前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇运筹学的相关知识范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
[关键词]运筹学;教学模式;翻转课堂
[中图分类号]G642[文献标识码]A[文章编号]1671-5918(2017)12-0114-02
doi:10.3969/j.issn.1671-5918.2017.12.050[本刊网址]http:∥hbxb.net
一、引言
运筹学在工程造价专业课程中占有非常重要的地位,在解决工程问题时具有很强的实用性,它运用已有的数学方法和科学技术知识,解决现实工程里所遇到的各种专门问题,为工程技术人员选择最好的工程方案提供定量的依据。运筹学是一门综合性很强的学科,如综合运用数学、心理學、经济学、管理学、物理学等方法。对于以培养“应用型、创新型、专业型”人才为办学目标的高校来说,在工程造价专业课程设置中开设运筹学,目的就是通过运筹学的学习,可以使学生在掌握基本理论、基础知识以及基本方法的基础上,能够熟练运用运筹学相关方法来解决工程中的有关优化决策问题,如工期优化、费用优化、资源优化等,培养学生的系统思维方式和创新思维的能力,增强学生的定量分析能力,从而提高了学生分析和解决工程中遇到的各种实际问题的综合能力。运筹学的内容一般包括规划论(包括线性、非线性、目标、整数、动态规划)、图和网络分析、排队论、存储论、对策论和决策论等。
二、教学过程中存在的一些问题
(一)数学专业和工程造价专业教学的内容相同,教学方法单一
我校有两个学院开设“运筹学”课程,信息工程学院的数学与应用数学专业、农业与水利工程学院的工程造价专业。数学与应用数学专业学生所学到的数学基础知识、基本理论比较多,而工程造价专业的学生只学习了工科数学分析、概率论与数理统计、线性代数这三门课程的相关基础知识和基本理论,因此,两个专业的教学内容和教学方法不能一概而论。数学与应用数学专业的教学要注重运筹学的基础知识和基本方法的讲解、定理的理论推导与实际应用并重,而工程造价专业的运筹学教学则应该重点介绍运筹学的基础知识、基本方法以及运筹学在工程中的实际应用,而对于定理理论推导可以简要说明。
(二)不同专业的教学大纲、授课学时不同,教学的侧重点相同
我校数学与应用数学专业运筹学的授课学时是72学时,而工程造价专业运筹学的授课学时只有48学时,要想讲授全部的内容是不可能的,因此,要结合工程造价专业的专业特点及培养目标,对教学内容、教学侧重点进行适当的删减,应尽量选择与工程实际联系比较紧密的相关内容进行教学,并结合工程中的实际案例进行讲解,而对于一些定理的推导过程可以略讲,只需讲清定理的证明思路即可。
因此,针对以上教学过程中出现的一些问题,在工程造价专业教学中,要着重从教学内容和教学方法这两个方面进行改革。
三、讲授内容及教学方式改革的措施
(一)以工程实际问题为背景,恰当、合理选择教学内容和教学案例
考虑工程造价专业学生的培养目标,结合工程造价专业的特点,合理选择教学内容。例如线性规划理论中,可以主要介绍线性规划模型及单纯形方法、线性规划的对偶理论及灵敏度分析、线性规划的软件求解及应用举例;运输问题中,主要讲解运输问题数学模型及表上作业法、产销不平衡的问题及其求解方法、产销不平衡的问题应用举例;目标规划中,重点介绍目标规划的数学模型及图解分析法、解目标规划的单纯形法、目标规划的灵敏度分析及应用举例;整数规划与分配问题中,主要介绍整数规划问题特点及求解方法、分配问题及匈牙利法、整数规划问题应用举例;动态规划理论中,重点讲解多阶段决策问题、动态规划基本概念和基本方程、资源分配问题和排序问题;图与网络分析理论中,主要介绍图的基本概念、树和最小支撑树、最短路、网络最大流和最小费用最大流问题;网络计划理论中,主要介绍PERT网络图的绘制、PERT网络图的计算、关键路线和网络计划的优化和有关软件。
运筹学中涉及到的相关软件,如LINDO、MATLAB、LINGO和EXCEL等的相关介绍应结合工程中的实际案例进行讲解,要注重教学内容与工程造价专业之间的联系性、交叉性以及解决问题的多样性,对运筹学的相关分支的教学内容精细挑选,以工程为背景,选择工程中的实际问题作为教学案例。
(二)TBL+PBL+“翻转课堂”相结合的教学模式
TBL(TaskBasedLearning)是以课前布置学习任务为主要线索,将学生所要掌握的知识与方法隐含在具体任务中,学生首先要分析任务,指出有疑问的地方、明确解决问题所需要的知识体系,并在老师的指导下解决问题,进而,使学生在完成所给任务的过程中理解相应知识,并获取相关技能的一种方法。任务的设计不仅要考虑工程造价专业学生的基础水平差异由浅入深,还要有综合性、趣味性、真实性和可操作性,以便让学生参照所给出的步骤进行相应的操作,从而达到掌握与巩固所学习的知识点和操作技能的目的。
