首页 > 文章中心 > 人工智能时代的教育变革

人工智能时代的教育变革

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇人工智能时代的教育变革范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

人工智能时代的教育变革

人工智能时代的教育变革范文第1篇

[关键词]人工智能;财务机器人;会计电算化;人才培养

0引言

正如会计电算化替代传统手工会计一样,随着信息化、智能化、互联网、大数据等科技元素在会计信息化中的应用,人工智能悄然到来。自2017年“会计证被取消”,到普华永道、安永、德勤等国际会计师事务所纷纷推出财务机器人,这些举动在财务圈引起了轩然大波,许多中职学校会计相关专业的学生,担心基础核算会计将被人工智能取代,对未来颇感担忧。根据世界经济论坛2016年的调研数据预测,到2020年,在全球15个主要的工业化国家中,机器人与人工智能的崛起,将导致510万个就业岗位的流失,未来20年最有可能被机器人抢走饭碗的岗位包括低端制造业的生产、会计等[1]。2017年7月,中国《新一代人工智能发展规划》,将人工智能上升为国家战略。所以笔者认为,基于人工智能背景下的中职会计电算化专业人才培养方式将面临变革,在教学中应站在未来发展的高度,适应信息化发展,及时掌握人工智能相关技术,实现由传统会计电算化专业人才培养向智能化管理会计转型。

1人工智能的概念[2]

人工智能即AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术以及应用系统的一门新的技术科学,它是指由人工制造出来的系统表现出来的智能。目前人工智能在计算机科学领域内,受到了广泛的发挥。在机器人、经济政治决策、控制系统、仿真系统中得到应用。人工智能是信息技术发展的必然,它已悄悄地改变着人类的各行各业。人工智能在会计行业中应用,促使会计由简单核算向管理方向变革,推动了会计行业的发展,同时也促使着中职学校会计及相关专业的人才培养转变。人工智能取代传统的会计电算化操作人员是一种趋势,但也是一种转变,自我提升的机遇。

2中职学校传统会计电算化专业人才培养[3]

2.1课程偏传统基础核算类,轻参与、管理类会计课程

在多数中职学校会计电算化教学计划课程设计中,传统财务会计类课程占大多数,管理会计类课程设置单一或者没有。而财务机器人的出现,则能够替代大部分重复性、流程性基础会计核算工作。

2.2会计实操偏基础性会计技能,轻数据分析、挖掘

在实践教学及技能培养中,过于注重培养学生点钞、传票的翻打、会计书写、凭证装订,会计电算化软件操作机械性录入等。在当前大数据、人工智能背景下,可以让会计人员摆脱繁杂事务,重点放在会计数据分析与数据挖掘,为企业决策提供服务。

2.3课程偏模拟操作,轻实际操作

无论是手工核算还是会计电算化记账,大多数实操是模拟一个企业一个月的业务,学生根据教材或老师给予的信息进行会计处理,过账,做报表。一学期就是这样反反复复练习。学期结束,虽然考试合格,但仍有很多学生不明白为什么这么处理,特别在月末业务处理更加模糊不清,例如工资发放,计提税费、费用摊销、成本及费用结转等。还有绝大多数学生不知道真实环境如何计税、报税、纳税,只是理想中的学习,为了做账而做账。

3人工智能背景下的中职会计电算化人才培养[4]

3.1由基础核算型初级人才向有思想的中级人才转变

人工智能在会计行业中的应用,会计核算软件中的基础数据录入、凭证录入与审核、记账、编制科目汇总表、材料的收发统计、报表的编制等操作很容易被财务机器人替代,但是也有一些是机器无可替代的,需要有思想的“人”来处理。例如:由于大环境变化,企业的固定资产有明显减值趋势,而财务机器人并不能分析与判断这个固定资产是否会减值或减值多少,如果财务上不及时做出处理,将可能导致企业少确认资产减值损失,虚增了企业的资产和利润,对于企业来说,这属于信息失真。在大数据时代,中级类型的会计人才储备相对较少,中职学校的会计电算化教育,需要培养的应当是此类会计人才。教学会学生不能只拘泥于看财务数据,还要学会合理利用有效的会计数据服务于企业的发展,提高企业的核心竞争力。

3.2由传统的财务会计向人工智能环境下的管理会计人才转变

财务机器人的出现,替代了传统的财会人员进行基础数据的录入,日常凭证的填制、审核、记账;凭证、账簿、报表的生成;成本结转、折旧等财务处理;纳税申报等,这不仅提高了会计工作的效率,减少了传统的会计人员繁杂的日常账务处理工作,但同时也让传统的会计人员失去工作。作为会计的教育者,如何让学生在未来立于不败之地,不被财务机器人替代,就需要学校适应时代趋势,教学重点由传统的基础核算向智能管理型会计演变。会计从事的活动,除了重复、机械、烦琐的事情外,还可以创造更多价值,比如:评估、判断、沟通、协作、建议等。管理型计人才就是通过智能机器人核算出的精确信息,对企业的未来做出评估、预判、建议等,甚至帮助企业管理者做出决策。

3.3由会计电算化软件操作员向人工智能会计系统的设计者转变

人工智能环境下的财务机器人,实质就是一种自动化运行的程序,这种程序的设计,需要设计人员既要懂计算机又要懂会计。而现在的中职学校,会计电算化专业主要培养的是会计专业人才,操作会计核算软件,而很少在计算机方面进行教学。在人工智能环境下,懂得会计专业的人才只是人工智能会计系统设计的主导者,而计算机方面人才则根据会计法及相关规则进行系统设计,自动化处理会计业务需要想到协作,融会贯通。人工智能永远是基于系统的规则和大数据,如果规则发生变化,人工智能将无法起作用。在日常教学中,哪怕我们不能完全让学生掌握编写程序,但是应当教会学生看懂和读懂程序,对机器人“思想”进行修改,也算是人工智能的掌控者,而不是被替代者。

4人工智能背景下中职学校会计电算化专业人才培养应对策略[5]

4.1更新理念与改变教学计划

笔者认为,在人工智能背景下,在中职学校,会计及电算化专业办学理念中应加入人工智能等相关技术,同时其人才培养方案、专业建设、教学计划等方面都需要做出相应的调整,培养适应于人工智能时代复合型人才。例如,中职学校会计或会计电算化专业的教学计划中,计算机方面课程开设仅有计算机应用及会计电算化软件操作课程,数据处理、编程类或人工智能课程几乎没有,这样的教学安排不利于学生对未来人工智能的应对能力培养,应当增加相应的计算机方面课程,财务管理、会计政策、法律法规等人工智能无法替代的课程,减少将来可能被财务机器人替代的会计技能课程。

4.2提高教师人工智能等相关理念和技术

要给学生一碗水,教师必须要有一桶水,虽然人工智能的出现解决了许多教育上的难题,但是教师在人工智能背景下还需要增强自身信息化能力,学习人工智能相关理念,掌握人工智能相关技术。这就需要学校给予老师多点人文关心以及人工智能方面的继续教育。

4.3关注人文综合素质培养,让人工智能为我所用

财务机器人出现,会计人员有更多时间去从事财务机器人无可替代更具有情感类的工作,这些工作需要人与人之间的沟通与交流,因此,笔者认为,中职会计电算化专业教育,不仅需要培养学生人工智能动手能力,还要关注学生思想道德、人文综合素质的培养,提升学生的思想道德水平,教会学生爱岗敬业,诚实守信、乐于助人,激发学生的学习主动性和创造性。如果没有良好职业道德水平,即使掌握了人工智能技术,也将会破坏规则,让会计信息失真。我们不能教出人工智能的“奴才”,应当让人工智能为人类所用,做人工智能的主人。

5结语

总之,人工智能正在快速又深刻地改变我们的生活和工作方式,将人工智能用于会计行业会也将会不断得到规范。对于人工智能这类新兴技术在财务行业的运用初期可能会让学生产生恐慌、彷徨,认为学校教育无用。作为专业教师,要教会学生变革思想,提高其对会计价值的认识,提高其人文综合素养,拥有过硬的专业技术,不断地完善专业胜任能力,把握机会,主动迎接挑战,那么人工智能就只是会计人员的好帮手,而不是掘墓人。

主要参考文献

[1]彭维.浅谈人工智能时代财务的变革与转型[J].中国管理信息化,2018(19):39-41.

[2]巩彦哲.人工智能在会计管理中的应用微探[J].财会学习,2018(20):86-87.

[3]卢映芝,黄静.人工智能与会计课程实操的结合探讨———VR技术的引进[J].现代商贸工业,2018(30):160-162.

[4]王立法.论人工智能环境下会计人才培养所面临的挑战及见解[J].财经界,2018(6).

人工智能时代的教育变革范文第2篇

人工智能的教育本体:教育的变与不变

从本质上讲,人工智能技术是信息技术革命的集大成者。自从托夫勒1970年写出《未来的冲击》,信息技术革命越来越快,概念越来越多,没有停止的迹象。仅从近五年来看:大数据、数据科学、生命信息、工业4.0、物联网、新硬件时代、机器人、互联网+、人工智能,表面上概念你方唱罢我登场,但内在逻辑一直没有变:从单项技术走向全面融合,从局部应用走向全面工具化,而人工智能至少在目前看来是集大成者。硬件上物联网的成熟、软件上高可用性和动态数据库的成熟、生物学上神经科技的进展、数学上网络算法的应用、材料科技上纳米和感知材料的进展、信息科技上芯片和云技术的快速进步。从物理世界到混合世界,再到比特世界,人工智能技术刚刚开始,但人们基于过去工业革命的经验,明确感到这是临界点的来临。

STEM 成为后人工智能教育的不动点:应对科技的变化,教育的变革一直都在进行且与科技的发展互为因果。从彼得・蒂尔对教育的质疑,到创客热潮在美国教育中的掀起,事实上,STEM教育是美国对过去概念化的“实用主义”教育和“通识教育”百年争论的落锤之音。起源于杜威和哈钦斯的那场争论,恰恰是工业革命已经明确成型后的两种教育理念的争论。之所以今天的美国已经很少争论到底是实用主义还是通识教育,是因为美国的科技已经进入到一个新的阶段。教育是一个组织行为,一个围绕未来10年不变的知识、20年不变的技能、30年留存的体验的稳定的复杂社会经济形态,因此不那么容易被颠覆。恰恰是科学、技术、工程、数学(STEM)构成了工业时代(数理化)和后工业时代(文科、理工科)中的不动点,在物理学和几何学中,不动点对于系统的稳定和概念的一致性非常重要,而目前的STEM教育,不仅仅是一个概念的东西,而是旧技术时代向新技术时代过渡的“不动点”。在这个不动点体系中,新的侧重开始后,原有的教师和学科体系以及支撑可以平稳切换,不至于导致教学秩序的混乱。

元学科、应用学科和副科发生结构性的变化。由于人工智能的出现,使得复杂计算和系统计算以及简单的人机交互计算工具化全面超越人类,对技术基础这个原有概念的教育的分歧越来越大。人工智能视野下学科概念如果表述成元学科、应用学科与素质学科,那么教育学科的概念的持续性还能以最大公约数继续运行:以数学、物理、化学等元学科为代表的学科,在今后的教育中更加重要并将作为筛选人的条件。而应用科学:(生物、地理、信息、劳动)学科,将着重项目制学习、体验学习,成为培养人的目标;社会科学(历史、哲学、思想品德)将来的重点在于综合应用,批判性思维学习,更加侧重学科的来源和发展;而综合素质类(音乐、体育、美术)将从副科走向前台。@样,围绕STEM的教育,人工智能下的教育体系还是一贯的科学(元学科)、技术(应用学科)、工程(素质学科、社会学科、管理学科)、数学(逻辑、数学学科)。

人工智能技术对学科的影响:越理性,越感性

数学:传统的工业时代的数学,其训练方法是数值计算,其指向是力学计算,这种侧重至今还非常浓厚。随着知识库的普及和共享以及计算工具的进化,越来越少的人将来从事传统的工程计算行业,而正宗的工科专业越来越向着专业化和高端化演化(如学材料的将来的进入门槛很可能是博士)。但是,人工智能今后用到的大量的数学以及人与人打交道用到的计算机数学,统计学基础的数学,这方面中国数学还停留在工业时代。美国学生从高中就开始问卷处理和微积分的学习,大学数学更加有用的是方程组、统计学等。数学是一个典型的年龄相关性学科,一定要从小学,而且转向数值和算法类的学习,从偏向材料计算的高等数学方向,转向偏向矩阵计算的统计数学方向,逻辑学、几何学和统计学成为三个数学学习的支柱。

物理:有一位著名的物理学家回顾过去物理百年,发现一个有趣的现象:“力”这个概念,在物理学上看,已经不是一个原始的变量了,能量和质量才是,为什么我们的老师还在使用这个概念呢?那是因为在机械时代,“力”是最容易理解的组合概念。在工业革命前后的几百年直到今天,物理学教育的重点还是偏向传统力学计算方向,从中小学来说就是牛顿力学。然而随着工业时代的结束,人们更容易见到的力学概念不再是机械和天体,而是转向社交网络、计算机图像、信息变量、生物体和电子学以及更容易接受的能量、时间维度。数学老师们转向统计学的同时,物理老师应该考虑从牛顿力学转向量子力学和热力学甚至时空维度,这些对于孩子未来的人生更是基础,而通过物理学进行基础的科学实证的训练以及科学观测和数据处理,才是物理学最基础的作用和价值体现。不然,人生什么年龄都可以去学物理而不必非要从未成年时代去学。

元科学化学:中美物理学和化学都是选择性的,但比较中美化学教育,却发现有很大的不同。美国高中化学就允许且必须使用带有功能性计算的计算器,而中国大学生都没有这方面的训练。也就是说,随着化学和生物化学要求越来越高、知识点越来越多,设法绕过烦人的记忆而走向逻辑,是美国学习化学的方向,这点也值得我们注意。另外,化学的侧重由从偏向无机化学方向的基础化学,转向偏向生物和有机化学方向甚至与物理相结合的量子规律,是化学学科的重点。例如,很多美国的大学录取要看高中生在化学创新方面的实践,能创新的往往是生物化学。

外语:工具性的外语逐渐失去市场,形式节奏上的美学、逻辑学角度的词源学、社会学角度的语言学、心理学角度的语义学成为外语复兴的落脚点。另外,似乎从来没有人将计算机程序当作外语来教,事实上,随着工具性的外语被人工智能取代,计算机程序语言很可能成为一种外语,而很多软件人才是学外语出身的,也不断印证这个结论。

语文:可以预料的是,随着工具性的人工智能的出现,原先学习语文的工具性的方法(如语法),逐渐将退出语言学习(包括外语),而作为母语的语文之所以在工具化人工智能时代还得到重视,最重要的理由也许是仪式感的表达:回到经典、回到表达、回到应用、回到美学。

除了以上学科教育的重点随着技术经济必然发生变化外,学科学习的醒悟和内在逻辑将更加重要,学科历史、学科逻辑、学科故事将替代题库训练,因为作为计算的精确性除了特殊人才的培养外,将让位于工具和人工智能,而人要考虑体验和持续学习的兴趣和逻辑。学科学习之间还将朝着融合的方向发展,应用学科和元学科的分离意味着应用学科更加朝着整合的方向发展:地理、生物、科技等融合课程,朝着综合应用发展。

人工智能技术对教育技术的改变:从工具到空间

随着人工智能的发展,也许目前花里胡哨的信息技术将隐身后台。课堂上也许看不见信息化了,师生在课堂层面体验将会越来越好,越来越贴近自然:看不见计算机的信息化,距离教育更近而不是技术更近。

学校之所以存在是因为学校为学生模拟了一个高度抽象的比真实世界还真实的教育世界。因此,未来的校园从改变世界的信息模版角度,将更加强调与客观世界的互动、映射和高度抽象。

美国的大学录取是更接近人工智能手段的个性化录取,而学生选拔是更接近大数据角度的GPA(平均成绩点)。从培养角度,学生画像比GPA更加个性化地从个体角度描述学生的个性特征,学生的学习行为、实践行为、创新行为,在全地域、全信息、全自动、全过程的记录下,将更加全面地反映学生的全貌。智能实验室和智能校园的方向,将来是基于个体的专业学习和评价。

与学生相对应的教育行为画像,将侧重于联系社会、联系科技、联系家庭、联系团队,从重复性劳动变为创造性劳动。

而学校的管理行为将演变成支撑技术:支撑数据、支撑品牌、支撑环境。今后的教育将出现越来越专业和自由的教师,越来越职业的校长。

在教育政策上,由于全国性的数据和人工智能的使用,教育测评将更加专业化、教育本体化(而不是被测评机构和排名所左右),教育选拔将更加科学化和长期化,短视模式随着计算方法和智能评估的进展而迅速被迭代掉,衡水模式将逐渐退出历史舞台,未来应该筛选更应该上清华大学的人和更应该培养好每一个想学习的人。即使仅从功利教育目标来看,教师个体经验也逐渐让位于人工智能和大数据,教育重心从教育哲学属性逐渐走入教育科学属性;而被恐惧绑架的教育所强调的教育的筛选功能,逐渐将重心转向教育培养功能,个体成功的培养目标,逐渐转变成为未来视角的社会价值角度;教育回归人与人的本质关系和专业培育孵化的社会职能,功利性和工具性减弱,过程幸福成为教育者追求的目标。教育者由工匠逐渐转型为艺人,教师由于工具化的替代,将会越来越有尊严和个性,而不是越来越像工具。

“人创造”的价值逐渐凸显,教育的价值在于“创造人”

柯洁在被人工智能的计算机打败之后,接连战胜外国围棋高手,刷了一下存在感并表示:“与机器下棋没意思”。同样,在工具制造时代,如果从质量和精度考虑,无疑机器越来越超过人,然而手工的红木家具、手工的艺术品、手工的食品、甚至手工的衣服和汽车,比起无论从什么角度来看的机器人制造的东西,都越来越贵,人也越来越愿意采购。“人创造”的价值凸显,是体验经济产业升级的一个标志,人工智能时代也不能例外。因为,“有意思和不可复制”才是人消费的高级时代。

不同于机器代替人的重复劳动的趋势,教育与学校会替代机械的班级成为人与人关系的场所,在这个场所中,机器越来越像人来代替人的高级状态,而人越来越摆脱工具性、摆脱重复性,更具艺术性和创造性。研究教育的历史会发现一个普遍的现象,就是随着工具性的增强,反而是班级规模的缩小和师生比的扩大,这也印证了:人毕竟要与人打交道,教育是一个个性化的活动。C器代替人意味着更多的时间人会回到家庭陪同孩子,这在美国已经持续发生了50年,几乎多数的女性甚至男性在孩子成长过程回到家庭(如果他们算教师的话,教师比例更大)。在学校里未来的师生比会持续增加,教育更加不再计较投入产出,而将演变成一种创造性的职业。

杜威在研究工业化革命后的教育中,提出教育的目标更加集中地体现在教育本身之中,教育即生长(教育的目标就是让教育继续下去)。随着工具化的人工智能代替越来越多的教师的重复性劳动,教师的幸福指数越来越高,更多的和更合适的师生比使得学生得到更加专业的呵护和培养,幸福指数也得到提升。教育让生活更美好将逐渐实现,教育即生活的前提条件是教师不再是指标的工具,学生不再是考核的工具。

人工智能时代的教育变革范文第3篇

[关键词]人工智能;国际商务课程;教学创新;能力培养

新一轮的科技革命和产业革命正在进行,大数据、云计算、人工智能等新型技术与商业模式正深刻改变人们的思维、生产、学习方式。关于人工智能对于人类社会的冲击,已有不少论著。2016年,《自然》杂志刊发谷歌的“深度心智”(Deepmind),这将会极大的扩大人的能力。2019年初,国务院《中国教育现代化2035》,提出要建设智能化校园,统筹建设一体化智能化教学、管理与服务平台。2019年8月29日,科技部新一代人工智能发展研究中心联合罗兰贝格管理咨询公司《智能教育创新应用发展报告》(以下简称《报告》)。报告显示,人工智能有望引领教育的系统性变革,推动人才培养更加多元化、更加精准化、更加个性化。世界各国纷纷制定规划,出台相应的政策措施,推动智能教育的发展。以美国、新加坡等为代表的各国相继推出面向未来的新教育改革战略,不断制定相关政策法规,设计本国智能教育的发展蓝图。

一、未来智能社会的能力预测

未来社会各种各样的颠覆性变革,全球各种组织都在做预测。世界未来研究所[1]对未来社会需要的10中技能的预测:一是意义构建,二是社交智能,三是新颖和适应性思维,四是跨文化能力,五是计算思维,六是新媒体素养,七是跨学科能力,八是设计思维,九是认知负荷管理,十是虚拟协作。十种技能分别体现在三个层面,即人际交往能力、应用知识能力与工作技能层面。引入这些技能,旨在深入探索未来技能存在的世界,以及目前教授和衡量这些技能的方式,希望这些技能能够更充分地融入高校国际商务的课程。[2]

(一)人际交往层面——团队合作精神

人际交往层面主要指与他人有效合作,有效沟通,与不同背景的伙伴有效合作的能力,即团队合作精神。数据来源:世界未来研究所第一,跨文化能力。4个主要组成部分可以用来评估一个人的跨文化竞争力:知识组成部分、情感组成部分、精神运动组成部分以及情景组成部分。第二,社交智能。尽管社交网络平台为人们提供了更多的联系,但它们培养的深厚友谊却很少。微信、Facebook等社交平台的主流化与普及鼓励人们以新的方式思考如何建立和维持人际关系。[3]第三,虚拟协作,即作为虚拟团队的一员,能够富有成效地工作,提高参与度,并展示自己的存在感。

(二)应用知识层面——逻辑性分析信息的能力

应用知识层面主要指个体可以逻辑性的分析信息的一系列能力,具体如下:第一,新颖的适应性思维。即熟练地思考和提出解决方案,而非死记硬背或默守陈规。第二,认知负荷管理。以多种形式表现的信息流丰富的世界带来了认知过载的问题,人们只有学会有效的过滤和关注重要的信息,才能把大量涌入的数据转化为优势。第三,意义构建,即确定对方所表达内容的深层含义的能力。人工智能将取代仅仅需死记硬背、日常制造业和服务业的工作,而对机器不擅长的高层次的思维技能、不能撰写为文本的需求将会越来越大。

(三)工作技能层面——解决问题和决策能力

工作技能层面主要指个体可以成为一个问题解决者和决策者,包括计划和组织,解决问题,决策商业基础等。也就是需要如下的素质:第一,新媒体素养。由于可视化在技术时挥越来越重要的作用,过去信息的静态展示正在让位于信息图表和数据的动态模拟。第二,设计思维。从本质上讲,设计思维是一种创造性解决问题的能力,它反映了发散性思维和收敛性思维的结合。第三,跨学科能力。未来十年,专业领域将比以往任何时候都更加具有重叠性,所以跨学科的研究方法将会占据世界创新的中心舞台。第四,计算思维,即将大量数据转换成抽象概念,并基于数据的推理能力。随着人类社会中数据量呈指数级的增长,越来越多的职业需要计算思维和技能才能胜任。

二、应对能力结构变化的教育创新

未来社会中,人才能力结构的变化也会对教学模式产生新的需求,课程教学需要结合不同的能力培养目标做出相应的调整与创新,世界知名高校和一些国际组织也提出了很多创新性的教学模式。如图2所示。数据来源:世界未来研究所

(一)能力结构及思维模式

世界未来研究所提出的十种技能的背后,所体现了以下一些基本的思维模式。同理心是指正确了解他人的感受和情绪,进而做到相互理解、关怀和情感上的融洽。同理心非常有助于在虚拟空间中站在对方的角度考虑问题,增加团队伙伴之间的有效沟通。元认知对于意义构建能力十分重要。元认知知识包含三方面:学习者对于自己的认知,学习者对于学习策略和使用方法的认知。成长性思维与批判性思维在认知负荷管理、新颖和适应性思维、新媒体素养以及设计思维中起到了十分重要的作用。成长性思维是相对于固定思维提出的,固定思维者把反馈当做一种批评,成长思维乐于接受反馈,也从反馈中学习,反馈最终会产生积极的成长变化。批判性思维有助于形成自己独特的世界观,他们不会妄自评价他人,而是会站在别人的立场上,并且去了解他们的世界观。跨学科一定有两种心态组成。首先,同理心。它允许人们从另一个角度来思考问题——站在别人的立场上。其次,好奇心。许多组织,包括IBM和IDEO,都开始从“T型”素质的角度来讨论这种技能,T型素质的技能组合中既有深度又有广度。但是杨壮①教授发现:现在π型人才已经在成为主流。所谓的π型人才是针对T型人才的一种升级,从字母的样式中就可以看出,π比T的下方多了一竖,所以它代表着“两专多能”,即除了你可能在高等教育阶段获得的专业能力之外,还需要有另一项专业能力。逻辑推理能力有助于培养计算思维。未来的教育课程中应该纳入计算思维技能的发展,鼓励学生通过因果推理认知、元认知和其他技能来学习解决问题。这种模式的目的是让学生分析他们在现实世界中可能遇到的真实情况,来教授计算思维能力。[6]

(二)国内外高校教育模式创新

1.“鱼缸讨论”“鱼缸讨论”,也是一种促进学生讨论的教学小技巧,不仅让讨论者积极参与,更能让其他学生积极反馈。第一步,把学生分成两组。第一组参加讨论的学生围成圆桌坐在教室中间,就像是在被第二组观看的鱼缸里一样。第二步,坐在中间的组开始时长10分钟左右的讨论,的第二组学生要听着,并且评估第一组的讨论。第三步,做出反馈。这是学生们最感兴趣的环节,学生可以从熟悉的同学那里了解到自己的优点和缺点,有了反馈确实会使得讨论变得更加激烈。2.项目式教学PBL(Problem based learning)教学法,也叫“项目式教学”,是一种通过让学生展开一段时期的调研、探究,致力于用创新的方法或方案,解决一个复杂的问题、困难或者挑战,从而在这些真实的经历和体验中习得新知识和获取新技能的教学方法。PBL旨在培养学生的创意思维、创新能力、自主学习能力及批判思维的能力。3.跨学科课程教学自21世纪以来,美国课程改革中出现了实用导向的跨学科课程,如ICT课程,环境教育和STEM课程。STEM是科学(Science)、技术(Technology)、工程(Engineering)和数学(Mathematics)四门学科英文首字母的缩写,STEM教育的核心是将原本分散的4门学科自然组合成一个整体,以项目探究方式进行综合性问题解决学习,以形成相应的综合。

三、针对国际商务课程的创新

结合世界未来研究所的十项工作技能、世界一流大学以及国际组织在教育方面的改革,结合东北财经大学国际经济贸易学院国际商务硕士(MIB)专业硕士教学情况,国际商务课程实际教学提出以下思考和建议。[7]

(一)培养同理心和元认知的实践方法

一种方式是开展课外活动,以小组为单位的体验式学习活动有助于培养人际沟通和跨文化能力。例如:体验式学习周;商务礼仪情景剧等。另一种方式是线上项目,线上项目中,可以通过微信小程序、投票互动式的方法来增加课堂活跃度,争取让每位同学都参与到课程中。国际商务课程是一门既要求专业知识扎实,又需要具备优秀的人际交往能力的综合性课程。那么,在已有的小组活动中,可以在每次小组活动或者小组作业之后加入一个环节——组员互评与打分。一些课堂讨论的小技巧会有助于培养元认知的思维模式。一种方法是在课上开展限时讨论,讨论映射是一种将学生的实时讨论视觉化的方法,这种讨论技巧使学生能够从以下几个角度进行深入的思考。

(二)培养成长型思维和批判性思维的实践方法

在国际商务的案例分析中,引用PBL教学非常值得考虑。假设案例主题为跨国企业如何成功并购外国子公司,老师用一部分课时讲解完理论部分,提供参考资源之后,另一部分课时可以尝试组织PBL。一次PBL教学要分次给予问题,分次讨论。具体过程大致包括七个步骤:第一步,弄清不熟悉的术语;第二步,界定问题;第三步,头脑风暴(对可能的假设或解释进行集体讨论);第四步,重新结构化问题(对问题的尝试性解决);第五步,界定学习目标;(以上步骤为学生小组讨论);第六步,收集信息和个人学习(学生独立学习);第七步,共享收集到的和个人学习的信息(小组报告和讨论)。经过上述七步骤,完成一次PBL学习。在这个教学模式中,老师的角色是教学组织者、资源提供者、学生能力发展的促进者。学生从知识的被动接受者转变为自主学习者、合作者和研究者。在国际商务的课程中,有很多需要实际调研的案例报告,也有需要做营销策划的报告。创客空间则可以融入这种类型的报告中,结合导师的相关课题,最好有一定经费的支持,为学生的基于创造的策划提供完备的支撑。学生们可以就某个主题展开经验分享、头脑风暴、结合实际情况锻炼设计思维和表达能力,这种能力不仅适用于学校,而且也适用于未来工作中。

(三)培养跨学科能力和逻辑推理能力的实践方法

注重“国际商务专业+21世纪主题”的课程框架,希望通过超学科整合来弥补传统学科的缺点与不足,构建适切核心素养转化的课程框架。主题选择具有适当的弹性,为跨学科知识的联结提供空间。比如在国际商务课程授课内容中,注重添加区块链、人工智能以及中美、中欧关系等主题。在国内,“挑战杯”全国大学生课外学术科技作品大赛是大学生创新创业实践教育最普遍和最有效的形式之一,具有广泛的群众基础和旺盛的生命力。每两年举办一届,被誉为当代大学生科技创新的“奥林匹克”盛会。所以提倡创建跨学科小组参加“挑战杯”大赛,比如国际贸易学院、国际商学院以及工程管理学院组建团队参加挑战杯,成员对不同学科都有相当的专长和良好的基本知识:国际营销、国际文化视野以及数据分析基础,在这样的团队中,更可能激发出新的思维和优秀的方案。

(四)全案例情景式教学

不同于教师讲授知识,学生被动接受知识的传统教学模式,全案例情景式教学是以案例或情景为载体引导开展学生自主探究性学习, 以提高学生分析和解决实际问题的能力。[5]首先,准备阶段。针对国际商务专业硕士课程的专业特点,结合知识点和学生实际情况,选取合适的案例作为分析材料。其次,授课阶段。在该阶段,教师讲授知识点之后,就将案例发放给学生;接下来就是考验学生理论结合实际的能力。学生可以自发组成小组,根据案例内容,并结合自己能力和长处与小组分工合作进行案例讨论,而在这当中,教师主要的角色是组织和引导学生。最后,拓展阶段。在学生汇报案例内容之后,教师要对学生的探讨结果进行点评总结。学生也可以利用这个环节进行自查,发现自己是基础知识点薄弱还是实践能力欠缺。通过该阶段,教师可以发现学生的水平,学生也可以发现自己作为专业硕士能力缺失的部分,从而双方进行查缺补漏。

四、总结与展望

结合国外高校及国际组织已有的模式,针对未来社会所需十种能力的培养方式如何应用在国际商务课程中,提出了一系列的活动和思维模式培养技巧,如在线学习(以MOOC为主)、讨论映射和鱼缸式讨论、项目式学习(PBL)、案例分析和创客空间以及课上的投票互动式环节等,希望对国际商务课程的改革创新有实质性的辅助作用。要想在未来取得成功,需要成为适应性强的终身学习者。随着组织形式和技能要求的快速变化,要求每位个人都必须具备远见,重新评估自己需要的能力,并迅速整合合适的资源来培养和完善需要的能力,适应万众创新时代,并形成决胜未来的新的竞争优势,赢得人工智能时代世界高等商科教育领域中的话语权。注释:①杨壮:现任北京大学国家发展研究院BiMBA商学院联席院长、北京大学国家发展研究院管理学教授、美国福坦莫大学商学院副院长、终身教授,著名领导力专家。

【参考文献】

[1]InstitutefortheFuture.FutureWorkSkills2020[EB/OL].[2019-11-09].

[2]LiuJie.TheOptimizationStudyofGeneralEducationPracticeEffectinOurCountry[J].学术界,2013(12):283-290.

[3]陈妍蓓(编译).欧盟关注终身学习关键能力培养[J].世界教育信息,2019,32(10):74-75.

[4]段世飞,张伟.人工智能时代英国高等教育变革趋向研究[J].比较教育研究,2019(1):3-9.

[5]王文.案例教学法在高校市场营销教学中的应用探索[J].产业与科技论坛,2020,19(4):187-188.

[6]吴朝晖.智能增强时代的学习革命--在国际人工智能与教育大会上的发言[J].世界教育信息,2019,32(10):3-6.

人工智能时代的教育变革范文第4篇

如今,类似性集体恐慌再度来袭。此番风暴中心锁定的是一种推测――“人工智能”和机器人或将超越人类能力。去年5月,物理学家史蒂芬・霍金曾撰文发出人工智能迅速发展的危险预警。同月,他联合其他合著者―美国麻省理工学院物理学家弗兰克・韦尔切克、麦克斯・泰格马克以及诺贝尔奖获得者、美国加州大学伯克利分校计算机科学家斯图尔特・罗素,在英国《独立报》发文警告道:“人工智能的成功创建堪称人类历史上最伟大的事件。糟糕的是,这可能成为最后一次。”

近年来,人工智能的发展令世人炫目,从“深度学习”可见一斑。作为一种利用成千上万个数值参数完成逼近复变函数的革命性新技术,它变机器执行看、听甚至思考等人类活动的梦想成真。伴随3D传感和3D投影技术日渐精进,机器人不时更新迭代。稍显遗憾的是,人工智能领域的前行进程难免跌宕起伏。

三本著作虽然从不同视角发表了个中观点,但作者不约而同地强调,机器人的优势处境正面临着的一个巨大现实障碍――人类心理学。

慈爱的机器人

眼见机器人越来越融入现代社会,战争、路建、商业、教育、医疗……,它们深刻地改变了人类的生活方式,谷歌发明无人驾驶汽车、苹果亮相个人助理等。众人心中的疑惑不禁愈发强烈,这些机器到底是在帮助人类,还是要取代人类?

在新书中,普利策获奖者、《纽约时报》记者约翰・马尔可夫回顾了1956年至今的时代进程,重点参比了人工智能与智能增强。他将读者设定在无人驾驶汽车的乘客座位上;他把读者放诸美国国防高级研究计划局(DARPA)的幕后,验看机器人操作;他邀请读者置身于一个完全自动化的制造设备,如一分钟内128个机械臂将组装完成30个电动剃须刀,每项程序均执行特定、精确的装备任务。

纵使早期人们积极乐观,然而事实上,创建人工智能历经了千险万阻。迄今,“莫拉维克悖论”仍旧未被攻破。这是由人工智能和机器人学者所发现的一个与常识相佐的现象:人类所独有的推理等高阶智慧能力只需要非常少量的计算能力,而无意识的技能、直觉等低层次感知运动技能却需要大量的运算能力。正如莫拉维克所写:“要让电脑如成人般地下棋是相对容易的,但是要让电脑有如一岁小孩般的感知和行动能力却相当困难,甚至是不可能的。”这主要归咎于摩擦、碰撞和接触力学的内在复杂性。

