前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇企业能源管理系统方案范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
能源管理系统(Energy Management System),是对企业的电能、天然气、蒸汽、冷(热)量、和用水等能源数据进行自动监测、记录、分析,进而完成能源的优化调度和管理。总目标是建立一个全局性的能源管理系统,构成覆盖能源信息采集及能源信息管理两个功能层次的计算机网络系统,实现安全、优良供能、提高工作效率、降低能耗,从而达到降低产品成本的目的。
能源管理系统(EMS)包括三大部分内容:能源数据采集、能源数据实时监控以及能源数据统计、分析和管理。
能源管理系统(EMS)实时监控企业各种能源的详细使用情况,为节能降耗提供直观科学的依据,为企业查找能耗弱点,促进企业管理水平的进一步提高及运营成本的进一步降低。使能源使用合理,控制浪费,达到节能减排,节能降耗,再创造效益的目的。通过数据分析,可以帮助企业对每条生产线、每个工作班组以及主要耗能设备进行实时考核,杜绝浪费,并可以帮助企业进一步优化工艺,以降低单位能耗成本。
二、能源管理系统(EMS)在重要用能设施的应用
针对企业主要能耗系统提供完善的用能设施信息管理功能,能让用户查询到系统设施的用能信息并提供节能优化运行策略,从而达到节能的目的。具体应用如下:
(一)中央空调系统(制冷系统)
空调(制冷)系统广泛应用于楼宇、商业及企业,是最大的能源消耗源之一。
能源管理系统(EMS)针对空调(制冷)系统进行冷量计量及效率追踪,让用户能够准确了解企业冷量消耗的变化,实时的效率监测让用户对制冷机的运行效率有直观的把握,能源管理为用户提供了ARI(美国制冷学会)效率标准,作为参考。
1、动态更新制冷机性能曲线
能源管理系统为用户的运行人员提供了空调系统运行管理优化功能,系统能自动分析出在一定工况下,运行人员开启哪些制冷机和空调水泵效率最高,并将各种方案的效率进行排名。能源管理制冷机动态性能曲线更新功能为系统运行方案的选择提供了有效的保障。
2、冷冻水供水水温优化设置
制冷机冷冻水温优化设置,能源管理根据室内负荷和室外气候参数自动分析出效率较高的冷冻水出水水温,降低能耗。据权威机构统计,冷冻水温度每提高1℃制冷机能耗将降低1.5%-2%,系统将定时计算出优化的冷冻水供水温度,系统管理人员只需要在制冷机上调整一下水温设定即可,简单而方便。
3、空调水泵节能潜力分析
能源管理系统还为用户提供了水泵潜力分析,系统将根据采集的数据,分析出水泵的节能潜力。为用户以后的节能改造提供理论依据。
能源管理系统的运行方案排名功能让管理者知道如何进一步的降低制冷系统的能耗。
(二)电力系统:
1、电能质量管理
电力的传输和使用过程中, 容易受到污染和干扰,无功增加、谐波、三相不平衡等因素会导致电力使用效率降低、设备损坏等后果。
能源管理 系统通过对电能质量参数的监测、分析,结合工艺改造、自动化控制的应用,达到企业综合电力节能的目的,并且保证企业对高电能质量的需求,确保各种电子设备、精密仪器安全可靠运行,提高企业生产率和产品的成品率。
2、变压器管理
能源管理系统通过对变压器各项电力参数监测,采用以下方法,实现对变压器的综合节能管理:
1) 通过回路总零线上电流变化了解电流谐波及线路损耗和变压器温升原因,并制定相应对策及解决方案;
2) 根据负载变化优化变压器使用,为提高变压器效率提供依据;
3) 根据电压、电流变化量有助于分析判断设备状态及浪涌电压、电流产生变化等情况。
(三)压缩空气系统:
压缩空气系统广泛应用于工业企业,是企业的重要电能消耗系统。
能源管理系统(EMS)监测空压机电耗、压缩空气的供气压力、流量等参数,自动生成供气量(空压机)曲线图、管网末端压力变化曲线图、用气量状况曲线图,空压机电能消耗曲线图日负荷表,通过对上述参数同生产使用情况分析,了解空压机电能、气量变化与用气合理性。
压缩空气系统能源管理方法如下:
1)实时监测空压机效率,根据负荷情况,尽量开启高效机组;对低效机组进行及时检修,提高压缩空气系统效率;
2)结合生产情况分析用气量不规律或突变情况的原因;
3)掌握设备工况及合理用气,优化空压机利用和设备管理;
4)杜绝人为用气不合理的浪费;
5)发现供气管道泄漏情况;
6)分析和找出空压机潜在的节能潜力,为技术节能措施提供依据。
(四)蒸汽系统:
类似压缩空气系统,能源管理系统(EMS)通过对锅炉供汽及蒸汽末端的流量、温度及压力监测,及时发现管路系统泄漏,避免不合理用汽浪费,提高蒸汽利用效率。
(五)锅炉系统:
能源管理系统(EMS)通过对锅炉主要数据采集监测(或从DCS系统读取数据),分析在不同的蒸汽压力、流量、排烟温度及过度空气量等条件下的锅炉效率,从而提出最优锅炉运行参数标准,优化运行控制模式,有效降低锅炉系统能耗。