“翻转课堂”的产生源于美国的科罗拉多州的一所高中,因学校建在山区,气候非常恶劣,学生经常不能来校学习,为了让没来的学生能够学习讲过的知识,该校老师采用录屏的软件来录制课堂中的演示文稿及讲解视频,并传给缺席在家的学生自学。渐渐地,这种学生在课外或在家观看教学视频自学,教师在课堂与学生进行讨论、答疑辅导、指导学生完成作业的教学模式,就是“翻转课堂”的由来。针对工程造价专业的教学目标,设计出适合工程造价专业学生的学习资源和符合学生能力与知识水平的任务,明确学生应该获取的理论知识的视频。视频要具有资源容量较少、讲授的时间较短,且能满足学生对运筹学相关知识点的学习、按照需要选择要学习的视频,这样,既能查缺补漏,又能巩固强化知识的特点。
PBL(ProblembasedLearning)是以问题为导向的教学模式。PBL教学模式对教师的能力和学生的素质有很高的要求,因此,在学生学完每个章节后,教师需要以实际问题为基础,设计一些综合多个知识点的问题,让学生以小组的形式对问题进行探究,运用所学到的知识提出解决方案,进而达到培养学生运用已学知识分析工程问题和解决工程问题的综合能力。
以“单纯形法”的课堂教学为例。课前教师将单纯形法的教学视频和单纯形法课堂教学的PPT传给学生,要求学生在课外结合PPT自学视频内容。可以从以下几个方面进行设计:
1.教学内容与教学要求
教学内容:(1)单纯形方法解线性规划问题的基本思路。(2)单纯形方法的表格形式。(3)求目标函数取最大值的线性规划的单纯形方法。(4)线性规划问题最优解的判定。
教学要求:(1)了解单纯形方法解线性规划问题的基本思想。(2)熟练掌握单纯形法表格的基本形式。(3)掌握判定线性规划问题最优解的方法。(4)会用单纯形表格形式求解线性规划。
2.教学重点与难点
教学重点:(1)单纯形方法表格形式。(2)线性规划问题最优解的判定。
教学难点:(1)单纯形方法解线性规划的基本原理。(2)单纯形方法表格形式。
3.教学过程
课上重点解决教学视频中所提出的相关问题,布置综合性练习,辅导答疑,讲评练习。
(1)单纯形方法解线性规划问题与线性代数的哪些知识相关?(2)單纯形表格中初始基变量怎样确定?(3)在换基迭代过程中人基变量和出基变量如何确定?(4)最优解怎样判定?
四、结语
翻转课堂改变了教学结构顺序,充分利用学生的课后时间,学生可以反复看视频,减少了课堂上讲授的时间,增多了辅导答疑的时间,实现了“个性化”教学,做到了因材施教,提高了课堂教学效率。在任务的驱动下,实现了老师的主导地位和学生学习的主体地位,体现了教学并重的教学理念,有利于调动学生的学习的主动性和积极性,进而提高学习的效率。PBL教学法注重学生解决综合性问题的能力,通过学生在课上交流讨论后,确定解题思路,最终解决实际问题。
【关键词】运筹学;物流;应用发展
一、运筹学与现代物流
1、运筹学
运筹学是上世纪40年代开始形成的一门学科,起源于二战期间英、美等国的军事运筹小组,主要用于研究军事活动。二战后,运筹学主要转向经济活动的研究,通过建立模型的方法或数学定量方法,使问题在量化的基础上达到科学、合理的解决,并使活动系统中的人、财、物和信息得到最有效的利用,使系统的投入和产出实现最佳的配置。运筹学的研究内容非常广泛,根据其研究问题的特点,可分为两大类,确定型模型与概率型模型。其中确定型模型主要包括:线性规划、非线性规划、整数规划、图与网络和动态规划等;概率型模型主要包括:对策论、排队论、存储论和决策论等。
2、物流学
物流作为一门科学也是始于二战期间,美国根据当时军事的需要,对军火的运输、补给和存储等过程进行全面的治理,并首次使用了“Logistics Management”一词。其后对于物流的概念不断演变发展,内容也逐渐完善。我国在2001年8月1日开始实施的国家标准《物流术语》中对物流作了如下规定:物流即物品从供给地向接收地的实体流动过程,根据实际需要,将运输、存储、装卸、搬运、包装、流通加工、配送、信息处理等基本功能实施有机的结合。
3、运筹学与物流学
运筹学与物流学作为一门正式的学科都始于二战期间,从一开始,两者就密切地联系在一起,相互渗透和交叉发展。运筹学作为物流学科体系的理论基础之一,其作用是提供实现物流系统优化的技术与工具,是系统理论在物流中应用的详细方法。二战后,各国都转向快速恢复工业和发展经济,而运筹学此时正转向经济活动的研究,因此极大地引起了人们的注重,并由此进入了各行业和部门,获得了长足发展和广泛应用,形成了一套比较完整的理论,如规划论、存储论、决策论和排队论等。上世纪60年代,随着科学技术的发展、管理科学的进步、生产方式和组织方式等的改变,物流为管理界和企业界所重视。运筹学在物流领域中的应用随着物流学科地不断成熟而日益广泛。
