘在管壁上了,既产生水的损耗又产做了无用功,使叶轮做功减少;④遇冷的水蒸汽使得汽量减少,而且还会损害叶轮的边沿,尤其是会造成其背面弯处产生腐蚀。
防止湿气损耗的要点:①实现过程中热能再利用;②加装减湿互环节;③使用带收集液态水功能的喷管;④增强其抗腐蚀作用。整体装置运行过程中,要实现好各部件间的效果,还可以使泵装置、速度控制装置的运行,因为这些过程可能产生无用功,造成机械能损耗。
级间工况变化的特点:①当临界点未出现时,其流量同各级间的压力呈一定非简单正比的关系;②当临界点出现时,其流量同各级间的压力呈正比关系,而且同其它参数没有关联。
沿轴方向的推力特点:①蒸汽凝结成水时,推力变大;②液态水与叶轮发生撞击时,推力也变大;③负载增大,推力变大;④负载被甩时,推力变大。⑤叶片老化,推力变大。
七、结语
保证热能与动力工程在热电厂中的有效运用,是当前摆在电力行业面前的重要课题,只要我们协同合作,一丝不苟,熟练掌握实操技术,热电厂的发展前景必将十分广阔。
参考文献: