首页 > 文章中心 > 物联网通信技术的发展

物联网通信技术的发展

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇物联网通信技术的发展范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

物联网通信技术的发展

物联网通信技术的发展范文第1篇

【关键词】移动物联网 车联网 低数据速率 GPRS CDMA 1X

doi:10.3969/j.issn.1006-1010.2016.12.017 中图分类号:TN929.5 文献标志码:A 文章编号:1006-1010(2016)12-0078-04

引用格式:赵小江,祝海云,徐福新. 低速移动物联网的移动通信技术发展和产业化方向[J]. 移动通信, 2016,40(12): 78-81.

1 引言

从手机和移动宽带衍生发展而来的M2M模块在行业应用信息化中得到大力应用,移动物联网成为一个新兴市场。战略无线业务咨询公司Northstream曾公布了它对2016年全球移动电信行业走势的预测:预计“物联网黄金时代”将拉开序幕。目前承载移动物联网的主要无线传输网络包括2G(2.5G)/3G/4G移动网络、Wi-Fi网络、ZigBee、蓝牙等,并且大约70%的移动物联网都是以低数据速率的低端通信模块为主。本文将主要探索低数据速率移动物联网的通信技术发展方向和产业化方向,并以车联网为例进行探讨。

2 车联网结构

截至2015年6月底,全国机动车保有量达2.71亿辆,电动自行车保有量也已突破2亿辆。汽车、摩托车、电动自行车已经成为各个阶层工作、生活中必备的交通工具,但被盗现象却时有发生,因此用户对车辆防盗、定位管理需求日益强烈。此外,一些快递物流、外勤服务、车队管理、汽车租赁管理等不仅需要车辆定位,而且使用轨迹辅助生产调度管理、里程数量统计、围栏管理等应用。车辆的运行状况也是车主非常期望掌握的,这通常需在汽车4S店或者车辆维修点才可以查看。而目前机动车车载自动诊断系统“OBD Ⅱ”已经可以提供外部接口车况检测或者汽车厂家直接通过其ECU(Electronic Control Unit,电子控制单元)接口完成车况检测,甚至电动自行车也已经结合控制器可以提供车况检测和电池电量管理等功能。

车辆防盗定位、生产调度管理、车况检测等都驱动了车联网平台的诞生。车联网组成不仅包括车辆本身,而且还包括车联网终端、用户智能手机/电脑、GPS卫星定位系统、车联网云平台,并依赖移动通信数据网、互联网完成,具体如图1所示:

车联网终端先通过GPS卫星实时获取地面行驶车辆的位置信息,再通过移动通信数据网络与车联网云平台之间建立通信。车联网终端除了包括由单片机组成的控制模块外,还包括定位模块、通信模块以及智能传感模块。

定位模块以GPS芯片为基础获得车辆所在的地理位置信息,实时不断地接收GPS卫星信号,提供车辆运动状态数据,包括车辆经纬度信息、运行速度、运行方向、时间信息等。

通信模块在图1中可与车联网云平台和用户手机/电脑终端进行数据交换,目前通信网络和终端模式可以基于2G、3G、4G甚至Wi-Fi网络。但考虑定位和车辆控制的交互数据量小(主要包括控制信令、GPS经纬度、车况检测等数据),而且室外移动范围广,同时结合移动物联网成本的考虑(终端2G通信模块与终端4G通信模块的价格约相差3至8倍),因此图1中车联网终端连接车联网平台所需的移动通信数据网络主要基于2.5G移动网络为主,这包括GPRS(GSM)网络和CDMA 1X(CDMA)网络。

智能传感模块包括防盗模块和车体性能感知模块。其中,防盗模块在用户设置防盗功能后,通常利用GPS位置信息形成电子围栏和G-Sensor(重力传感器)感知车辆被触碰或剧烈震动通过系列算法触发整车被盗报警,或者通过断电感知电池被盗,即可向用户手机发送报警信息,这种模式基本可以避免误报警;车体性能感知模块包括电池电量和车况检测功能等,让车况信息黑匣子可以向用户直观展现。

车联网云平台除了包括存储车辆的各种数据档案信息外,还包括轨迹、绑定智能手机和智能终端关系、车辆报警记录等。用户智能手机和电脑终端可以利用图1中无线数据网络(这可以是各类制式的2.5G、3G、4G移动数据网络或者Wi-Fi网络)或者有线数据网络连接车联网云平台,实时查看车辆信息、接收报警信息或控制车辆,以确保报警的有效性和远程可控性。

3 低数据速率移动通信相关技术和特性

在车联网中的应用

在移动物联网中,大量的应用如车联网、抄表业务、智慧农业、工业自动化、可穿戴设备、安防等,由于没有稳定的Wi-Fi覆盖,只能基于移动通信网络。2G网络(GSM和CDMA)经过较长时间的建设运行维护,网络覆盖面广、覆盖质量佳,特别是2G终端芯片相比3G/4G价格低廉优势明显,因此结合低速需求和成本控制的要求,GPRS和CDMA 1X低速数据网络还是大有用武之地。如果后期手机用户大量迁移到4G VoLTE网络,空余的2G频率和网络或许可以迎合快速发展的低速移动物联网无线承载容量需求。由于3G网络(CDMA EV-DO和WCDMA)通信模块的价格始终无法靠近2G通信模块,因此在低数据速率移动物联网中很难找到应用的切入。在当前4G时代,LTE与移动物联网之间总是存在一条难以跨越的鸿沟,其中成本是主因。

3GPP组织在LTE Release 13版本中所研拟的LTE-M标准目前暂时被各方看好,具备低功耗、低传输速率和高覆盖率三项特点,该规格的目标是达到100~200 kbps的最高传输速率,但标准尚在制定中,最为关键的成本看是否能突破。下面将主要探讨当前广泛应用的GPRS和CDMA 1X相关技术及产业在车联网中的应用发展态势。

3.1 终端通信模块开发

在车联网中,车联网终端在不同的通信制式中,主要是通信模块上的差异,但其也是影响车联网终端的重要成本。构成通信模块主要是GSM芯片和CDMA芯片的差异。

GSM芯片厂家众多,在MTK、展讯、互芯、Mstar等,GSM已经没有专利费;而在CDMA芯片,目前主要有高通、英特尔(2015年收购了威睿电通),且专利主要集中在高通手中。由于高通专利费、入门费居高不下;CDMA支持厂家明显弱于GSM,而且CDMA模块套片价格也高,CDMA成本约高于GSM模块2至3倍,因此基于CDMA 1X模块的车联网移动终端生产成本相对较高,CDMA 1X模块在工业领域有较大幅度落后于GSM/GPRS模块的应用。

目前在移动物联网终端包括车联网终端也出现一些新的开发模式,有些开发者摒弃采用模块化开发的模式,改为采用芯片开发共享ARM和FLASH的方式,以大幅降低成本,但这种开发模式难度大、周期长、产品稳定性对开发者要求更高。

3.2 移动物联网号码开卡

我国手机终端普遍采用机卡分离的模式。中国移动和中国联通的GSM手机终端通常采用SIM(Subscriber Identification Module,用户身份识别卡)卡,是手机的一张个人资料卡;而中国电信CDMA手机终端通常采用UIM(User Identify Module,用户识别模块)卡,是接入网络系统的标识和身份验证。在移动物联网终端应用中,通常也是采用SIM卡(UIM卡)+卡槽的模式。

但是在车联网应用中,运行环境较差,耐高温、低温,抗剧烈震动等对移动物联网终端要求较高。据统计,5%~10%的机械障碍与SIM卡(UIM卡)和卡槽的耦合有关,这也是部分用户在使用车联网终端中反馈质量问题的一个重要方面。目前,基于CDMA的车联网移动物联网终端已经重新启用在北美较为广泛使用的烧号开通号码模式,这不仅节约了UIM卡和卡槽成本,而且较好地提升了产品质量的稳定性。另外,在一些统一运营的行业应用业务模式中,行业应用业务管理者或者经营者期望通过烧号,形成号码与物联网终端一体化,避免SIM卡被非法挪用产生额外费用和网络违法行为。

目前CDMA烧号通常有两种模式:OTA(Over-the-Air Technology,空中下载技术)烧号模式和电脑数据线手编烧号模式。具体如下:

(1)OTA模式:电信运营商提供的身份识别鉴权数据无线远程传输到移动终端内。这通常需要终端拨打*228或*22800,通过系统支撑完成。*228或*22800等同于紧急特服,在协议中规定即使运营商中没有开户注册,手机终端也可以有权限默认拨打。

(2)手编模式:完成移动物联网终端号码开户后,从相关渠道获取手机卡五码数据,并且改ESN(Electronic Serial Number,电子序列号),然后通过电脑软件写入移动物联网终端,使其具备注册入网资格。在车联网应用中,基于CDMA 1X终端只要三码IMSI(International Mobile Subscriber Identification Number,国际移动用户识别码)、AKEY(Authentication Key,鉴权码)、ESN即可。

由于GSM没有烧号协议支撑,因此SIM卡槽的质量要求显得特别重要。为了提升产品的稳定性,有些开发者采用SIM卡与卡槽焊接的方法变通来解决SIM卡与卡槽之间松动造成的机械障碍和仿一体化问题。

3.3 移动网络性能要求

(1)抗干扰性。车联网或者其他移动物联网所处的环境通常较为复杂,有人为无线干扰器或者其他应用的干扰。在通常的网络设计和规划中,对于基本相同的误帧率要求,GSM系统要求到达基站的手机信号的载干比通常为9 dB左右,由于CDMA系统采用扩频技术,扩频增益对全速率编码的增益为21 dB,所以对解扩前信号的等效载干比的要求小于-14 dB,GSM对底噪的要求更为严格。

(2)安全保密性。当前GSM网络伪基站不仅对手机造成脱网影响,而且对所处的基于GSM模块的移动物联网终端造成脱网影响。此外,GSM手机短信、通话可被黑客监听也一直困扰着GSM的安全。而CDMA网络中手机与基站是双向验证,同时要在CDMA的42位PN码中去猜测某一编码有如大海捞针,可以有效保护空口安全,无线解密器无法攻破。

(3)2.5 G网络吞吐率。在支持低速率物联网应用上,GPRS(GSM)支持最大42.8 kbps、85.6 kbps上/下行数据传输速率,CDMA 1X(CDMA)支持最大153.6 kbps上/下行对等数据传输速率。在低数据速率应用中,CDMA模块比GSM模块可以支持相对更高的峰值速率。

4 结束语

车联网应用已经在某些汽车、智能电动自行车、摩托车出厂中开始预安装,也有部分行业应用用户或者个人用户后安装车联网终端,预测其今后将有广阔的市场空间,而且用户忠诚度相对较高。本文通过从车联网应用分析来看低数据速率移动物联网涉及移动通信技术应用发展态势,虽然近年来高数据速率移动通信技术更新迭代非常快,但是低数据速率通信技术或许有更稳定且独到的应用场合和应用空间。“技术为市场服务”,市场的需求将促使基于2.5 G的低速移动通信数据网络可能伴随着不断更新的高速移动通信网长期并存。

参考文献:

[1] 印欣. 移动物联网的运营策略探讨[J]. 通信世界, 2012(40): 22-23.

[2] 蔡祥春,王宜怀,周杰,等. 基于物联网技术的电动车防盗系统[J]. 计算机工程, 2011(20): 236-238.

[3] 张远文,董文宇. 电动车防盗定位装置和系统[J]. 中国新通信, 2014(21): 104-105.

[4] 路致远,赵明宇,储毅,等. 基于云计算的电动汽车运营服务平台设计[J]. 华东电力, 2013(1): 152-156.

[5] 王朝炜,王卫东,张英海,等. 物联网无线传输技术与应用[M]. 北京: 北京邮电大学出版社, 2012.

[6] 魏颖琪,林玮平,李颖. 物联网智能终端技术研究[J]. 电信科学, 2015(8): 140-146.

[7] 曾宪武. 物联网通信技术[M]. 西安: 西安电子科技大学出版社, 2014.

[8] 张宏君,高晓婧. 一种基于物联网的智能配送终端系统设计[J]. 现代电子技术, 2014(21): 24-26.

[9] 冯发旗,邹颖霄. 基于物联网的海关三位一体船舶监管体系研究与实现[J]. 现代电子技术, 2014(6): 83-87.

[10] 张琨,刘春梅,彭景. 打造物联网时代的智慧物流[J]. 移动通信, 2014(16): 77-81.

作者简介

赵小江:高级工程师,硕士毕业于浙江工业大学,现任中国电信股份有限公司杭州分公司无线维护中心经理助理,从事CDMA、LTE移动网络维护工作。

物联网通信技术的发展范文第2篇

关键词:智能电网 物联网 智能通信技术

中图分类号:E965 文献标识码:A 文章编号:

现代社会,电力资源是人类不可或缺的能源,但当今社会,能源短缺与环境问题日益突出,发展智能电网是解决上述问题的有效手段。世界上诸多国家重视智能电网的建设,虽采用的建设模式有所不同,但是物联网通信技术已然被很多国家所采用。在电力需求与电力技术研发的双重作用之下,物联网通信技术在智能电网中的应用愈加广泛,并且大有迅速热遍全球之势,应对物联网技术在智能电网中的远大前景,相关领域的研究更有深远的意义。

1 智能电网、物联网概念简述

1.1 智能电网

通过采用现代化的信息手段,实现电网诸多系统,如发电、输电、配电、供电、售电、用电等环节的智能交流,可以将这样的电力网络称之为智能电网。一般而言,智能电网存在如下诸多优势:能够实现自我修复;能够有效抵御外来袭击;能够对用户形成激励,促使他们主动参与电网运作;完善电力系统,减少电量损失;优化资源设置,有效降低电网运行资本;实现对多种发电及蓄电形式的容纳;推动电力市场的繁荣发展。

1.2 物联网

随着科技的不断发展,物联网已然成为互联网不可或缺的组成部分。物联网的概念是由美国教授Kevin Ashton于1999年所提出,经过一定发展,在2005年于威尼斯所召开的信息社会世界峰会上,物联网概念最终形成。通俗而言,物联网是“物物相连的网络”,它的形成需要特定的感知元件,如传感器、射频识别、二维码等,通过对基础网络的运用,实现人与物或物与物间的互联。随着通信技术的不断发展,物联网通信时代已然到来,近乎世界上的所有物体,都可以通过互联网实现交换。

2 物联网的诸多用途

随着现代信息化网络技术的推广,作为网络技术重要组成部分的物联网技术也有颇为广泛的用途,现简略介绍如下。

2.1 智能物流

物联网通信技术在物流领域的应用,以智能配送的可视化管理网络、全自动的物流配送、网络化信息共享平台为主,因为采用了可供分析与模拟的软件,从而形成供应链网络,无论是企业生产地点的确定、采购地点的设置,还是库存分配战略的制定,都能有效地降低配送成本,改善服务质量。

2.2 智能电网

将物联网通信技术广泛应用于智能电网的诸多环节,实现对电力交换情况的改善,以及电网利用率的提升。有了物联网通信技术,能够有效接收风能发电、太阳能发电等分布型的能源进入电网,实现对主网的补发电。我国现阶段已开始实施阶梯性电价,因为智能电网能够实现对用户电力负荷的实时监控,这给用电户提供了自行选择电价及能源类型的权利。

2.3 生态监视

物联网通信技 术还可应用到生态监视领域,如城市大气、饮用水源地、生态补偿等。通过对RFID技术以及视频感知、声学、光学、生物、化学、红外、卫星等传感器的使用,从而实现对监控领域的全面感知,再将所得信息进行传输,利用生态分析、决策支持系统、云计算等智能系统进行处理,从而实现对应用领域的智能监视。