二、运筹学在物流领域中主要应用
运筹学作为一门实践应用的科学,已被广泛应用于工业、农业、商业、交通运输业、民政事业、军事决策等组织,解决由多种因素影响的复杂大型问题。目前,在物流领域中的应用也相称普遍,并且解决了许多实际问题,取得了很好的效果。
1、数学规划论
数学规划论主要包括线性规划、非线性规划、整数规划、目标规划和动态规划。研究内容与生产活动中有限资源的分配有关,在组织生产的经营管理活动中,具有极为重要的地位和作用。它们解决的问题都有一个共同特点,即在给定的条件下,按照某一衡量指标来寻找最优方案,求解约束条件下目标函数的极值(极大值或极小值)问题。具体来讲,线性规划可解决物资调运、配送和人员分派等问题;整数规划可以求解完成工作所需的人数、机器设备台数和厂、库的选址等;动态规划可用来解决诸如最优路径、资源分配、生产调度、库存控制、设备更新等问题。
2、存储论
存储论又称库存论,主要是研究物资库存策略的理论,即确定物资库存量、补货频率和一次补货量。合理的库存是生产和生活顺利进行的必要保障,可以减少资金的占用,减少费用支出和不必要的周转环节,缩短物资流通周期,加速再生产的过程等。在物流领域中的各节点:工厂、港口、配送中央、物流中央、仓库、零售店等都或多或少地保有库存,为了实现物流活动总成本最小或利益最大化,大多数人们都运用了存储理论的相关知识,以辅助决策。并且在各种情况下都能灵活套用相应的模型求解,如常见的库存控制模型分确定型存储模型和随机型存储模型。
3、图论
自从上世纪50年代以后,图论广泛应用于解决工程系统和管理问题,将复杂的问题用图与网络进行描述简化后再求解。图与网络理论有很强的构模能力,描述问题直观,模型易于计算实现,很方便地将一些复杂的问题分解或转化为可能求解的子问题。图与网络在物流中的应用也很显著,其中最明显的应用是运输问题、物流网点间的物资调运和车辆调度时运输路线的选择、配送中心的送货、逆向物流中产品的回收等,运用了图论中的最小生成树、最短路、最大流、最小费用等知识,求得运输所需时间最少或路线最短或费用最省的路线。另外,工厂、仓库、配送中心等物流设施的选址问题,物流网点内部工种、任务、人员的指派问题,设备更新问题,也可运用图论的知识辅助决策者进行最优的安排。
4、排队论
排队论也称随机服务理论,主要研究各种系统的排队队长、等待时间和服务等参数,解决系统服务设施和服务水平之间的平衡问题,以较低的投入求得更好的服务。排队现象在现实生活中普遍存在,物流领域中也多见,如工厂生产线上的产品等待加工,在制品、产成品排队等待出入库作业,运输场站车辆进出站的排队,客服中心顾客电话排队等待服务,商店顾客排队付款等等。
5、对策论、决策论
对策论也称博弈论,对策即是在竞争环境中做出的决策;决策论即研究决策的问题,对策论可归属为决策论,它们最终都是要做出决策。决策普遍存在于人类的各种活动之中,物流中的决策就是在占有充分资料的基础上,根据物流系统的客观环境,借助于科学的数学分析、实验仿真或经验判定,在已提出的若干物流系统方案中,选择一个合理、满足方案的决断行为。如制定投资计划、生产计划、物资调运计划、选择自建仓库或租赁公共仓库、自购车辆或租赁车辆等等。物流决策多种多样,有复杂有简单,按照不同的标准可化分为很多种类型,其中按决策问题目标的多少可分为单目标决策和多目标决策。单目标决策目标单一,相对简单,求解方法也很多,如线性规划、非线性规划、动态规划等。多目标决策相对而言复杂得多,既要考虑设施的配套性、先进性,还要考虑投资大小问题等,这些目标有时相互冲突,这时就要综合考虑。解决这类复杂的多目标决策问题行之有效的方法之一是层次分析法,一种将定性和定量相结合的方法。
三、运筹学在物流领域中的进一步应用与发展
1、运筹学理论结合物流实践
虽然运筹学的理论知识很成熟,并在物流领域中的很多方面都有实用性,可现行许多物流企业,特殊是中、小型物流企业,并没有重视运筹学理论的实际应用,理论归理论,碰到实际问题时许多还是凭几个管理者的主观臆断,并没有运用相关的数学、运筹学知识加以科学的计算、论证、辅助决策。因此,对于当前许多企业、部门,应该加强对管理者、决策者的理论实践教育,使之意识到运筹学这门有用的决策工具。
2、扩大运筹学在物流领域中的应用范围
物流学主要研究物流过程中各种技术和经济管理的理论和方法,研究物流过程中有限资源,如物资、人力、时间、信息等的计划、组织、分配、协调和控制,以期达到最佳效率和效益,而现代物流管理所呈现的复杂性也不是简单算术能解决的,以计算机为手段的运筹学理论是支撑现代物流管理的有效工具。物流业的发展离不开运筹学的技术支持,运筹学的应用将会使物流管理更加高效。运筹学作为一门已经比较成熟的理论,应该让其在物流领域中发挥更大的作用,尽量把物流领域中数字模糊化、量化不清的方面进行数字化、科学化,运用运筹学的知识使其正确化和优化。