(六)窑炉:
能源管理系统(EMS),通过监测窑炉温度、燃气流量(或用电、煤量)、风机电耗及风压或流量的监测,根据相同时间段能源消耗与窑炉温度变化曲线对照,分析窑炉容积(容量)温度变化(上升、温度层)与能耗成本的关系,确定最佳窑炉产品量、温度及过度空气量,帮助企业制定更优化的产品及能耗基准线。
三、能源管理系统(EMS)的实施方法
(一)节能验证及分析:
针对企业目前已有的中央空调、空压机、水泵等主要用能系统进行节能效果的验证和监测;根据系统数据统计生成相关动态图表进行设备运行状态掌握和进行节能空间潜在能力分析,通过分析结果指导设备节能控制系统调整。
(二)能源评估:
为设备管理人员提供依据,首先排除人为因素的盲目性和经验误判。根据设备管理侧重点不同,在设备运行效力评估方面及设备状态和维护方面提供可分析的参数,便于即时有效的掌控,避免人工测试方法的局限性和可能产生不安全因素。能源管理系统对运行设备功耗、电压、电流或设备温度等要求采集和通过生成各曲线图表描述,有助于旋转机械状态进行监测,曲线图表包含了设备运行状态的多种信息,帮助设备人员及时取得信息进行处理和综合分析,根据其数值及变化趋势,可对设备可靠性作出积极判断,在设备管理领域减少预防性提升预知性,即状态维修起到一定的作用。
(三)能源信息化管理:
能源管理系统可以在线监测整个企业的生产能耗动态过程,收集生产过程中大量分散的用电、用水、用气等能耗数据,提供实时及历史数据分析、对比功能,以发现能源消耗过程和结构中存在的问题,通过优化运行方式和用能结构以及建立企业能耗评估、管理体系,提高企业现有供能设备的效率,实现节能增效、高效生产。
系统为用户提供以下能耗数据和节能信息:
1)掌握企业耗能状况:能源消耗的数量与构成、分布与流向;
2)了解企业用能水平:能量利用损失情况、设备效率、能源利用率、综合能耗;
3)找出企业能耗问题:管理、设备、工艺操作中的能源浪费问题;
4)查清企业节能潜力:余能回收的数量、品种、参数、性质;
5)核算企业节能效果:技术改进、设备更新、工艺改革等的经济效益、节能量;
6)明确企业节能方向:工艺节能改造、产品节能改造、制定技改方案、措施等。
能源管理系统(EMS)以全厂能耗为对象,实现能耗计量实时化,问题处理实时化。并在一定历史数据的积累下,为进一步能源数据的挖掘提供基础。
能源管理系统(EMS)提供适用于简单系统与复杂系统的综合能源管理的解决方案。通过用户化的软件,管理者可以采用易于理解的方式快速得到所需要的能量数据。从图形到数据库,综合能源管理解决方案提供了对能源使用的可视化与跟踪。在海量的能耗数据中迅速发现能耗薄弱环节和问题。
四、综述
数据的充分利用能给企业带来无穷的动力,为企业的管理和功能决策提供依据。无效数据的堆集只会对企业的资源带来浪费,有效地利用数据意味着把数据放到你的指尖上。我们意识到将数据传送到在工厂中需要的地方是与测量是一样重要的。能源管理系统(EMS)就是把所有的能耗信息集成起来,统计分析并通过以下的方式来节约企业成本:重新评估企业能耗费用;防止昂贵的能源质量问题;意识并纠正能源问题;发现能效薄弱环节;完成需求侧管理,控制需求量以避免不利的结果。
重庆江北国际机场(简称江北机场)是西南地区航空枢纽之一,也是国家大型枢纽机场。本项目江北机场东航站区及第三跑道建设工程位于现有机场东侧,项目包含新建T3A航站楼、第三跑道及相应的供水、供电、供气等配套设施,计划2015年底基本建成。
基于该项目的实际需求,科华恒盛凭借在能源自动化领域,尤其是机场方面的软件系统集成服务经验,为江北机场提供了一套IEMS3000能源管理系统综合解决方案。该IEMS3000能源管理系统包括基础信息管理、能量平衡优化管理、能效管理、能效审计、能源计划管理、工程数据备份及维护、应用软件定制开发等应用功能,通过建立该能源管理系统可对机场东航站的工作区和货运区、电、气能耗数据进行采集分析、收费管理,并可接收T3A航站楼和飞行区能耗数据,实现对江北机场水、电、气表的远程集抄和能耗管理,从而达到人员优化和节能降耗的目的。
作为国内领先的智能化能源管理系统综合解决方案供应商,科华恒盛定位高端,所属业务品牌――康必达公司致力于为能源自动化领域用户创造高价值服务,包括能源管理、数字化变电站、电力自动化、工业自动化等相关产品研究开发、系统集成和应用服务。目前,科华恒盛相关产品解决方案已经广泛应用于机场港口、石油化工、有色冶金、煤炭水泥、电力发电、智能楼宇、政府公共及军工等各个行业,帮助客户实现可持续的节能增效项目、优化企业运行和提高生产管理。
此外,科华恒盛携高端电源产品解决方案还成功中标了临汾机场采购项目,其中包括高端UPS及相关核心设备,共计80多套,为临汾机场的安全运营提供了高可靠的绿色电源保障。