被誉为“鼠标之父”的美国发明家道格拉斯・恩格尔巴特则更倾心于“智能增强”。早在20世纪60年代,他已在发表题为《放大人类智力》的学术论文中提出,计算机是人类智力“放大器”的观点。此后,他陆续发明鼠标,开发超文本系统、网络计算机、人机交互和图形用户界面,并倡导运用计算机和网络解决世界上愈发紧张又复杂的问题。无独有偶,人工智能泰斗泰瑞・维诺格拉德和增强现实专家盖瑞・布拉德斯基在深刻意识到人工智能的局限性后,开始转投智能增强阵营。可以设想,马尔可夫所著此书或许成为人工智能成败与否将取决于智能增强进展的强有力范证。

机器人的兴起

未来工作将变成何等摸样?到底日趋丰富还是逐渐凋落?谁能够拥有它?软件企业家马丁・福特借助《机器人的兴起:技术和未来的失业威胁》一书警告说,人工智能和机器人必将挤兑绝大部分工作岗位,无论蓝领还是白领,均难逃厄运。如果你创意如泉涌,就不会被机器人取代吗?答案令人悲观,即便连新闻、音乐、研发等按常理不受影响的领域也无法幸免。同时,千万家庭将备受激增成本拖累,最为突出的两大代表领域是教育和医疗保健。

美国发明家、未来学家雷・库兹韦尔曾预言,到2029年,机译质量将堪比人工翻译水准。而福特一再断言,基于摩尔定律计算机的计算能力正在随时间呈指数级增长,这意味着人们业已处于迅猛的加速发展边缘。然而,有部分计算机科学家确信其为指数谬误,他们辩驳指出,集成电路的问世远远超出了技术史学家认为发展曲线中必然平台阶段已至的预期推断。

19世纪初期,英国纺织工人内德・勒德不仅亲手砸掉了自己的织布机,还领头发起破坏机器运动。经济学家借此把“科技将代替人类工作”这一广为流传的错误概念命名为“勒德分子谬论”(Luddite fallacy)。如是推理却严重疏漏了科技激发新工作岗位的补偿效应,以及劳动力全球化、民主化等无数新可能动向。

伴随机器人时代的来临,在福特的观念中,最理想的结果是人人挣得一份有保障的工资,而由机器完成所有工作。他解释,这种情况的出现多是源于身体构成的不平等。以往,人们应对技术破坏的主要策略是加强培训和教育,然现实收效甚微。现今,人们必须当机立断,未来的不平等和经济不安全状况是将演变为普天繁荣抑或灾难频发。

我们的机器人

遥控机器人专家戴维・曼德尔在新书中指出,自治制度并非新鲜事物。20世纪70年展至今,其在深海、太空探测以及几乎所有航空领域的日常应用程度非高即低。借鉴丰富的实战经验,尽管这些自治制度不断变革,但仍有为数不少的专家持质疑立场。例如,以持续学派的论点,海洋学家务须亲历黑暗的深海去直接洞悉潜伏在那里的神奇事物。如今,机器人潜艇、光纤电缆遥控操作身手日臻敏捷,实现更长时间探测的难题迎刃而解,更何况每次修缮升级成本亦无需支付昂贵代价。

曼德尔认为有绝对充分的理由相信,无论在历史、文化、政治、心理、哲学,还是公共关系领域,都必须坚定不移地确保人类的控制地位。离我们最近的相关事件发生在2015年7月,接近三千名人工智能研究人员联合签署了一份催促联合国禁止自主武器研发和使用的公开信,该封信件在阿根廷首都布宜诺斯艾利斯召开的2015年人工智能国际联合会议上进行展示。为了规避所研发无人驾驶汽车的最大人为隐患,谷歌的做法是拆掉方向盘。曼德尔认为此举大错特错,看似缔造了“完全自治神话”,然而别忘了,机器即使能够自控间隔时间,依旧无法独立完全工作却是不争的事实――人类的意图、假设和特征参数是所有机器赖以组建的必须要素。由此,曼德尔得出了与马尔可夫相近的论断:本质(或最艰难)的挑战在于涵盖人类环路的接口设计。

人工智能时代的教育变革范文第5篇

12月18日,由北京供销大数据集团举办的“加快大数据中心一体化进程・2017北京峰会”在京召开。

从“小背篓”到“大数据”

2016年,百货零售市场“闭店潮”汹涌。中国社会科学院财经战略研究院、社会科学文献出版社等的《流通蓝皮书:中国商业发展报告(2016―2017)》指出,未来5年内,中国的商品交易市场有1/3将被淘汰,另1/3将转型为批零兼有的体验式购物中心,还有1/3将成功实现线上与线下的对接。

北京市供销合作总社在这个变革的时代将如何实现转型升级呢?2015年12月18日,北京市供销合作总社宣布正式成立北京供销大数据集团。这是北京市供销合作总社一次重大的转型之举,完成了从“小背篓”到大数据的历史性跨越。时隔整整一年,北京供销大数据集团继续深化在大数据领域的布局,响应“建设全国一体化的国家大数据中心”的国家战略,作为中国大数据产业“国家队”的一员,努力推动国家大数据战略落地。

“我们打造的国际化大数据平台,将成为国家大数据中心的重要组成部分。”北京市供销合作总社副主任、北京供销大数据集团董事长姚从琪解释说,“北京市供销社一直以来保持诚实、守信的优良传统,可以保障平台的中立性;凭借跨区域、全球化的布局,可以保障平_的安全性;平台自身具有互联互通、运行高效和价格低廉的特征,可以保障平台的优越性。”未来,北京供销大数据集团还将基于供销大数据平台,发展包括“九金十盾”在内的政务云、涵盖各行各业的企业云、以“供销e家”为基础的商务云,以及科、教、文、卫、健康云。

以前,在云计算、大数据领域,无论是产品、技术,还是数据中心的建设和运维,国外厂商都占据领先地位。不论是出于安全可控的考虑,还是为了降低成本,在云计算和大数据领域都呼唤“国家队”能够“身先士卒”,通过自主创新,在云计算和大数据应用落地的过程中发挥积极而重要的作用。