3、把运筹学知识融合在其他物流管理软件中
把运筹学在物流领域中应用的知识程序化,编制成相应的软件包,使得更多不懂运筹学知识的人也能运用运筹学的软件辅助决策。目前运筹学的软件比较多,但是具体到物流领域中应用的还寥寥无几,因此应大力开发针对物流领域中常用的运筹学软件。另外,把运筹学的部分功能融合在其他物流管理软件中,也是一个很好的发展方向,能引起管理者和主管部门的重视,提高企业的管理水平,取得比较好的经济效益。
4、改进运筹学理论应用不足之处
运筹学的理论虽然在物流领域中应用很多,并在某些领域演绎出了许多经典的模型和公式,但其中有些模型是基于一些假设条件基础之上的,和实际生活中的情形相差很大,如存储论中的一些模型。而现实生活中由于需求的变化独立于人们的主观控制能力之外,因此在数量和时间上一般无法精确,其随机性和不确定性使得库存控制变得复杂。因此随着理论的日益成熟和对实际情况的了解,对其不足之处应加以改进和完善。
关键词:高职院校;线性规划;单纯形法
中图分类号:G642.0 文献标识码:A 文章编号:1002-4107(2015)12-0030-02
运筹学是应用数学的一个分支,是研究如何将生产生活、军事管理等事件中出现的一些问题加以提炼,然后利用数学方法进行解决的学科。主要是利用高等数学、线性代数等数学知识来解决问题,使成本最小化和利润最大化。是高等院校中经济和管理系学生的必修课。线性规划是运筹学的一个重要分支。1947年丹捷格(G.B.Dantzig)提出了解线性规划问题的一种有效方法――单纯形法,线性规划在理论上日益成熟,在实际应用中更加广泛与深入。特别是在计算机能解决成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更加广泛。从解决一些技术问题的最优化设计,到工业、农业、商业、交通运输业、军事、经济计划和管理决策等领域都可以发挥重要作用。
线性规划应用日益广泛。高职高专职业院校的许多专业都将这一运筹学基本内容纳入教学计划。可是线性规划是一种数学方法,涉及高维空间。这些专业的本科生、大专生,即便学过线性代数,往往仍比较生疏,不能灵活运用线性代数知识领会线性规划内容。他们觉得线性规划理论抽象难懂。部分学生甚至失去学习信心。另一方面,许多教材把线性规划安排在线性代数后面,有作为线性代数应用举例的用意,若前后教学设计呼应不好,这一安排也将落空。
笔者等应邀为高职高专院校编写线性规划新教材[1],在教材中如何体现从此类学生数学基础的现状出发?如何形象化地讲解线性规划原理?如何与他们学过的线性代数呼应?如何跟着时代步伐,更新教材[2]?――这些问题就提到笔者的面前。
针对高职高专院校学生的情况,笔者提出“夯实理论基础,抓好建模、上机两个实际本领”。在“夯实理论基础”方面,主要是根据经济、管理业务需要,针对学生实际的数学基础,加强与他们学过的线性代数相关知识的联系,在形象化的讲解上下大力气。改变一些概念的提法,使学生感到通俗易懂,在追求概念正确的前提下力求内容讲解形象生动,采用计算机画图并结合动画演示等手段给学生以感性认识。使线性规划的理论部分变得容易接受。在线性规划题目的计算方面,减少笔算,增加机算,降低学生计算的难度,提高计算效率,增强学生学习的自信心。此外,针对线性规划教学和教材中需要注意的一些不确切的表述,笔者提出了一些见解,希望帮助学生对知识的透彻理解,也可与同行交流。在课后习题的设置方面,笔者也作了探讨,请参阅文章《编写线性规划习题的新构思》[3],在教学中为了更好地培养学生的动手能力,笔者写了《线性规划教学中如何培养学生的动手能力》一文,在此均不再赘述[4]。
一、用“自由变量改称非基变量”的提法,破除“基”的神秘感
目前线性规划教材的用语是跟着运筹学的几本大部头著作走的。而权威著作的用语,一方面受早年开创性论文词汇的影响,有些术语今已改译;另一方面权威著作比较深奥,假设读者对于线性代数中的相关基础理论知识均已熟练掌握。但是实际上职业院校的运筹学教材大多只讲到线性方程组的求解,往往未将上述基础理论全部列入大纲,个别概念即便提到,顶多也是草草带过。这就造成在职业院校的运筹学的很多教材中,线性规划的许多术语学生感到生疏、抽象,或与以前学过的线性代数对不上号。
许多线性规划教材一开始就另起炉灶,用学生不熟悉的术语下“基”的定义,举例又很简略。学生用不上刚学的线性代数,以致对“基”的概念懵懂,云遮雾罩,往往全凭死记,也就更谈不上理解“换基”等等内容。
笔者为避免使职业院校的学生感到突兀,从他们熟悉的线性方程组求解知识入手,指出约束方程的增广矩阵化成行最简形矩阵后所得同解方程和相应的通解,实质上就是“用自由变量表达非自由变量”。按线性规划的术语,称作“用非基变量表达基变量”。不过是把“自由变量”改称“非基变量”;把“非自由变量”改称“基变量”罢了。再由“基变量”引入“基”的概念,由此破除“基”的神秘感。再利用他们会的通过“行初等变换”,在增广矩阵系数矩阵中化出单位阵的知识,讲“基”的性质等内容。这样,学生就会很容易理解。