据悉,临汾机场于2010年9月20日奠基,于今年10月份竣工试飞,年底开始试运营。根据规划,临汾机场复航改造工程本期目标为2020年旅客吞吐量43万人次,货邮量为1500吨以上。在山西省进入全面转型跨越发展的大背景下,临汾机场的正式运营,将为临汾今后发展架起空中经济桥梁。
【关键词】能源管理模型 ISO50001 基于PDCA模式
1 背景
能源管理被定义为采用系统科学的原理利用管理学和技术创新来提高企业用能水平1。从学术的角度来说,是采用控制、监测等手段来提高能源利用效率。不管如何定义,能源管理已成为全世界用能企业最重要的研究对象,有的国家甚至采用立法、标准的形式加以限制。例如我国《“十三五”节能减排综合性工作方案》中提出的约束性指标“到十三五末,全县万元国内生产总值(GDP)能耗比2015年降低25%,万元规模以上工业增加值综合能耗比2015年减低33.3%。”
能源管理方法与现行标准存在极大的区别,目前还没有非常普适的能源管理方案,不同的能源管理案例来说都有其一定的局限性,从现有的能源管理的理论来说,能源管理的导则的适用范围较窄。总之,在能源评价标准与用能企业现存状况之间应当编制一套合理的能源管理模式使两者建立联系。
PDCA模型是美国质量管理专家休哈特提出并由戴明采纳、宣传、推广使用的,主要为计划(Plan)、执行(Do)、查验(Check)、修正(Action)四个英文单词的首写字母。2从字面意思也可理解为管理的四个环节,即在管理工作中做好计划、在实践工程中不断总结经验,对总结的检查结果进行处理,对存在问题进行修正,并适当推广形成标准化,实现管理的良性循环。
对于国际标准化组织(ISO)来说,能源管理标准是其五个国际发展和技术推进重点领域之一,企业通过引用和消化标准(例如ISO50001)可实现节能增效,美国劳伦斯-伯克利实验室在能源管理方面做了大量的工作,他们提出从1990年到2000年期间,用能单位在能源管理服务公司上的投入从5000万增长到20亿。
本文研究的目的是通过几种典型能源管理方法,并比较其优缺点,同时创新的提出一种可借鉴的、普适的基于PDCA模型创建的能源管理方法。这种能源管理方法主要具备以下几个特点:
(1)构建一种易于理解的能源管理模式;
(2)提供能效持续提升的路线图;
(3)提供一种可实现的阶梯能源管理方案;
(4)可供与其他行业比对的能效评价基准;
(5)能效提升的改造方案。
2 几种典型的能源管理方法介绍
在以往的能源管理方法研究中,研究人员注重在能源管理系统中重点标识耗能设备及环节,Carbon Trust在2011年发表的能源管理导则和为小微企业设计的爱尔兰能源持续发展计划(SEI)都是基于较为成功的案例而形成的。
Carbon Trust的能源管理导则描述能源管理的实施主要从以下几步进行:
(1)统揽全局:通过对用能企业的基本信息了解企业用能设备状况及相关管理情况,这步可了解用能企业的业务和管理制度对能源消耗的影响,确定能源消耗的基数;
(2)建立能源管理责任制:在高级管理人员中确定节能负责人,用于与企业管理部门沟通协调;
(3)管理制度的确定:包括建立一系列的基于现实及管理层需求的程序性文件,管理制度需要给出明确的方针和目标,并分解细化,以确保充足的资源和权力来实现目标,这步至少包含人员培训、职责任命及定期复验;
(4)管理评审:通过对能源管理制度的在实现,确J制度的正确性和适宜性,重新规定职责和权限,保证管理制度的持续有效运行。
SEI管理制度从以下5个主要步骤实施:
(1)保证:用以保证建立的能效锅炉制度有效实施,明确能源管理负责人,能效目标细化分解;
(2)识别:基于企业用能状况研究节能的空间和方案,主要针对领域是用能设备和能源计量;
(3)计划:描述能源的主要消费计划,包括用能设备、及用能设备的管理制度;
(4)实施:包括实质的节能工作方案,出其他步骤外,本步骤还应应当包含企业自身节能意识和全员参与等内容;
(5)检查:利用持续的监测和对比旨在提升企业能源利用效率。
上述两种方法都是采用分步实施的方式,但是Carbon Trust通过对企业概况的了解建立能源基本的管理制度,然而SEI直接确立能源管理部门来实施。两种方法都规定了战略方案和实施方案,以及典型的检查方案。两种方案都基本遵循PDCA循环:注重企业在能源利用过程中的重要耗能识别物,建立有效的预防机制并持续提升能效水平。通过用能设备的能源监测,明确能效进一步提升的空间,到达持续提升的目的,这项工作要依托于法规、标准、一些成功实践案例以及成熟的能效管理模型。
3 基于PDCA模型改进型能源管理方法
上述两种方法给出了实施的方法与步骤,但相对来说过于简单,实际操作性较差。
基于PDCA模型改进型能源管理方法是在Paulk等提出的能力成熟模型(CMM)的基础上创造出来的,并得到了大量的普及。事实上,该模型在CMM模型的基础上增加了经济效益分析及节能预期效果等内容。
其具体实施方案见表1。
在实施的五个阶段中,第一阶段是获取用能企业的基本信息;第二阶段是作为企业能源管理的第一层次,明确企业用能状况和能效可提升的空间;第三阶段是基于PDCA模型中“DO”步骤,着眼于实施能源提升的改进;第四阶段是PDCA循环过程中“Check”步骤,着眼于能效提升的监测;第五阶段是PDCA循环过程中“Act”步骤,在这阶段中企业需要通过自查找到能耗高的原因并采用切实有效办法改进。
4 结语
基于PDCA模型改进型能源管理方法可以知道用能单位合理利用资源,不断提升用能水平从而获得经济效益的目的。该模型已经用于计算机、冶金等领域并取得了良好的效果。
参考文献:
关键词:水电站库区 公路隧道 合同能源管理
中图分类号:TQ153.16 文献标识码:A 文章编号:1672-3791(2015)06(c)-0152-02
1 合同能源管理的概念及特点
1.1 合同能源管理的概念
合同能源管理就是由专业的节能服务公司和用能单位签订合同进行节能服务的约定,以此来帮助用能单位进行节能改造。合同的制定基于用能诊断、工程设计、资金筹措、设备采购、施工安装、调试和验收、员工培训和维护保养等方面。节能服务应该按照合同的约定进行设计,采用合同能源管理模式为用能单位进行节能改造设计。节能服务公司在项目实施之前用合同的形式将目标和服务的内容进行约定,项目实施后用取得的节能效益回收投资,以取得合理的利润。
合同能源管理是一种通过非行政手段的方式来解决高能耗问题的机制。虽然政府确定了一些节能减排的项目,但是很难推动用能单位自主进行节能改造。利用合同能源管理方式,用能单位可以零投入进行节能改造,还可以减少投入的风险,在实现盈利的同时达到节能减排的目的。同时节能服务公司也能够通过对能源的有效节约而获得一定的经济效益。因此,合同能源管理模式是一种双赢的机制。
1.2 合同能源管理模式的特点
(1)在进行合同能源管理中,节能项目审计、方案设计、融资和设备采购、施工测量以及运营维护和认证等都由节能服务公司统一负责,用能单位只需参与配合。
(2)采用合同能源管理模式,节能服务公司需对用能单位培训,以确保在合同期结束后,公路隧道用能单位也能够自己管理节能设备,确保节能效果。如果节能服务公司达不到合同中规定的要求,则在项目过程中造成的损失由节能公司承担。节能服务公司在和用能单位签订节能服务合同时,在合同中约定好节能改造效果,将节能改造前后对比,其所消耗的能源的总量有预期的下降。
(3)用能单位不用提供节能改造资金,节能改造的前期资金投入由节能服务公司来负责,有效降低了节能改造投入及风险。资金的来源一般有以下三个方面:通过租赁节能改造过程中需投入的设备;节能服务公司对该项目进行融资;节能服务公司自己对该项目投入。
2 合同能源管理的模式及特点
2.1 节能效益分享型
节能效益分享型的模式就是节能服务公司通过提供资金的方式对项目进行节能改造,用能单位和节能服务公司共同享受节能的效益。
节能效益分享型的特点有以下几个方面。
用能单位以及节能服务公司的节能收益通过合同约定进行分配。合同期限以及分配方案经双方协商一致后确定,节能收益的分享比例分为固定式和不固定式两种。为了能够尽快的收回成本,节能服务公司一般都会在节能改造完成的最早的几年内,收取收益的比例较高,然后随着成本的不断收回逐渐的下调收回比例。如项目的节能改造完成投入运营后,收益分享的期限为十年,则前五年内,公路隧道用能单位和节能服务公司的收益比例分别为30%和70%,第六年到第八年内,分享比例分别为50%,最后两年内用能单位和节能公司的分享比例为70%和30%。合同期满之后,所有的节能设施和设备都将无条件的交付给公路隧道用能单位。
这种模式受能源价格影响比较大。只有能源价格保持不变或者价格上涨,才能保证项目的收益,才能确保总体的节能目标实现。
2.2 节能量保证型
在进行合同能源管理的过程中应向用能单位承诺节能指标,以此保证项目在后期运营中的收益,如果节能公司无法达到节能效益就进行一定的赔偿。同时用能单位也应在公路隧道验收合格后将所有的工程款立刻支付给节能公司。如果后期的节能效益没有达到节能公司在合同中的约定,节能公司应退回公路隧道用能单位的收益差额。
这个模式的特点是由用能单位负责全部的融资工作,节能公司只是做技术上的改造。该模式能否开展,除节能技术本身外,还受用能单位的资金、开展节能改造的积极性等因素的影响。其次,由于这种模式缺少节能监督机构以及保险机构,难以有效测定节能效果以及减少或转移合同能源管理项目风险的能力。
2.3 能源费用托管型
这个模式是指用能单位的能源费用都交给节能服务公司来进行管理,如果满足相应的规范以及使用功能,节能服务公司的改造和节约效益就都归节能公司所有。
如该水电站库区公路隧道每年用电账单为1 000万元,该水电站库区公路隧道以5年4 000万元费用支付给节能公司,由节能公司代为缴纳电费。节能公司通过节能改造和管理,花去成本600万元,节电率达到40%,因此只用花用3 000万元即够缴电费,利润为400万元,利润率为10%。而用能单位在五年中可节约1 000万元。