2.4 电子保健

在医疗保健领域,医疗信息化得以体现,这离不开物联网通信技术的普遍应用。电子病历、医学图像存档、通信系统、微机医嘱录入系统与微机临床决策支持系统的广泛应用,能有效减少医疗差错,实现对医疗成本的监控管理,维护病人的隐私,有效延长病患医疗记录的寿命。与上述内容相配合的,还有门诊管理系统、临床信息系统、住院管理系统、物资管理系统、药品管理系统、财务管理系统、人事管理系统、OA管理系统等,从而形成医院的整体信息系统,保障医院医疗的信息化。

2.5 智能交通

世界交通问题令人堪忧,每年因交通事故及交通堵塞所造成的经济损失是极为惨重的,而尾气排放所造成的环境污染也愈加困扰着人们。与传统的交通管理相比,实行智能交通管理,能够有效地减低交通事故的发生率,减少交通堵塞的发生,实现对交通的有效监管,从而减少车辆尾气的排放。

3 物联网技术在智能电网中的应用

3.1物联网关键技术

物联网中主要涉及到的是射频识别技术、无线传感器与聚合技术。射频识别技术是一种自动识别技术,能够通过射频模式信号来自动识别对象,实现对相关数据的获取与采集。极具代表性的是RFID系统,它由电子标签、信息读写器及信息处理系统三部分组成,其工作原理按如下步骤进行:在通过特定的信息读写器之时,物品上所带有的电子标签会被读写器所激活,标签所携带的信息将被无线电波所传输,送至读写器及信息处理系统,实现对相关信息的自动采集。

无线传感器是常用的器件及装置,能够对预定指标进行感知,并依据特定规律将其转换成可用信号。一般而言,无限传感器由敏感元件及转换元件两部分组成。随着现代科技的不断发展,纳米技术及MEMS技术被广泛应用,无线传感器的智能化日益凸显,对物联网智能环境的实现起到巨大推动作用。通过采用一定协议技术,可以为不同无线传感器分配特定的IP地址,形成良好的基础网环境,实现多层传感器间网络信息的融合。无线传感器与聚合技术的应用,形成了新型的网络连接技术,具有低速率、低功耗与短距离传输的优势。

3.2 应用物联网的网络架构

在智 能电网中应 用物 联网智 能 通信技术,网络架构表现为三个层面,即感知层、网络层与应用层。通过感知层,采用以RFID为主的技术手段,来采集智能电网中诸多环节的有用信息。通过网络层,以智能电网中的光纤网为主、线载波通信网为辅,实现对感知层所获取的各类信息的传输,这样的传输可以在广域和局域范围内进行。通

过应用层,实现物联网与电力行业专业技术的深度融合,从而实现对电网的决策、监控以及服务的智能化管理。

3.3 发展前景

对于电网企业而言,智能用电的海量数据也是一种巨大的财富,对于这些数据内在价值的挖掘,是智能用电领域的重要研究方向之一。因为从这些用电数据上,我们可以大体领略到社会的经济发展水平,可以了解用电户的消费能力与社会属性。如通过对长期不用电的家庭数量的统计,我们可以得出该城市房屋的空置率;通过对用户电费缴纳情况的分析,可以得出该用户的信用度。通过采用物联网智能通信技术,对电网企业所获得的数据进行加工处理,以实现其自身价值的挖掘,还可以为政府及社会其他行业提供有用数据,从这个角度讲,电网企业实现了仅是能源服务企业的突破,也成为依据数据分析创造价值的企业。

智能用电在园区、社区及楼宇间的推广是一种必然的趋势,将覆盖到整个城市,形成一种智能能源网络,这便于人们对绿色低碳的生活方式与生活环境的构建,也有益于诸多社会功能的完善与拓展。因为有对互联网、物联网以及云计算等诸多信息通信技术的综合采用,面向整个城市的基础管理网络形成,能够实现对医疗、交通、城市服务、公共安全等诸多领域的支持,从这一角度而言,智能用电又对城市能源管理有巨大的意义。

对物联网智能通信技术的应用前景进行展望,除了要继续加深在智能电网领域的实践之外,还要依据国际智能用电的相关标准,积极与他国进行实际交流,相互借鉴经验,探讨增进领域发展的策略,以实现智能用电的全球化发展。

4 结语

物联网智能通信技术推动智能电网整体发展的重要手段,对智能电网的研究突破,不能忽视了这种通信技术的实践与运用。智能用电呈现全球化的发展趋势,对智能用电的研究工作,如果只局限在国内,不与国际的同行交流与合作,那将无异于闭门造车,是不利于我国智能用电领域的整体的发展的,正因如此,加强该领域国际间的合作与交流是必须的。

参考文献

[1] 王永干.推进信息化领域的行业融合 促进智能电网发展[J].电网与清洁能源,2010(3).