学生容易知道:写线性方程组的通解时,最易手到拈来的是“全部自由变量皆取零值的特解”,这个“特解”在线性规划里叫作“全部非基变量皆取零值”。并指出这个特解在线性规划里更重要,特意命名“基本解”。若“基本解” 还符合非负条件,就成为“基本可行解” (Basic feasible solution),它与图解法中至关重要的可行解域的顶点有对应关系。这样引入新概念,学生感到轻松自然。连差生也能顺畅地由上章知识过渡到本章的新概念。
二、合理运用多种教学手段,增强学生的感性认识
因为线性规划单纯形法比较抽象,许多关键点学生不容易明白,对一些知识的理解比较模糊,为了使学生对解法有清晰感性的理解,笔者想到利用二维图形、对照顶点表及图象和动画演示等手段,达到较好的教学效果。
(一)用二维图形显示“基本可行解”与可行解域顶点的对应关系
因学时限制,职业院校的运筹学教材不作证明,仅介绍“基本可行解”与可行解域顶点的对应关系结论。很多教材一笔带过,学生印象不深。笔者加写一个二维例图让学生验看,增添感性认识。还把该例的对应关系,包括决策变量与张弛变量的值等,详细列出表格,供后面讲“换基”时查验。虽然费些笔墨,因事关单纯形法只到各个顶点搜寻最优解的基本思路,还是值得的。
(二)在二维图上验看可行解域顶点上确实“全部非基变量等于零”
在以往教学中,常有学生对全部非基变量在每个可行解域的顶点都取零值感到疑惑。笔者除了指出代数上的“基本可行解”与几何上的可行解域顶点有对应关系外,还从几何角度在二维图上说明该例中各个非基变量等于零的几何意义:在坐标轴线上的顶点,它的另一个坐标的值为零,其含义为非负条件;在其他边线上的顶点,约束方程的张弛变量为零,表明至此已踩该约束条件的边线。例如二维图解法中,在表示不等式约束x1+x2≤6的边线上,由它标准化所得的等式约束x1+x2+x3=6中的张弛变量x3为零。以此帮助学生接受高维空间也有类似规律的结论。
(三)对照顶点表及图象导出“换基”的感性认识
在从代数学角度讲“换基”的过程中,笔者还让学生观察上述可行解域顶点与“基本可行解”对照表中顶点间各变量值的变化,结合“非基变量必取零值”,自己总结得出“换基”的规律。学生感到生动明白。
(四)用动画概括单纯形法的思路
在讲完单纯形法的思路后,笔者放映一个二变量线性规划题求最优解的动画,以动态形象的动画演示,使学生直观地理解单纯形法的解题思路,以加深学生对此解法的印象,巩固学习成果。
三、裁减笔算法的辅助内容,开展机算
实际工作中遇到的线性规划问题,必然变量很多(往往十个以上)且有效数字长,计算量太大。很多学生面对实际问题,凭笔算解不出来,只能望洋兴叹。身处计算机时代,而因袭几十年前的老教法,只教笔算内容,或虽点到某处刊有源程序,却不上机,这是国内经济管理类专业线性规划教学中相当普遍的现状。为使学生真正具备解决实际问题的能力,笔者痛感必须掌握一种软件。有所失才能有所得,为挤出时间上机,必须割舍一些原有内容。一般教材在讲完单纯形法的表上求解后,还要讲一种求初始基本可行解的方法,一般是“辅助规划法”。笔者考虑这部分与单纯形法主干内容的关系相对而言小些,只好割爱。况且实际工作中,用计算机解题,不需要提供初始可行解。即便偶遇简易笔算场合,由于新讲稿中加强了与上章的联系,真正看懂新教材的学生,从引入基变量概念的例题中,也会悟出对增广矩阵作行初等变换,搜索出一个基本可行解,绘出首张单纯形表,供表上叠代求解用。所以删去这部分内容影响不算太大。这样节约出利用计算机解题的时间,使学生利用上机解题,提高学习效率。
四、注意语言的准确性
线性规划是运筹学中最活跃的分支,经济类、管理类专业学生及从业人士普遍学习。现在市场销售的线性规划书籍很多,但在教学和教材中都有一些需要注意的问题。
讲课中不能因为强调形象有趣而忽视科学性。在职业院校的运筹学课堂上,虽无理工科那么多证明,同样要在关键地方,字斟句酌,锤炼用语。在线性规划的教材中就有若干常见的语病。例如个别书说“基的个数为组合数Cmn”(其中m为标准化后的约束方程数,n为变量数,且R(A)=m )。这句话就漏掉“至多”二字,因为有的m阶方阵的行列式可能为零,因而不能作基。
总之,线性规划单纯形法是一种较为抽象的数学方法,经过改进教学方法,采用上述讲法,学生对该部分的学习普遍接受较好。
参考文献:
[1]阎章杭等.高等数学与经济数学[M].北京:化学工业出
版社,2007:250-262.
[2]阎章杭等.高等数学与经济数学[M].北京:化学工业出
版社,2003:276-281.
[3]阎向曜,张小慧.编写线性规划习题的新构思[J].河南
财政税务高等专科学校学报,2008,(6).