这种模式能够有效的避免用能单位在节能效率上的分歧,但是此模式对节能公司的要求较高。节能公司要对用能单位提供节能改造的设计、设备以及材料的采购、融资和能效审计甚至是后期的测评以及运行的管理方案等一系列的服务,由于节能公司承担的风险变大,所以对该公司的经济实力和技术要求也较高。
3 合同能源管理项目的技术方案
3.1 照明能效管理方案
(1)隧道照明设计说明。
隧道能效管理系统照明方案设计严格遵照照明设计规范。该实施合同能源管理模式的水电站淹没复建公路隧道属于三级公路,共9个隧道,隧道总长度约16 km,隧道设计车速30 km/h,隧道建筑限界为9m×5.3m,双向双车道,混凝土路面,隧道车流量较小。白天洞外环境亮度取3000 cd/m2。原设计采用高压钠灯照明,能效管理系统照明设计选用高品质的飞利浦专用隧道照明灯具,灯具的光通保持性好,光衰小,使用寿命周期内可维持光衰量在20%以内。在整个灯具使用周期内,亮度值都高于标准值。
(2)照明节能措施和节能原理。
该系统主要从设备、工艺技术和管理三个方面进行节能。
①设备节能。
采用品质较优的LED照明灯替换传统的高压钠灯,可有效节能。
②工艺节能。
采用亮度传感器及时序控制,实现隧道的自动化控制,减少不必要的照明能耗,节约电能。
③管理节能。
建立照明能效管理系统,均衡照明灯具的使用寿命,优化控制方案。
(3)系统功能。
①系统组成:隧道能效管理系统由现地控制单元和通讯网络、LED照明灯具、检测传感器、照明能效管理系统等组成。现地控制单元以PLC为核心,负责对现地照明设备的信号采集和处理,通过通讯网络将照明设备的实时状态传输至相邻的现地控制单元,实现隧道内的数据共享和时序同步,达到节能的目的。
②控制对象:控制对象为隧道内除应急照明外所有的LED照明灯具。
③控制信号:控制信号主要有:亮度传感器、电参数传感器等。
④系统功能:隧道照明分为自动控制和手动控制两类。
自动控制:正常情况下,系统根据控制流程自动实现照明灯组的开启和关闭。
手动控制:当自动控制失效或者需要手动操作时,可以在各个照明段的现地控制柜上通过“开启”和“关闭”按钮实现各灯组的手动开关。
3.2 通风能效管理方案
(1)隧道通风设计说明。
隧道能效管理系统的通风方案设计严格遵照通风规范,每座隧道均采用22kw的射流风机。
(2)通风节能措施和节能原理
该方案主要从设备、工艺技术和管理三个方面进行节能。
①设备节能原理。
采用变频器替代接触器控制,实现风机无极调速和高效运行,节约电能。
电机系统在设计过程中,需要考虑建设前、后长期工艺要求的差异和过载、重载启动、系统安全等因素,因此都留有一定的余量。这些电动机大多在满负荷下运行,电能利用率低、耗电量过大,浪费严重。变频调速技术已成为节约能源及提高产品质量的有效措施。很多用户实践的结果证明,节电率一般在10%~30%,有的高达40%,变频调速技术作为高新技术、基础技术和节能技术,已经渗透到各行各业中。
采用变频器进行变频调速,可使电动机回到高效运行状态,变频器通过降低电机转速减少输出功耗,实现按需供能。设备的转速降低后,可减少磨损,延长使用寿命,节约电能,获得可观的间接经济效益。使用变频器进行交流变频调速,并与PLC、CO/VI传感器等进行配合,可以实现高精度控制,提高通风效率,有效节能,使隧道空气质量明显改善。
②工艺节能原理。
采用CO/VI、风速仪等传感器,实现隧道通风的自动化控制,节约电能。
该系统采用PLC控制,根据传感器对隧道内CO/VI浓度实际检测情况进行风机转速调节,确保通风条件、空气质量良好的状态下,最大化的提高节能效果。
③能效管理节能原理。
建立隧道能效管理系统,实现智能控制、无人或少人值守,节约管理成本。
采用最新的设计理念对通风设备的状态进行综合监测,如对风机运行状态监视,运行时间监视、运行次数监视。在这些监控数据的基础上,自动调整各各组风机的运行时间和次数,需要启动风机时,优先启动运行时间短的风机,延长风机的使用寿命。
(3)系统功能。
①系统组成:公路隧道能效管理系统由现地控制单元、通讯网络、风机、检测传感器、通风能效管理系统等组成。现地控制单元以PLC为核心,负责对现地风机设备的信号采集和处理,通过通讯网络将通风设备的实时状态传输至相邻的现地控制单元,实现隧道内的风机数据共享和时序同步,达到节约电能的目的。
②控制对象:控制对象为隧道内的所有的风机。
③控制信号:控制信号主要有:CO传感器、VI传感器、风速传感器、电参数传感器等。
④系统功能:隧道通风分为自动控制和手动控制两类。
自动控制:正常情况下,系统根据控制流程自动实现风机的开启和关闭。
手动控制:当自动控制失效或者需要手动操作时,可以在各个现地控制柜上通过“开启”和“关闭”按钮实现各风机的手动启停。