物联网通信技术的发展范文第3篇

关键词:5G移动通信技术;通信工程;应用;研究

5G移动通信技术是在对传统的4G、3G与2G等通信技术特点和优势进行不断总结和改进基础上实现一种新型技术,它也是未来通信工程领域中最为核心的一项技术。现代化生产中,通过将现代生产需求与5G通信的技术功能进行深度融合,从而推动我国各行业生产逐渐向着无人化与少人化方向发展,实现现代化生产与技术研究的全面提升,也是未来人们研究和关注的重要目标领域和发展方向。其中,我国的通信工程建设与发展中,受现代化发展的信息技术等时代背景影响,在各项通信技术研究与工程建设不断提升,从而实现对人们日常生活以及生产的通信建设需求有效满足同时,也提出了更高的要求。为此,下文将围绕5G移动通信技术在通信工程中的应用进行研究,以供参考。

15G移动通信技术及其应用优势分析

1.15G移动通信技术

5G移动通信技术,即第五代移动通信技术,它是在4G与3G等技术基础上兴起与发展的一种新型技术。对5G移动通信技术的应用特点,有关研究显示,与4G技术相比,5G通信网络的数据传输速度能够达到4G的100倍左右。由此可见,5G移动通信技术的通信传输速度不仅存在大幅的提升,而且其通信质量也具有显著改善,在通信工程领域所受的关注和重视程度更高。此外,根据5G移动通信技术的标准技术参数分析,可知由于其通信传输的标准频谱在中高频段表现较为集中,使其与传统的通信技术相比,虽然具有传输速度更快的特征和优势,但也会导致其覆盖成本增加,同时由于5G通信传输中采用毫米波频率的设置较宽,但存在绕射和衍射不足情况,需要通过对MIMO引入应用来促进其天线增益提升,最终实现网络覆盖的范围拓展。如下图1所示,即为5G组网的基本结构形式。

1.25G移动通信技术的应用优势

对5G移动通信技术的应用优势,与传统的4G技术相比,可以从以下几个方面进行分析。多天线传输优势。5G移动通信技术作为一种新型技术,也是当前通信领域中具有较高安全性与覆盖性、传输灵敏性特征的最新技术手段,它在通信传输中通过多天线传输方式,能够实现更加精准的信号传输效果,从而与传统通信技术相比,不仅在传输速度上大幅提升,而且能够实现对新兴资源的有效运用,技术优势更加显著。MIMO技术的引入应用。5G移动通信技术进行传输中进行支持的天线数量明显高出4G技术约十几倍,使其传输基站的信号接收与容纳量显著提升,在一定层面和MIMO技术的多输出与多输入特征基本相似,因此,在不同用户之间实现信息资源共享的情况下,能够通过5G移动通信技术对MIMO的导入应用,从而对各个不同用户的信息传输需求进行有效满足,使其技术应用的作用和优势更加显著。小基站传播优势。5G移动通信技术在通信应用中,其多天线传输形式会造成传输尺寸的不断减少,同时对传统通信技术的大基站传输弊端进行有效避免,通过小基站部署与传输应用,促进其信号传输与覆盖的范围进一步扩大,并在通信网络布置中根据实际情况进行灵活选择与设置,从而形成更加密集与强大的通信网络,为信号传输的质量和效率提升提供支持。需要注意的是,由于小基站建站与通信应用的功耗与大基站相比更高,因此,在5G移动通信技术应用中进行小基站部署与应用的成本也相对较高。波束成形优势。波束成形技术在通信领域中应用,是通过对有限能量的有效聚集,从而在特定方向实现传输,以对其能量传输过程中的损耗进行降低和控制,同时通过形成很窄的波束,来降低其他信号的干扰影响,并促进传输距离增加。此外,5G移动通信中波束成形技术的应用实现,还能够促进频谱利用率提升,即通过计算对信号传输的最佳路径进行确定后,使其按照设定的传输路线进行传输,以避免信号受到阻碍或干扰时的远距离传输引起的衰减风险发生。

25G移动通信技术在通信工程中的应用

结合上述对5G移动通信技术的特征和优势分析,在对5G移动通信技术在通信工程的应用进行研究中,根据实际情况,需要从通信工程建设中对5G移动通信技术的应用和智能通信工程领域的5G移动通信技术应用、物联网通信中的技术应用等方面进行分析。

2.15G移动通信的关键技术

(1)全双工通信技术。全双工通信技术在5G移动通信技术系统中的应用实现,能够促进其通信系统的灵敏性显著提升,同时实现移动通信过程中的频谱运用水平显著提升,且其提升水平能够达到一倍甚至更高,从而对同一地区与同一频谱之间的数据传输进行支持,并降低数据传输中对无功功率的消耗,具有更为显著的通信应用优势。(2)多载波技术。与传统的4G通信技术相比,5G通信移动通信的数据传输速度更快,最大可达到1GHz的标准。而5G移动通信技术的这一特征优势,与当前我国移动通信网络中应用的多载波技术有着密切的关系,它在移动通信领域的应用中,对传统通信系统数据传输的频谱效率以及抗多径衰落等不足有了明显的改善。其中,多载波技术在移动通信中的应用,能够通过对发送端数据功能和作用和应用,进行滤波器组有效调制,从而在滤波器组的作用和优势支持下,为多载波运行的更加高效与合理性提供支持。(3)云计算技术。大数据时代,数据在人们的日常生活以及通信领域具有非常重要的作用和影响。但是,对大数据的有效应用,离不开对数据的存储与计算、加工等处理,同时也需要相应的数据平台进行支持。其中,云计算就是实现大数据应用的支持平台。5G移动通信技术在人们生产与生活领域的应用,也离不开云计算技术的支持和平台应用,与一般的数据处理和应用平台不同,云计算技术支持下的大数据处理,能够有效省略掉对数据的下载和存储等过程,是通过直接在云端进行数据处理与分析,从而使数据应用更加方便。