关键词:数据结构;知识点;课程体系;程序设计
中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2015)27-0125-03
一、引言
《数据结构》一直被认为是计算机、信息管理与信息系统、电子商务等专业重要的基础课程之一。该课程的知识涉及到多学科与多专业,掌握该课程将对学生后续课程的学习起到重要的知识链接作用。数据结构课程的主要知识点包括:①线性表的顺序存储结构与链式存储结构及对应算法;②栈的顺序存储与链式结构及对应算法;③队列的顺序存储与链式结构及对应算法;④串的顺序与链式存储结构及对应算法;⑤数组和广义表的存储结构及对应算法;⑥树和二叉树的顺序与链式存储结构及对应算法;⑦查找方法;⑧排序方法等。为学好这门课程,必须依据课程体系,明确数据结构课程中的概念与术语,灵活运用这些知识点,以达到扎实掌握该课程难点的目的。
二、数据结构的先修后继课程及知识体系结构
1.掌握数据结构课程的先修与后继课程。以信息管理与信息系统专业课程体系为例,清晰了解和掌握与数据结构相关联的先修与后继课程(如图1所示)。先修课程主要有:计算机信息处理概论、汇编语言程序设计、高级语言程序设计(C、C++、Java等)、计算机组成原理、离散数学、运筹学、图论等。后续课程主要有:数据库原理、信息系统开发方法、编译原理、信息检索、数据仓库与数据挖掘、操作系统、信息集成技术及应用、电子商务与物流信息管理、大数据分析等相关课程。
2.数据结构课程实施框架体系的创新模式。围绕如下页图2所示的数据结构课程实施框架体系的创新模式讲授数据结构课程。明确数据结构课程的知识体系和主要知识点。该模式的优势在于:能够使学生快速掌握数据结构的概念、术语,客观世界问题对应在计算机外部的表示方式,在计算机内部的存储方式,以及如何对它们进行操作(运算);除此之外,还能够严格按照数据结构课程的各个知识点进行梳理,清楚地归纳出数据结构与其他相关课程的关联关系。
三、运用归纳总结方法对数据结构课程的知识点进行分类
以严蔚敏教授出版的数据结构经典教材为例,将数据结构的知识点进行分类:第一类将第二章“线性表”、第三章“栈与队列”、第四章“串”、第五章“广义表”划分为数据的线性结构部分;第二类将第六章“树与二叉树”、第七章“图”划分为数据的非线性结构部分。
将自然界的线性问题对应的数据结构实例例举出来,形成数据结构问题的感性和直观的认识;然后再由浅入深地掌握其相关的知识点。例如:①为使管理人员快速找到客户相关信息,用计算机处理该业务应首先确定所使用的数据结构形式,如果希望将电话号码作为关键字,姓名的拼音作为次关键字,那么,会容易地查找出“陈”性拼音顺序排在“周”性之前的线性关系。②到银行办理业务对应的数据结构形式是队列模式,即满足“先来先服务,后来后服务”的服务规律。③对字符串进行存储与处理时,其存储结构具有紧凑和非紧凑形式,因此需按照形式的不同,进行分类处理后,再对其进行操作(如:插入、删除、查找、模式串匹配等)。④到图书馆借书时,图书管理员检索的模式与图书的存放形式有关。
与线性结构相比,非线性结构要复杂得多,即线性表的数据结构中数据元素的逻辑结构与物理结构之间存在一一对应的顺序关系;而非线性的数据结构中数据元素的逻辑结构与物理结构之间不存在一一对应的顺序关系,它们之间的顺序是任意的,也就是说非线性的数据结构中数据元素之间不存在前驱和后继的顺序关系,为使初学者掌握其存储结构对应的操作等相关知识点,必须将数据结构教科书中关于树与图的遍历进行深入而细腻的讲授。以二叉树的遍历问题为例,说明非线性结构应该着重讲授的知识点与教学方式。一般遍历某二叉树的原则是:先确定树根,然后按照树的递归原则进行先序、中序和后序等遍历,下图3所示。从三种遍历的序列可以看出,其每种遍历的结果序列都有其唯一的前驱和后继结点。这个规律说明一个道理:任何的非线性结构的结点元素都可以通过先确定遍历的名称,然后通过遍历方便地对其进行访问,比如:在前序遍历的序列“-+a*b-cd/ef”仿照线性表的定义找出它们之间的前驱与后继之间的关系;另外,同样中序和后继的遍历结果也可以仿照线性表的定义找出它们之间的前驱与后继之间的关系。同时,注意对学生发散性思维的培养,可通过三种遍历结果,进一步解释难以理解的概念推理,推论一:若已知一棵二叉树的前序序列和中序序列,则可以唯一地确定这棵二叉树;推论二:若已知一棵二叉树的后序序列和中序序列,则也可以唯一地确定这棵二叉树。在讲授该本课程知识点的同时,应考虑对后继课程的铺垫与衔接,上述三种遍历结果,对后续《编译原理》课程的前缀码、中缀码、后缀码等概念的理解与掌握将起到重要作用。
四、运用灵活的教学方式讲授难点章节
由于数据结构课程设计到多学科(专业)知识点,因此,教与学的过程中,难免存在难点、“瓶颈”问题和难以理解的算法。为解决此问题,在教学中应注重选用具有代表性的例子,如:在第七章的许多工程类例子与运筹学的例子非常相似,因此,在讲授此章节时,注重教材例子与运筹学学习的重点,但不同专业基础课程的侧重点不同。