4 水电站库区公路隧道合同能源管理项目的体会
(1)从技术方案的角度,考虑到目前新了《公路隧道照明设计细则》和《公路隧道通风设计细则》,后续能效管理系统的通风、照明节能改造要满足新的规范要求。在照明调光控制上,还可以采用无级调光的方式控制LED照明灯具,比该项目更节能,更加满足运营安全的需要,在以后的照明改造中可以选用无级调光控制LED照明灯具。该项目节能效益良好:节能改造初步估算投入600万元,年节约电费193.46万度,年节约标准煤696.44吨,年减排CO21 855.23吨,年节省电费125.75万元。
(2)传统照明均采用高压钠灯,其初期投入相对较低,但耗电量高、灯泡易坏,维修工作量大。LED灯具供电安全等级高,其为冷光源,无热辐射,无危害人体健康的紫外线辐射,无有害金属汞,可减少环境污染,降低温室效应和能源消耗,符合国家节能减排的要求,维修工作量小。在进行合同能源管理中,节能服务公司负责节能改造的投入、能源审计、方案设计、融资和设备采购以及运营维护和认证等工作,公路隧道用能单位只需参与配合。节能服务公司需满足安全运营相关规范要求,承担合同期内安全运营风险,这就促使节能服务公司选用品质较好的LED灯具和先进的控制方式,以达到运营安全、节能的目的。
5 结语
随着我国的不断发展,公路隧道的建设越来越多,交通量越来越大,隧道运营能耗的问题越来越突出,合同能源管理能够有效地应对公路隧道的节能减排问题。因此,应该注意在运营过程中实施能源节约措施,推广合同能源管理机制的应用,在保证经济效益的同时,努力做到节能环保。
参考文献
[1] 林利安,韩直,任其亮.公路隧道合同能源管理模式研究[J].交通信息与安全,2011,29(1):1-3.
[2] 杜佳军.一次成功的合同能源管理项目实践[J].上海节能,2009(11):20-21.
[3] 李学丰.合同能源管理机制在宁夏的应用探讨[J].宁夏工程技术,2009,8(4):328-330.
[4] 李伟.探究市政道路桥梁的现场施工技术应用[J].江西建材,2014(3):197-197.
[关键词]工业能源;信息化;监控系统;实现原则分析
[DOI]1013939/jcnkizgsc201650036
传统形式对工业能源的管理过程一般是基于人工的离线过程,而非实时的。在工业信息化飞速发展的当前,大中型工业能源的用能企业和产能企业的产品设备、生产工艺、控制流程等基本正在向高度自动化和高度信息化的方向发展,只能完成离线能源管理的管理系统已经不能适应大部分企业高速发展的需求,因此迫切地需要实现对工业能源的自动化监控,以能源最优运行为目标,开发企业能源运行的在线实时管理功能。
1客观现状
我国由于能源利用率低而成为能源消耗大国,因此,在“十二五”期间,工业领域转型升级的突破口和重要切入点之一就是工业的节能降耗,提高能源的管理和控制力度,对企业加快以节能降耗为核心的技术改造。所以实现能源的信息化监控管理是一项符合我国中长期发展规划要求的重大决策,本技术一旦实现,可以广泛推广,具有显著的节能效果,在增进企业效益、环保节能方面具有十分重要的意义。
着眼于我国现阶段以及未来中、长期节能发展目标,目前仍以全面管控、技术节能为主,其中采用信息化节能管理是其中非常重要的一种方式,必须从战略和全局的高度,充分认识做好工业节能工作的重要性、艰巨性和紧迫性,切实采取有效措施,大幅提高能源利用效率,突破资源环境瓶颈制约,促进工业发展方式实现根本性转变。[1]
我国积极支持和大力提倡的是以信息化节能监控技术为核心的能源管理方式,该方式实现容易,结构简单,普及速度快,成效显著。因此,为了更高效率地实现节能,不需要不断地改进节能方式,研发节能新技术,逐步推出适应现代工业能源领域的先进的节能控制技术。
目前全球所面临的最大问题是能源紧缺与环境恶化。放眼国际,竞争环境的变化对我国工业节能降耗构成严峻挑战。国际社会应对气候变化博弈日趋激烈,绿色贸易壁垒正在加速形成,一些发达国家对出口国产品的能效水平和碳足迹提出更高要求。我国制造业总体上处于产业价值链中低端,产品资源能源消耗高,出口将面临巨大压力。[2]
我国持续高速的经济增长成为过去几年甚至未来全球经济的最大亮点,但与此同时,我国也承受了巨大的压力,那就是能源供应危机及环境保护。从居室照明和采暖,以及与生活息息相关的水、电、气、油、煤等资源,到工商业所需的电力资源,社会生活所需的各种形式的能源正在被消耗着。能够被有效利用的能源占绝大部分,但也有大量的能源每天被浪M着,因此能源浪费和使用效率低下是当前亟须解决的问题。[3]节能增效已经成为社会经济发展的必然要求,越来越多的企业、机构和个人都投身到节能降耗的工作当中。如何能够更好地管理和使用、控制能源是当前的重中之重,只有通过建立信息化的智能监控系统才能够充分利用能源,达到高效节能的目标。
2系统实现分析