北京供销大数据集团作为中国大数据产业“国家队”的一员挺身而出,在2016年围绕“3+10+X”的发展战略积极投入,在全球范围内打造拥有自主知识产权的分布式、全互联的数据中心集群网络,并凭借全球一体化的产业布局、创新的商业模式和跨全产业链的数据存储、分发、技术运维能力,成长为建设一体化国家大数据中心的主力军。

全国供销合作总社正在加快打造农村电商的专业性平台和地方性平台,同时加快打造全国供销电子商务“一张网”和农村电商“国家队”。在这一背景下,北京市供销合作总社敏锐地抓住了大数据时代的机遇,创建北京供销大数据集团,为发展大数据产业提供创新的企业平台,目前已与全国总社“供销e家”达成战略合作,将在电子商务、云计算、技术服务领域展开全面合作。从传统的零售领域跨界到大数据,现在又积极投身于国家一体化大数据中心建设的洪流之中,北京市供销合作总社的华丽转身值得点赞。

北京供销大数据集团未来将立足全国大数据产业园区布局与大数据平台资源的建设,同时借助合作伙伴在教育网络、科研创新、数据运营与分析、移动App资源等方面的支持,共建自主可控的大数据中心生态圈,通过不断完善供销云、企业云和金融云等一体化解决方案,为企业的数字化转型提供服务。

大数据落地的“道”与“术”

战略为“道”,产品为“术”,北京供销大数据集团CTO王帅宇在会上深度阐释了北京供销大数据集团践行大数据中心一体化国策的“道”与“术”。

“建设全国一体化的国家大数据中心”战略的提出,首次将数据中心建设提升到国家战略层面。王帅宇表示,北京供销大数据集团是为建设一体化的大数据中心而生,将肩负起捍卫国家数据的重任。

北京供销大数据集团致力于打造国内最大规模的第三方公立大数据中心集群。目前,集团位于承德、贵阳的数据中心已初具规模。未来,集团将按照既定的“3+10+X”战略,在更多地域布局和建设数据中心。2016年5月,集团正式成立美国子公司,成为数据中心全球一体化布局的桥头堡。

北京供销大数据集团认定,IDC/DC、CDN和云计算的一体化才是生存之道。“符合一体化者生,不然就会被淘汰。”王帅宇举例说,“由于我们三者都做,未来甚至可以将CDN免费,这对只拥有CDN业务的厂商来说是巨大的冲击。一体化将在未来5年内重塑整个行业。”

接下来,北京供销大数据集团将以创新的思路,采用前沿的技术、产品和流程打造数据中心,占领行业制高点。举例来说,在CDN方面,北京供销大数据集团将把产品做到极致。目前,集团已在全球范围内布局500个以上CDN节点,凭借专业的服务实现了网络和业务质量的可视化,并提供基于多级策略的智能调度响应功能。在云计算方面,集团将主攻“行业云”蓝海市场;同时打造“供销云”,为全国供销系统的农业电商平台提供支撑;集团还将深耕“企业云”,打破信息孤岛,让数据产生倍增效应。

“我们致力于将自身打造成一个一体化的大数据服务商。”北京供销大数据集团CDN事业部总经理曹杰表示,“我们的优势在于数据的存储、分发、处理和分析。通过落地‘3+10+X’的战略布局,我们将建设覆盖全国的数据中心集群,为数据存储提供安全、高效、互联的网络结构,部署覆盖全球的CDN网络,解决大数据的快速分发问题,为金融、保险、政务、农业、电商等垂直行业的用户提供数据处理和分析服务。从大数据基础设施到数据的存储、分发、处理和分析,我们的解决方案和服务是一体化的,这些优势是其他公司所不具备的。”

北京供销大数据集团愿做数据开放、数据流动的桥梁,从技术平台的搭建到价值的实现,完成大数据的融合。北京供销大数据集团已经在大数据基础设施、相关技术,以及商业模式创新方面做好了准备。

“供”生“供”赢

本次峰会的另一场重头戏是创新工场与北京供销大数据集团人工智能及大数据技术平台合作的启动仪式。创新工场创始人兼首席执行官李开复亲自参加仪式,并发表了演讲。

从2016年3月谷歌AlphaGo完胜著名棋手李世石开始,人工智能在2016年持续火了一年。语音识别、人脸识别等30年前人工智能的先锋们已经开始钻研的技术,如今终于从实验室走进了人们的生活和工作中。以前,因为计算设备的性能瓶颈、算法的限制,以及没有今天这样海量的数据和大数据中心的支持,人工智能的发展举步维艰。

人工智能技术的广泛应用为什么更需要一体化大数据中心的支持?“人工智能结合了多元化的信息。”李开复解释说,“人工智能需要整合大量的信息流,如果每个公司都将数据存在自己的服务器上,然后再逐一汇聚起来,显然不太现实,数据应该存在云上。美国许多先进的人工智能技术都是基于大数据中心和云平台推出的,比如亚马逊最近推出了人工智能服务,微软Azure上也有20种不同的人工智能服务。人工智能需要特别大的数据量,而且多元化的数据处理也特别适合在一个统一的数据中心环境中进行。”

深入了解了人工智能与大数据的关系,你也可以更真切地体会到,创新工场与北京供销大数据集团的合作是水到渠成。李开复表示:“人工智能企业需要的数据量十分庞大,包括人们出行、消费、征信等方面的信息。如此庞大的数据量不是一个公司能够收集和处理的,实现数据中心的一体化也就顺理成章了。此外,像人工智能人才的培养、相关计算资源的使用都需要一体化大数据中心的支持。这也是创新工场与北京供销大数据集团展开全方位战略合作的基础。”

在云计算、大数据时代,更需要产业链上下游的厂商,发挥自己的特长和优势,与合作伙伴打造共A共生的生态圈。北京供销大数据集团与创新工场的合作是一个良好的开端。在布局一体化大数据中心的过程中,北京供销大数据集团与众多合作伙伴的合作结出了累累硕果。