1.非线性数据结构的讲授方法。以第七章为例,该章的相关知识内容有:图论、数据的逻辑结构及其对应的物理结构、算法实现的技巧与方法、优化问题、非线性问题的映射方法。主要存在如下难点:①非线性问题的逻辑表示方法。根据工程类例子的实际需求,找出该问题的逻辑表示方法是解决问题的核心。如:将符合多种方案选择的工程类的工序问题(如:排课问题、具有先后时间次序的问题),运用有向图的知识点将该问题表示清晰;应该标明该数据元素属于邻接表还是顺序存储形式。②非线性问题的物理表示方法。通过问题的逻辑表示方法可以将工程类的工序问题转换成有向图的存储方式,然后再选择图的存储结构,如:数组(顺序)存储、邻接表(链式)存储等方式。③如何编制实现解决非线性问题的算法(程序)。上述的逻辑结构确定了之后,再根据实际问题的要求进行实现程序的核心部分即算法的编制工作,当算法太复杂时,则先设计算法流程图然后再编写实现算法的程序。
2.非线性数据结构的上机实践方法。最为有效的方法是选择学生日常生活中与工程类算法处理流程相近的例子。如在拓扑排序的上机实践选择的题目是给某专业课程进行排序,这个例子的选课过程正好符合工程类工序(周期)施工排序的案例;设计报文或字符编码时,按照第六章中的哈弗曼树的存储结构对报文进行编码;选择顺序线性表的上机例子是在一张学生登记表中进行插入和删除运算;选择链式线性表的上机例子是在一张按照拼音顺序进行插入和删除运算的线性表。
五、阅读程序的技巧与必备知识
数据结构的大量算法都要靠其对应的程序来验证,那么,如何针对数据结构经典算法来编程并且阅读这些经典的算法(程序)呢?这也是学好数据结构这门课程的关键。
1.让学生通过阅读程序,了解如何科学选取一个好的程序(算法)。由于程序是依靠“算法+数据结构”实现的,对一个实际问题来说,可以有不同的程序来实现。仅以一个简单的例子说明,如:运用计算机进行n的平方计算,有3种方法:n的平方=n n;n的平方=1+3+…+2n-1;高级语言自带的求平方函数,如double pow(n,2)。上述算法一个采用乘法,一个采用加法,一个是高级语言自带的,究竟哪种方法好呢?主要还是看其运算精度、算法的复杂度和空间复杂度等综合指标。
2.让学生通过阅读程序,了解和掌握相关知识点。应补充程序设计分类的相关知识。程序包括:直接程序设计,条件控制的程序,循环控制的程序(计数器控制的循环结构程序的算法、条件控制的循环结构程序的算法、变量控制的循环结构程序的算法)。还应该向学生介绍算法转换为运行程序的经验,如:数据的初始化如何处理;程序中的循环计数器与判断条件以及检验结果如何检验;递归程序中的出口条件判断问题;逻辑变量、精度、机器零、数值零、文本非结构化等归一问题。
3.快速阅读程序的必备知识。按照数据结构的课程要求,必须在读懂经典算法的基础上,才能够编制一个逻辑结构严谨的程序。但是,在教学中发现,有的学生学习方法不当,导致阅读程序的能力低而不能系统掌握数据结构课程的知识点。为了解决这一“瓶颈”问题,在讲授数据结构第一章绪论内容中,增加了程序设计方法、编制算法流程图的标准与规定、算法与程序的区分、如何选用大O来计算算法的时间复杂度和空间复杂度等知识点。递归程序的阅读是数据结构中较难掌握的内容。为让学生顺利阅读递归程序,必须在阅读递归算法之前,补充相关的知识,如:计算机原理“中断”的概念;程序设计中的过程调用的步骤和阅读方法;递归程序本身的特点,以及递归过程与一般过程的区别等。
六、小结
数据结构课程是计算机相关专业重要的基础课程之一,但课程学习难度较大,为提高该课程的教学质量和教学效果,本文梳理了数据结构的先修后继课程,构建了课程的知识体系结构,提炼出数据结构知识点分类的线性与非线性两条主线,强调将理论学习与工程实践的有机结合,提出实现程序设计与具备阅读程序的技巧是解决课程难点的重要手段。
参考文献:
[1]严蔚敏,吴伟民.数据结构[M].北京:清华大学出版社,2011.
[2]陈燕,等.数据结构[M].北京:科学出版社,2014.
关键词 高职院校 数学类课程 工程案例
中图分类号:G712 文献标识码:A
0 引言
高等院校的主要培养目标是培养适应社会、经济发展需要的工程技术型应用人才。
高职高专数学类课程主要包括《高等数学》、《经济数学》、《线性代数》、《概率统计》、《离散数学》及《运筹学》等,是我校各专业主干专业基础课及专业课的基础先修课程,具有较强的理论性、逻辑性。高职高专数学类课程是学生进入工程领域的基础,对引领学生进入工程领域从事专业领域的各项工作等起着非常重要的作用。但笔者在教学实践过程中,发现许多学生在学习过程中普遍感觉授课内容繁杂、理论较抽象,从而逐渐丧失对这类课程的学习兴趣,进而直接影响其教学效果。为达到工程应用型人才培养目标,将工程案例引入高职高专数学类课程教学,以适应国家对高职高专应用型工程技术人才培养的要求。
1 课程教学现状分析
结合笔者多年的教学经验及广大学生的教学反馈,总结出传统的数学教学存在以下几方面的不足之处:
(1)理论推理繁复。数学类课程的理论及知识点严谨性及逻辑性较强,其定理、公式较多且繁杂。传统的教学过程中,通常过分强调逻辑推理及数值演算,使学生普遍感到非常抽象,难以理解。因此,这种以繁复理论推理为主导的教学形式,其教学效果通常不甚理想,往往达不到预期的教学目标。
(2)教学实例陈旧。数学类课程通常属于基础课,因此往往缺乏相匹配的实践教学环节。其主要的应用,往往是依靠例题及实例。而当前的教学仍然沿用以往许多老版本教材的一些例题及实例,其训练的效果不甚理想。学生普遍认为数学类课程的理论性太强,课程需增加或更新各知识点的应用实例,使得学生能充分了解知识点的应用背景,进而使学生更容易掌握该知识。
(3)工程应用薄弱。在以教授知识点为主的现有教学模式下,学生所学的是一些相对离散的知识,并且由于缺乏工程案例的解析,学生很难将各知识与工程应用联系起来,因而缺乏对数学知识的整体认知能力。这势必导致学生在学完课程后仍无法真正体会到这些数学知识如何运用,从而无法培养学生分析与解决实际工程问题的能力。