我国是能源消耗大国,因此能源的高效利用和信息化管控是当前的重点,实现社会能源的有效利用需要通过建立信息化的智能监控系统支撑,要实现智能管控,应该从社会可行性、经济可行性和技术可行性三方面来进行分析研究。
21社会可行性
目前,工业企业的节能情况差异非常大,能源管理水平悬殊,当前多数企业存在能源管理问题,具体表现在:缺乏专门的能源管理体系和先进的管理手段,能源管理人员水平参差不齐,行业视野有限;对能源使用的监管不细致,找不到合理的方法,找不到或找不准节能点,没有一个详细的评测手段。概括地讲,就是普遍存在能源信息基础薄弱,能源管控技术水平不高的状况,因而不能及时发现企业存在的某些环节上的能源浪费以及存在的节能潜力。[4]
工业企业是能源消费大户,存在能源浪费现象。降低能源消耗,减少能源浪费,工业企业是重点。目前社会上对能源进行管理和控制的方法技术多种多样,但是大部分都缺乏统一准确的用能情况监测数据做支撑,往往仅凭经验来降低能耗指标,没有做到管理和指导的全面性、科学性和准确性,造成能源的巨大浪费,因此需要建立一套科学合理的信息化能源监控管理系统来减少不必要的能源损耗,并进行有效的管控。
22经济可行性
对工业能源进行信息化管理控制在我国是个新兴产业,既要考虑系统使用的稳定高效,还要考虑供能企业的运营成本及产品设备的升级改造,以及用能用户的改造成本问题。
目前所采用的能源管理机制是借鉴西方经济国家的“合同能源管理”思想引进并逐步发展起来的,至今已经有十几年的历史,虽然没有实现信息化的智能管理,但是在能源服务产业领域也得到了快速发展,特别是“十二五”期间和最近几年,国家在财税、金融、技术等方面相继出台了多个支持能源服务产业发展的扶持政策,进一步地促进了能源管理产业的飞速发展。[5]
目前能源管理服务产业规模逐年大幅递增,2011年能源管理服务产业产值更是首次突破1000亿元,达到1250亿元,2012年达到1653亿元,同比增长32%。预计“十三五”期间,我国能源管理服务产业将步入规模化发展轨道,“十二五”末能源管理服务产业产值可突破3000亿元。能源管理产业已被国家确定为重点培育和发展的七大战略性新兴产业之一,产业发展潜力巨大,拉动经济增长前景广阔。[6]据测算,到2015年,我国技术可行、经济合理的能源管理潜力超过4亿吨标准煤,可带动上万亿元投资。
如果在此基础上能够全面地改进目前的能源管理服务机制,实现全面的智能化、信息化管理控制系统,就可以更大程度地达到能源的高效利用。
23技术可行性
目前的能源管理系统是在普通信息系统和自动化系统基础上的传统模式,缺乏在能效传输和使用中的诊断技术,且大部分基本没有对远程设备采用物联网技术,能效管理力度不高,信息化程度低,节能效果不明显。而新型的能源管理系统通过机理建模和机器学习相结合的方法,以用能设备、耗能工序和能量系统之间的关系为重点建立能效分析模型,确定一种新型的能源管理模型,并进行软件的开发,能够弥补传统模式的不足,增强了系统的实用性。
由于企业工艺装备处于落后水平,企业管理手段也没有达到先进水平,使得我国工业企业的能源利用效率低下。虽然经过十几年的不断努力,工业能耗也有所降低,但与国际先进水平相比我国企业的单位工业产品能耗仍存在较大差距,能源利用效率空间巨大,这就为能源管理系统技术的应用提供了广阔的前景。
随着国家能源节能政策的大力推动,企业的能源利用意识不断提高,以及逐步上涨的能源价格和国家对工业能源使用指标的硬性规定等,这些都为能源高效利用技术的应用提供了很好的环境,具有很强的竞争优势。
3实现策略
作为能源消耗主要群体的工业企业,是实现能源高效利用的主体和重点,国家高度重视工业能源节能技术,曾先后出台了《国民经济和社会发展第十二个五年规划纲要》、《工业转型升级规划(2011―2015 年)》《国务院“十二五”节能减排综合性工作方案》《节能减排规划(2011―2015 年)》等,作为“十二五”全国工业能源利用的指导性文件。[7]我国的工业化、城镇化正处于深入发展阶段,飞速发展的经济社会对能源具有极大的需求,能源资源和环境约束形势越来越严峻。工业发展对能源的需求继续增加,工业和高耗能行业对国内生产总值的贡献率呈下降趋势,国家对能源的节能减排约束性指标要求工业加快转变发展方式,传统的能源资源高消耗的粗放型工业发展道路已经不能适应现代社会的发展,大批量的工业企业的转型升级为能源的高效利用提供了良机。
31系统实现目标
系统的主要目标是实现对能源使用信息的监控管理,为此需要配备完善的能源计量器具,采集精确的能源使用情况数据,使用合理的数据传输技术,建立健全能源计量系统,完善各项能源消耗的监测网络,实现用能单位监测的实时性、准确性和完整性。[8]通过建立一套工业能源信息化管理监控系统来统一地对各项能源消耗进行监测和控制,及时反映用能企业能耗水平,为进一步分析用能效率提供客观、公正和科学的基础数据,为用能企业节能降耗工作提供新的动力。
32系统实现策略