2.25G移动通信技术在通信工程中的应用

(1)通信工程建设以及5G移动通信技术应用5G移动通信技术在我国城市未来通信工程建设中应用,具有较为突出的紧迫性特征,并且不仅能够促进城市通信网络的覆盖增加,而且在促进用户满意度提升方面也具有十分显著的作用和意义。当前,我国的城市通信工程建设与发展中,采用无线通信技术进行通信网络构建所花费的物力与人力成本较高,同时会受到网络拓扑结构的影响,对通信容量产生较大限制,不能满足其实时通信需求。而5G移动通信技术在通信工程建设中应用,能够通过端与端连接进行直接通信,在有效满足数据传输的近距离通信需求,从而对数据通信与传输的完整性、准确性等要求进行满足基础上,还能够有效避免中间节点的干扰影响,促进其通信传输的速度与效率提升,降低通信过程中的资源损耗。除上述作用和优势外,我国城市通信工程建设中对5G移动通信技术的应用,还能够在实现多结构、多渠道与自由配置的复合型通信网络体系建立基础上,通过网络联动,推动我国互联网行业的进一步创新与发展。(2)智能通信以及5G移动通信技术应用5G移动通信技术在现代通信工程建设与发展中应用,是以智能化为首要考虑和发展的目标,它能够促进智能通信建设与发展,从而对我国社会经济发展的智能化与信息化建设需求进行有效满足。其中,5G移动通信技术在智能通信建设中的应用,除表现为手机等移动终端与电子设备中对5G移动通信技术的应用外,在人们日常生活中,通过将5G通信技术与物联网技术进行有效结合,在电子显示牌以及路灯等公共设施的智能化管理中也能够实现较好应用,并促进城市建设向着智能化与信息化方向快速发展(如下图2)。以5G移动通信技术以及物联网技术等多种现代化技术为支持,进行智能通信以及智能城市系统建设中,需要先对其具体架构进行明确,从而在网络全面化建设与应用基础上,通过信息的安全与高效传输,为智能城市的建设与发展提供良好的支持。(3)物联网通信以及5G移动通信技术应用物联网通信中对5G移动通信技术的应用,主要表现为通过5G移动通信技术支持,能够根据其网络信息的需求,在针对性解决有关问题的基础上,为各行业的信息化建设与发展提供良好支持。尤其是在现代化建设推动下,随着网络平台的不断增多,使得物联网的接入设备数量及类型也越来越多,同时也对物联网的信息传递提出更高的要求,而移动通信和物联网平台之间的相互联系性,使得在现代社会建设与经济发展中进行通信工程领域的物联网平台建立(如下图3所示),具有更加突出的必要性和重要意义,因此也推动了5G移动通信技术与物联网通信的联合应用。(4)云端生活与5G移动通信技术随着信息快速传输与实时分享支持下的智能化与信息化时代到来,促进了云技术在各行业领域中的广泛应用和快速发展,同时也实现了对信息存储数量的不断扩展,并促进信息传输的稳定性与安全性提升,在现代信息发展中具有非常重要的作用和影响。其中,云技术的广泛运用,与网络信息技术的有效支持有着密切的关系,因此,在数据流量的快速增加以及通信传输速度不断提升下,也会为云技术的更为广泛应用和安全发展提供有力的保障。尤其是5G移动通信技术在各行业领域的应用实现,也为云技术以及云端生活的开发应用提供了更加良好的技术支持和基础条件。比如,在进行大量的数据文件传输中,通过5G移动通信与云技术支持的数据传输,不需要对数据文件的可存储空间及其内存大小进行考虑,而是在5G移动同学滚技术的支持下,即能实现对数据信息的快速与高效传输。此外,对5G移动通信技术的应用实现及其在云技术开发应用中的优势表现,还可以从5G移动通信技术支持下的更加人性化与便捷化的云服务开发和应用实现,以及以5G移动通信技术为基础的移动终端设备云层面持续拓展等方面进行分析。由此可见,5G移动通信技术的应用和发展,不仅在云端生活的开发和应用上有广泛的表现,而且对云端生活的持续发展也具有十分积极的作用和影响。

物联网通信技术的发展范文第4篇

关键词:车联网;物联网;体系结构;典型应用

中图分类号:TP393 文献标识码:A 文章编号:2095-1302(2013)03-0069-02

0 引 言

物联网概念及相关技术作为目前信息产业中日益重要的发展方向,越来越得到世界各国研究人员的重视和青睐,我国在物联网领域也投入了大量的科研力量进行相关研究。车联网则是物联网与智能化汽车这两大战略性新兴技术产业的结合,基于车联网技术的一系列应用将对道路交通、城市发展、公共及私有财产监控、市民出行等多个方面的难题破解做出巨大贡献。传统的车联网技术核心为射频识别,经过分析研究,本文创新地提出了基于位置的车联网通用应用平台构架,并对该平台的典型应用进行了介绍。

1 车联网

2005年,国际电信联盟(ITU)正式提出了“物联网”概念[1]。物联网(The Internet of Things,IOT),即通过装置在各类物体上的射频识别(RFID)、传感器、二维码等,经过接口与无线网络相连,从而给物体赋予“智能”,可实现人与物体的沟通和对话,也可以实现物体与物体互相间的沟通和对话,这种将物体连接起来的网络被称为“物联网”[2]。

目前,智能交通亟待建立以车为节点的信息系统——车联网[3]。所谓车联网(The Internet of Vehicles,IOV),则是指通过多种无线通信技术,实现对车辆的状态信息(包括车辆基本属性、动静信息、车辆动态等)进行获取、传输、加工、共享、利用,并使车辆作为节点而连接成为的网络。由此可见,车联网是物联网的应用之一,是一类物联网,车联网可以实现车与车、车与路、车与人之间的信息交换,进而解决一系列诸如出行安全、资产监控、城市交通、市民出行等多个方面的难题。