2 基于工程案例的教学模式框架结构
为改革上述传统教学模式的不足,以培养工程能力为目标,本文提出一种以工程案例为核心的新型的教学模式及方法,为培养高职高专工程应用型人才做一定的探索。其框架结构如图1所示。
2.1 以工程实际为背景
在整个基于工程案例教学模式的框架结构中,工程实际问题是抽取工程案例的起点及背景。应对后续专业基础课、专业课及科研课题等方面进行充分调研,获取到各种典型的工程实际问题,并对这些工程实际问题进行归类,建立工程实际问题库。另外,对每一个工程实际问题所用到的数学知识进行整理,并标记各数学知识在解决该工程实际问题中的应用次数及其重要程度。
2.2 以数学知识为基础
各数学类课程的知识点是框架结构中的基础。根据以上工程实际问题库提供的数据,对应用到的数学知识点进行归纳,并分析统计其应用次数及重要程度。从而可获得在解决工程实际问题中,各数学知识点的分布情况,并分析出在工程实际问题中常用且比较重要的数学知识点。以此可建立工程实际问题与数学知识点的关联关系,进而为抽取教学工程案例做好相应的数据准备。
2.3 以工程案例为核心
工程案例的抽取及教学应用,是该教学改革的核心,是整个框架体系中最重要的组成部分。以上述数据准备为基础,抽取教学中需要的各种典型工程案例。以数学知识点为基础,首先查取工程案例库中涉及该知识点的工程实际问题;接着对多个工程实际问题进行归纳、抽象及简化;然后以数学教学目标为导向,在案例内容及形式等方面进行反复优化,最终获取跟该知识点相关的多个工程案例。
2.4 以工程能力为目标
引入工程案例教学的主要目的是提升广大学生的各种工程能力,包括分析、解决问题的能力,工程应用能力及团队合作能力等。而与分散知识点相对应的离散工程案例,可能不能完全达到锻炼所有能力的目标。所以,基于以上抽取的离散工程案例,可设计一些知识覆盖面更大、系统性更强的课程大作业或者课程项目,以团队的形式展开教学,则可弥补离散工程案例的不足。
3 实施步骤
根据以上框架结构,设计以下包含四个阶段的实施方案:第一阶段为调研阶段,对数学类课程开设的具体专业进行充分的调研。从教学计划方面获取整个数学类课程及其后续课程的开设情况。进而对后续专业基础课、专业课、各种实践环节及科研课题进行调研,收集工程实际问题相关资料;第二阶段为问题归纳阶段,对收集的工程实际问题进行归纳总结,建立工程实际问题库;第三阶段为工程案例抽取阶段,以数学知识点为基础,从工程实际问题库中抽取典型的工程案例,并进行反复调整及优化;第四阶段为教学实施阶段,在教学过程中,反复测试及调整这些工程案例,从而不断提高教学效果。
4 教学实例
旅行售货员问题(Traveling Salesman Problem,缩写为TSP)是《运筹学》课程中的重要知识点,传统的教学方法都缺乏与实际案例的结合,仅仅是直接选取一个网络图寻找其哈密尔顿回路。笔者所在的《运筹学》课程教学团队对这种传统的教学模式进行了改革,采用了基于工程案例的教学模式,具体的实施过程如下:
4.1 工程实际问题收集
针对TSP知识点,基于对教学、科研及生产实际的调研,收集了许多与之相关的典型工程实际问题。包括:(1)旅游区穿梭在各景点的旅游巴士的行驶路线优化问题;(2)接送孩子的学校巴士的运行路线优化问题;(3)配送车辆从仓库送货到各销售点后再返回仓库的运行路线优化问题;(4)配送车辆从超市送货到各顾客所在地后返回超市的运行路线优化问题;(5)送报车辆的路线优化问题;(6)垃圾收集车辆的运行路线优化问题等。将这些工程实际问题放入TSP工程案例库中,以备教学工程案例的抽取之用。
4.2 TSP工程案例抽取
在分析与归纳上述工程实际问题后,找出其中的共性特点,并与TSP知识点建立关联关系;同时选取学生较能理解和接受的工程实际问题为背景,抽取TSP问题的典型工程案例。具体如下:
绿色交通路线优化问题:某电动汽车公司和教育部门合作,拟定在大学城内开通无污染无噪音“绿色交通”路线。图2是各校区的分布图,数字为汽车通过两点间的正常时间(分钟)。电动汽车公司应如何设计一条行驶路线,使汽车通过每个校区一次的总时间最少。
4.3 TSP工程案例教学实施
抽取了TSP知识点的工程案例后,需要在教学过程中分步实施。具体包括:(1)问题的提出。在讲授TSP知识点前,以该工程案例为引导,向学生提出案例需解决的问题,激发学生的学习兴趣,引发学生的深入思考;(2)TSP知识点的讲解。提出问题后,结合工程案例的内容,需向学生详细讲解TSP问题的相关知识,讲解过程中要特别强调知识点与工程案例的关联关系;(3)工程案例的求解。在介绍完TSP问题后,将工程案例再次抛出,让学生组成项目团队,依据所讲授的知识独立完成该问题建模及求解,并将求解过程及结果以团队的形式进行汇报,其中穿插适当的讨论及点评;(4)工程能力的进阶培养。为了进一步训练学生的工程能力,在教学中引入TSP问题的常用软件WINQSB。并设计相应的上机实验,在实验过程中让学生熟悉该软件的操作,及应用计算机工具解决工程实际问题的能力。
5 结束语
为培养学生工程能力,将工程案例引入高职高专数学类课程的建设与改革,是一项长期而复杂的工作。在教学改革的实施过程中,需本着边改革、边实践、边建设的方针,在试点中不断探索和改进。实践证明,这种教学模式对培养大学生的工程能力起到了一定的作用,但是还有很多问题亟待解决和研究。
参考文献