实现系统的能源运行管理包括动力能源管理、能源供应管理、能源消费管理。同时涉及采购、运输、仓储、动力、生产消费等多个环节。数据来源于同一数据库,各个部门围绕统一的信息进行分析和决策。利用能源测量和计量器具采集实时和非实时能源数据,并建立能源信息管理专用数据库,以便进行后期的分析和处理。具体的实现策略主要包括以下几方面。
第一,系统数据库管理层采用双机冗余的数据采集服务器和数据服务器模式共存技术;第二,针对信息数据的远程传输及实时显示Web技术,采用GPRS无线传输和有线技术相结合的方法;第三,对采集的用能信息进行实时分析诊断、处理和预警;第四,实现集查询、修改、删除和控制于一体的真正面向企业管理的监控系统平台;第五,针对能源数据的采集主要分为实时和非实时两种。实时数据来自于本项目研制的工业能源信息化管理监控系统的在线采集,也可以通过安装数字仪表设备来补充缺少的数据,在预设的时间间隔内实现自动收集,并存储到实时数据库中,从而实现能效指标的在线计算与动态分析。非实时获取的数据可以从用能企业的计算机系统中获取,或者由工作人员直接录入到管理监控系统中;第六,系统数据库采用双机冗余技术的目的是为了防止数据丢失,在一台数据库服务器出现故障时,另一台检测到主机数据库停止后自动采集并存储数据,在主机恢复后,会自动拷贝到主机数据库中;第七,对数据传输技术的实现,主要依靠当今先进的现场总线技术、网络通信技术、计算机技术,经过网络布线、通信网络、GPRS技术的结合,通过系统软件设计实现信息数据的远程传输及实时显示;有的场合可以使用有线通信技术实现,而有的条件不具备的必须采用GPRS无线传输技术来实现;第八,为了保证采集的用能信息数据的准确有效,需要对数据进行验证。常用的方法是将非同源的数据放在一起进行比较,也可以和历史数据对比来发现异常。对于异常的数据应该进一步分析并解释原因,错误的数据必须剔除,以免对能效分析产生干扰,充分体现能源使用的实时性、可靠性和准确性;实现集数字化、智能化、网络化一体的管理监控系统,采用统一的能源数据仓库技术、完善的数据分析技术、丰富的报表功能、自由数据钻取技术、灵活的算法扩展技术、基于数据层的数据安全技术,并具有良好的接口和兼容性,市场需求巨大,前景非常广阔。
33系统实现前景展望
系统着眼于实施能源消耗总量控制,将对工业发展形成硬约束。加大节能降耗力度,进一步提高工业能源利用效率和能源生产率,改造提升传统制造业,是建立资源节约型、环境友好型产业结构和生产方式的必然选择。全球范围内发展绿色经济、倡导低碳生活越来越受到重视并逐渐成为新趋势,大力发展节能环保低碳产业,成为抢占未来发展制高点的核心价值观。[9]坚持以提升工业能源利用效率为主线,以科技创新为支撑,以政策法规为保障,加快淘汰落后生产能力,大力推进工艺、装备、产品的结构调整和技术进步,加快以节能降耗为核心的企业技术改造,强化重点用能企业节能管理,加强信息通信技术在节能降耗中的应用,必将产生巨大的经济和社会效益。
系统一经实现应用,首先受益的就是企业,随着企业能源节能意识增强,必将为大多数企业所接受,最终也将带来巨大利润;其次可以使企业管理水平提高,可同时应用于机关事业单位,节能效果显著,包括对水、电、气、热等的监控,一经实施可节约大量能源,具有良好的社会和生态效益,应用前景广泛。
4结论
随着原材料和人力成本上涨,我国工业企业产品生产竞争以及能源节能环保的压力日渐增长,工业企业能源管理智能化信息系统得到了越来越多的企业重视并正在着手建设。基于能效分析模块的工业企业能源管理信息系统及应用软件,能够在能效分析方面增强企业能源管理的实用性,开拓了将来企业能源管理信息系统的新思路,转化开发后可有效满足市场的需要,并且市场需求潜力巨大。
基于能效分析模块的工业企业能源管理信息系统适合工业企业并完全可以满足企业能源管理需要,其技术达到国内先进水平。该系统产业化后,将对节能服务产业的发展起到助推作用,同时,也将大大提高企业核心技术实力,增强企业发展后劲,从根本上提升企业的竞争力和节能服务水平,一经应用,会减少能源消耗,对社会环境起到极大的净化作用。
参考文献:
[1] 蒋平,李博,曾文清马钢新区能源中心的建设与探讨[J].冶金能源,2009,28(3):3-5
[2] 郑士君,黄爱平海运企业能效管理信息系统研发[J].中国航海,2010,33(4):53-56
[3] 宋小磊,陈贵军,赵书平工业企业能源管理信息系统研究[J].节能,2011(9):59-62
[4] 张晓丽浅谈企业能源监测管理系统解决方案(下)[J].中国工控,2011
[5] 张凯,姜晓红,闫献国,等中小制造企业ERP系统的设计与实现[J].机械工程与自动化,2011(3):22-25
[6] 刘慧萍区域分布式能源的智能微网能源管理[J].电力与能源,2012,33(5):414-417
[7] 朱跃中美国能源管理体系及能源与环境领域发展趋势[J].环球经济,2010(3):72-74