2 基于位置的车联网通用应用平台构架

作为新兴的技术领域,目前,物联网还没有一种能够得到一致认可的统一体系结构,本文致力于探索一种能够为开发者提供统一接口的通用应用开发平台,此平台的概念类似于计算机体系结构中的操作系统。图1所示是车联网通用应用平台的构架示意图。

该平台的存在将使得基于此平台的物联网应用开发效率和便捷性得到极大的提升,传统开发者在开发物联网应用系统时需要自行设计自上而下的软件、硬件及中间件等诸多复杂部分,而如果采用此平台,开发者将可以直接应用本平台提供的API进行一站式开发,完全无需考虑底层硬件的不同及诸多复杂因素。

该构架为典型的层次构架方式,自下而上可以分为硬件层、通信层、接口层,其中硬件层在终端层次,接口层在服务器层次,通信层作为二者的交互层借助现代通信手段跨越终端与服务器。

2.1 硬件层

硬件层是传统的物联网传感器设备、通信设备等组成的综合模块,该模块可以是专用硬件、智能手机、PDA、平板电脑等不同终端,通过其上运行的专用软件达到对上层的细节屏蔽,隐藏不同硬件终端的差异,提供统一的接口。该层整体的作用为对硬件资源的统一调控以及对其的虚拟化。

2.2 通信层

通信层主要指通过各类通信技术将硬件层所获取的数据从终端传输至服务器的实现过程,主要包含GPRS、HSDPA、蓝牙、Wi-Fi、有线网络、卫星通信等通信手段。借助这些现代通信手段,通信层在终端发送其所采集到的数据及其自身的属性信息等,服务器端在接收信息的同时进行格式化,而后以统一的格式送往接口层,从而达到屏蔽通信方式、通信协议细节的目的。

2.3 接口层

接口层为通用平台公共层的最上一层,负责将各类信息进行打包封装并形成统一格式后向开发者提供API开发接口。该层次作为整个平台对开发者的最外层包装,隐藏了平台体系结构中所有的细节,无论平台应用了哪几种技术,通过本层的包装均可实现统一的数据格式、调用接口,真正实现通用的应用开发平台。

3 平台功能

该平台能提供传统物联网、车联网能够提供的所有功能,同时可以扩展出一系列能够协助用户进行二次开发的定制功能,主要包括终端位置获取,终端属性获取,终端传感数据获取,终端认证与授权,终端触发器等。图2所示是该通用应用平台的功能示意图。

图2 平台功能示意图

3.1 终端位置获取

该功能提供终端设备的位置获取功能,终端可采用GPS、伽利略、北斗、格洛纳斯、基站定位、Wi-Fi定位等多种定位方式中的一种获取自身位置,用户应用通过调用该功能即可实时获取终端的当前位置,位置格式包括坐标信息和速度信息。

3.2 终端属性获取

每一台终端在初始化时均被赋予独一无二的ID和一系列其他属性信息,用户应用通过调用可获取所有信息。

3.3 终端传感数据获取

车联网终端可以接驳一系列具有不同功能的传感器,如温度、湿度、风速、风向、环境信息等。该功能提供获取连接在终端设备上的传感器所传递数据的功能。用户可以通过简单的调用获取所有或指定项目的具体数据信息。

3.4 终端认证与授权

基于终端属性获取功能,该功能可进一步提供对终端设备的认证与授权功能,以保证连接到本系统的终端设备均为合法可靠的设备或者根据用户应用的要求对设备进行验证,对于系统的安全稳定及应用的复杂操作提供了保障。

3.5 终端触发器

终端触发器(Trigger)功能为用户应用提供了“数据变更动作”的触发机制,开发者可以订阅某种特定的数据源,如终端位置或某种特定的终端传感器数据, 当数据源数发生变化后会触发用户应用定的动作代码。

4 平台的典型应用

车联网是一种全新的概念,具有十分广阔的应用前景和使用领域以及非常巨大的商业价值。基于该通用应用平台,开发者可以快速高效地开发出包括道路交通(包括车流量监控、车速监控、事故预警与现场快速定位、逆行警告、智能交通灯等),城市发展,公共及私有财产监控,市民出行(私家车轨迹跟踪、公交车路线实时显示、出租车叫车服务、车队位置共享、路线路径分享)等多领域的典型应用。

5 结 语

车联网作为一种全新的网络应用形式,兼具物联网技术与智能化汽车技术两方面的特点,是新一代智能交通的核心,同时也是下一代互联网技术的典型应用,但是,车联网技术目前还未能形成被广泛认可的技术构架或体系。本文从实用性角度出发,创新地提出了基于位置的车联网通用应用平台构架,基于此构架,开发者可以快速地开发出一系列所需的应用。

在国家的战略支持及开发人员的大力投入之下,相信车联网技术在未来必将进一步发展,为提高我国的综合实力、提高人民生活水平做出更大贡献。

参 考 文 献

[1] ITU Internet Report 2005: The Internet Of Things [R]. Geneva (Switzerland): ITU, 2005.

[2] ATZORI Luigi, IERA Antonio, MORABITO Giacomo. The Internet of Things: A survey[R] . Computer Networks, 2010.

[3] 武锁宁.车联网:值得关注的课题[J].中国电信业, 2010(8):17-19.

物联网通信技术的发展范文第5篇

【关键词】数据通信;移动互联网;应用

随着移动互联网的发展,我国移动数据通信业快速崛起。人们日常生活中离不开网络通信,网络环境复杂,通信存在一定的安全威胁。因此在这一环境中,信息的安全性和完整性就成为主要关注的问题。所谓安全性是指无线网络在数据传输过程中要通过一定的技术来防止信息被盗,或者被篡改。尤其是对于关键信息,必须要加密处理,文章将这一问题进行了分析,提出了互联网时代的数据通信安全技术。

1无线网络通信安全隐患

无线通信网络为自组织网络下的拓扑结构,在运行过程中会受到外界的影响,存在一定的安全隐患。尤其是在网络制式发展过程中,我国无线网络通信技术不断从2G转向3G甚至4G,技术上逐渐趋于成熟,但不可否认还存在安全隐患。因此我们对其做如下分析,以探讨移动互联技术下数据通信安全技术的应用。(1)无线网络的安全隐患是实施数据通信安全技术的重要原因,我们以现行的4G网为例,它是由IP主干网、无线核心网组成,主要影响因素传输过程中外界环境,主要存在的问题在于信道拥堵和信息安全性存在漏洞。如无线网络存在安全隐患,就会导致信息的丢失,因此要实施必要的数据通信安全技术。尤其是物联网时代,信息的传播速度快,人们的网络使用频率高,缺乏安全技术很容易导致信息的丢失。(2)4G网的应用更加广泛,互联网与移动通信技术的结合衍生了支付宝等新的购物模式。网络通信成为人们认可和支持的方式,用户与4G移动终端之间的交互大量增加。在这一过程中,网络交互无疑存在着巨大的安全隐患。信息安全性受到质疑,操作不当和防护不当都将造成经济损失,物联网时代的数据通信安全技术实施更加重要。

2互联技术下数据通信安全技术的应用

2.1移动互联网通信安全方案设计

互联网时代,数据通信的安全性受到外界大量因素的影响,保证通信安全十分重要。互联网通信安全方案的设计要信息互联网的发展规则。在对物联网的隐私数据处理时,应采用椭圆曲线加密方法,要求对核心数据进行加密,但对于非核心数据要明文传输,确保数据传输与处理能力。我们针对当下互联网技术的发展制定了具体的互联网数据通信安全技术,结合SHA、椭圆曲线加密算法和数字签名等技术来实现数据安全统计。确保系统数据传输的准确性、安全性和完整性。随着手机无线网络的使用,还应对手机app进行安全防护措施,对相关数据进行加密,并且通过数据传输和解密处理,完成整个数据的传输过程,提供更多的网络服务,满足更多人的需求。其中,椭圆曲线密码技术是其核心技术之一,是利用秘钥设置来确保数据安全的一种方式。这种方式具有处理效果理想、带光纤和带宽的要求低等优点,但该技术的实现具有一定的困难,要对公开秘钥体制进行分析,并根据移动数据通信的现状进行正确的选择与计算。

3移动通信安全技术的实现过程

本文立足于移动数据通信的几种表现形式,包括网络终端服务器端、第三方BouncyCastle和Android端app等,探讨互联网技术支持下的数据通信安全技术实现。在Android端app数据传输中通常存在一些敏感数据,需要进行秘钥加密处理,一些重要数据还需要采取端对端加密方式,就是从信息的输出到接收的全过程中无需解密。设计者要正视数据的重要性,合理的利用资源和确保数据处理效率。保证数据匹配后才能进行之后的操作,最终得到需要的信息。其中,公私钥对的生成是这一过程的核心技术,以和BouncyCastle的算法为例,要求在服务器端采用统一且唯一的公钥和私钥。并在服务器端自动保存私钥密码,公钥则安装到安卓手机的app程序中,这样使用者就可以获得公钥,获得所需的文字和视频等信息。安卓手机目前的数据通信技术为在指定服务器下生成的一对对应的公钥和私钥,其具体的接收流程如下所述。利用手机服务器端的公钥对形成移动数据接收端的公钥,对关键信息进行椭圆曲线加密法,也就是上述我们提到的方法。信息传递过程中利用SHA算法来获得新的摘要信息。在接收信息端进行数字签名和解密处理,未来这一过程将实现智能化处理过程。公钥主要用于数据的解密,独立存在且不影响数据的传输。对摘要报文进行分析,及时发现不一致的报文,发现移动通信中的问题,最终得到正确的解密数据信息。

4总结

文章结合我国目前移动数据安全的现状,分析了互联网环境下的数据安全防护。我国移动互联网技术正在快速的发展,数据通信业也已经到了高峰期。现阶段,确保移动通信安全成为主要的任务,也是满足使用者需求的主要手段。智能化的数据通信技术也是未来研究和发展的目标,文章结合智能终端、网络服务以及第三方BouncyCastle等数据传输方式,并结合互联网发展现状,正确分析了数据通信安全技术的应用。

参考文献

[1]范云海.集成加密方案ECIES的设计与验证[J].信息技术,2012(1).

相关期刊更多

智能物联技术

省级期刊 审核时间1个月内

中国电子科技集团公司

中国渔业质量与标准

部级期刊 审核时间1个月内

中华人民共和国农业农村部

明胶科学与技术

部级期刊 审核时间1个月内

中国轻工业联合会